

 SpaceWire-2011

 Proceedings of the 4th
 International SpaceWire Conference

 San Antonio 2011

 Editors: Steve Parkes, Allison Bertrand, Martin Suess,
 Glenn Rakow
 Editorial Assistant: Lisa Rodway

Space Technology Centre
University of Dundee
Dundee
2011

©

All rights reserved. No part of this publication may be reproduced or
transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written
permission of the publisher.

ISBN: 978-0-9557196-3-9

SpaceWire-2011
Proceedings of International SpaceWire Conference
San Antonio 2011

Preface

These proceedings contain the papers presented at the 2011 International SpaceWire

Conference, held in San Antonio, Texas, USA between 8

and 10 November, 2011. The International

SpaceWire Conference aims to bring together SpaceWire product designers, hardware engineers,

software engineers, system developers, mission specialists and academics interested in and working

with SpaceWire, to share the latest ideas and developments related to SpaceWire technology.

SpaceWire is a spacecraft on-board communication network designed to connect together

instruments, mass-memory, processors, downlink telemetry, and other on-board sub-systems. It offers

high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility

making it ideal for many space missions. Since the SpaceWire standard was published in January

2003, it has been adopted by ESA, NASA, JAXA and RosCosmos, and is being widely used on

scientific, Earth observation, commercial and other spacecraft. High-profile missions using

SpaceWire include: Gaia, Sentinels 1, 2, 3 and 5 precursor, Bepi-Colombo, James Webb Space

Telescope, GOES-R, Lunar Reconnaissance Orbiter and Astro-H.

The conference provides a forum for the exchange of experiences with the application of

SpaceWire, and for the exploration of new ideas and technologies related to SpaceWire. It also allows

presentations on the latest test and development equipment, chips and IP cores, and software

associated with SpaceWire.

This year the conference is hosted by Southwest Research Institute (SwRI), one of the oldest

and largest independent, nonprofit, applied research and development (R&D) organizations in the

United States. Founded in 1947, with headquarters in San Antonio, Texas, SwRI provides contract

research and development services to industrial and government clients. SwRI consists of 11

technical divisions that offer multidisciplinary, problem-solving services in a variety of areas in

engineering and the physical sciences. Southwest Research Institute (SwRI) spacecraft avionics have

an excellent performance record, having flown on over 50 missions without a single on-orbit failure.

Space Missions using SwRI spacecraft avionics include IMAGE, SWIFT, Deep Impact, Orbital

Express, Kepler, and MMS.

The Conference Chairpersons would like to acknowledge the support and hard work of many

of the individuals who made the International SpaceWire Conference 2011 possible. First, we thank

the authors and keynote speakers for their high-quality contributions. We express our gratitude to the

members of the Technical Committee for their assistance in the review process. We thank all the

people supporting the conference at SWRI, the Space Technology Centre at the University of Dundee,

the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA).

The Conference Chairpersons,

Allison Bertrand, Southwest Research Institute, USA

 Steve Parkes, Space Technology Centre, University of Dundee, UK

 Martin Suess, European Space Agency, The Netherlands

 Glenn Rakow, National Aeronautics and Space Administration, USA

1

Technical Committee

Allison Bertrand, South West Research Institute, USA

Barry Cook - 4 Links Ltd., UK

Stephane Davy – Syderal, Switzerland

Omar Emam - Astrium, UK

Wahida Gasti - ESA, The Netherlands

Daniel Gilley - Lockheed Martin, USA

Alain Girard - Thales Alenia Space, France

Viacheslav Grishin- Submicron PLC, Russia

Sev Gunes-Lasnet - Astrium, France

Omar Haddad - Dell, USA

Hiroki Hihara - NEC, Japan

Christophe Honvault - ESA

Torbjörn Hult - RUAG Space, Sweden

Jørgen Ilstad - ESA, The Netherlands

Paul Jaffe - Naval Research Laboratory, USA

David Jameux- ESA, The Netherlands

Gerald Kempf - RUAG Space, Austria

2

Clifford Kimmery - Honeywell Inc., USA

Alexander Kisin - MEI, USA

Robert Klar - South West Research Institute, USA

Jim Lux - NASA JPL, USA

Patrick McGuirk - PnP Innovations, USA

Peter Mendham - Scisys Ltd., UK

Masaharu Nomachi - University of Osaka, Japan

Olivier Notebaert - Astrium SAS, France

Steve Parkes - University of Dundee, Scotland, UK

Manuel Prieto - Alcala University, Spain

Glenn Rakow - NASA GSFC, USA

Paul Rastetter - Astrium GmbH, Germany

Derek Schierlmann - Naval Research Laboratory, USA

Alan Senior - SEA, UK

Yuriy Sheynin - St. Petersburg State University of Aerospace Instrumentation, Russia

Tatiana Solokhina - ELVEES, Russia

Martin Suess - ESA, The Netherlands

Tadayuki Takahashi - JAXA, Japan

Raffaele Vitulli - ESA, The Netherlands

Takahiro Yamada - JAXA/ISAS, Japan

3

Tuesday 8 November

4

Keynote Presentation

5

Rev. 01/11/2011

BIOGRAPHY
Last Revised October 2011

Mr. BRET G. DRAKE
Deputy Chief Architect, Human Spaceflight Architecture Team,

Exploration Missions and Systems Office,

NASA Johnson Space Center

Mr. Drake is currently leading the future Mission Planning and Analysis activities for the Exploration

Missions and Systems Office at NASA's Johnson Space Center. For the past several years Mr. Drake has

led the Agency in the design and analysis of human exploration mission approaches beyond low-Earth

Orbit including missions to the Moon, Near-Earth Objects, and Mars. Mr. Drake has been involved in

various agency strategic planning activities for NASA's exploration efforts for over twenty years

including the NASA 90-day study and the White House Synthesis group, Integrated Space Plan,

Exploration Systems Architecture Study, and the Review of Human Space Flight Plans Committee (aka

Augustine Committee).

Previously, Mr. Drake served as Chief of the Advanced Missions & System Design Office for the

Constellation Program and Interim Program Manager for the Lunar Prospector mission at NASA

Headquarters and has served as the project lead for many design efforts at the Johnson Space Center. Mr.

Drake graduated from the University of Texas at Austin with a Bachelor of Science degree in 1984 with a

degree in Aerospace Engineering.

6

NASA’S HUMAN EXPLORATION PLANS & ARCHITECTURE

Bret G. Drake

Abstract

During the past few years the direction for future human exploration beyond low-Earth orbit has

undergone revision and a less destination specific framework has emerged. This strategy,

referred to as a Capability Driven Framework, is based on the idea of an ever expanding human

presence beyond low-Earth orbit in terms of duration and distance from the Earth. It is based on

evolving capabilities which are utilized after operational experience has been established from

completing less demanding missions. In theory, the Capability Driven Framework enables

multiple destinations and provides increased flexibility, greater cost effectiveness, and

sustainability. This presentation will provide an overview of the Capability Driven Framework

which is NASA’s approach towards developing a robust human spaceflight program that is

sustainable over long spans of time. Understanding future exploration needs consistent with the

Capability Driven Framework will help guide research activities on the International Space

Station, identifying key technology needs, and establishing future collaboration with

international partners, academia, and industry, which are essential in maintaining progressive

cadence of missions that ultimately land humans on Mars.

7

Networks and Protocols 1

8

A GENERALIZED APPROACH TO PLUG-AND-PLAY NETWORK ATTACHED
STORAGE USING SPACEWIRE

 Session: SpaceWire Networks and Protocols

Long Paper

Paul B. Wood, Sue A. Baldor, Dan Goes, Allison R. Bertrand

Southwest Research Institute®, 6220 Culebra Road, San Antonio, Texas 78238

E-mail: paul.wood@swri.org, sue.baldor@swri.org, dan.goes@swri.org,
allison.bertrand@swri.org

ABSTRACT
This paper describes a generalized approach to defining a protocol for Plug-and-Play
(PnP) Network Attached Storage (NAS) using SpaceWire. A key concern in the
design of a PnP device is the presence of competing standards from the U.S. and the
European Union for PnP on SpaceWire (SpW) networks. Providing adaptation
between these protocols would allow an end device such as an NAS to operate on a
network conforming to either standard. To validate the adaptation layer, a test bed is
being developed. The test bed will include a simulated NAS connected on a
SpaceWire network. The network will also include producer and consumer nodes to
store and retrieve data from the simulated NAS as a challenge task.

1 SPACE PNP UBIQUITY – THE FUTURE IS NOW!
Plug-and-Play (PnP) technologies have been widely adopted for terrestrial computing
applications. Over the last two decades, terrestrial PnP technology has transitioned
from the sarcastically monikered “Plug and Pray” to the ubiquitous Universal Serial
Bus (USB) that allows the vast majority of devices to be connected to a typical
workstation with no special actions required on the user’s part. These capabilities
commonly extend to servers and associated devices on local area networks, a scope
comparable with a typical spacecraft (S/C) data system configuration.

Two PnP protocol options for SpaceWire (SpW) are currently maturing – one defined
by the Air Force Research Laboratory (AFRL) and one developed by the European
Space Agency (ESA). From a practical perspective, we wanted to address the concern
that developers and managers face with regards to selecting a specific technology to
target for PnP-enabled SpW networking. Our approach to solving this problem has
been to abstract the PnP protocol layer such that application programs can interact
with either PnP protocol without a need to be aware of unique aspects of either
protocol. This enables the goal of developing portable applications that can be reused
without modification.

9

We selected Network Attached Storage (NAS) as a challenge task to use for
experiments on our adaptation layer. An NAS device can accept data from many
sources and provide data to many sinks. The use of an NAS device varies from a
common mission design pattern where mission processors typically include local
storage to buffer data prior to transmission to the spacecraft processor. With an NAS
device, the data server portion of the spacecraft is separated from the mission and S/C
processors. Delineating the data storage as a separate device on the network allows
for more flexible network design (including variations in which devices produce data
and which devices consume data).

2 RECONCILING DISPARATE STANDARDS
In view of the desire to build an end device that can operate in networks constructed
according to either of the SpW-PnP standards, we first sought to understand how
these standards are similar and different. The Spacecraft Onboard Interface Services
(SOIS)/SpaceWire-PnP and Space Plug-and-Play Architecture (SPA)/SPA-SpaceWire
(SPA-S) standards have similar goals and, not surprisingly, they share a number of
characteristics in common. These characteristics are listed in Table 1 and include
such things as mechanisms to adapt to network changes, Electronic Data Sheets
(EDS) allowing devices to self-describe their capabilities, and a central database of
capabilities and services available by devices (once discovered) on the network.
Table 2 shows areas of difference. Differences range from policy items (International
Traffic in Arms Regulations [ITAR] restrictions) to unique data protocols (e.g.,
Remote Memory Access Protocol [RMAP]) to the maturity of a reference
implementation. Note that our work is limited to areas of the standards that affect
implementation and operation (e.g., device discovery differences).

Table 1. SOIS/SpaceWire-PnP and SPA/SPA-S Similarities

Attribute Description
Network identification Devices connected to networks are given unique network identifiers.
Network changes Network is able to adapt to topology and composition changes as they occur.
Data sheets Both use an Electronic Data Sheet (EDS) format with similarities between the

two formats.
Capability database A central service is in charge of maintaining lookup of capabilities provided and

services requested by registered devices.
Self-description Devices self-describe capabilities and needs through their EDS.
Device dictionaries Standardized virtual device information repositories (Common Data Dictionary

and Dictionary of Terms) are used, and evidence that these two dictionaries will
align is given.

Code generation Automated code generation for communicating with devices based on EDS is
used.

10

Table 2. SOIS/SpaceWire-PnP and SPA/SPA-S Differences

Attribute SOIS/ SpaceWire-PnP SPA/SPA-S
Source of standard Primarily coming from ESA Primarily coming from AFRL
ITAR restriction Non-ITAR restricted Some ITAR restrictions
Reference implementation Reference implementation currently

unavailable (but slated for release in
August 2011)

Implementation based on earlier standard
available (Satellite Data Model [SDM]),
implementation based on new standard is
now or will soon be available (SPA
Services Manager [SSM])

Relationship to Plug-and-Play SpaceWire-PnP is a realization of the
subnetwork portion of the standard and
compliant with the standard, but not built
into the core of the standard itself

Plug-and-Play concepts and functions
built into the foundation of SPA

Device discovery “Active nodes” on network initiate
device discovery

Network managers (SPA managers)
initiate device discovery

System management messages System messages (for discovery,
configuration, etc.) are RMAP-based

System messages have their own
proprietary packet format over
SpaceWire

Network sub-types Different requirements of devices based
on composition of network (level 1 vs.
level 2)

Single network level without requiring
different features of devices based on
network composition

Node types Distinction between passive and active
nodes for ability to initiate commands

Distinction between architectural
components of the network (e.g. sub-
network managers vs. endpoints) in
ability to control network

Table 3 shows a minimal set of candidate functions needed to perform PnP
adaptation. Functions are provided to initialize the adaptation layer and configure the
device. Ideally, initialization will be able to self-discover the underlying PnP
protocol; however, at this time, the Application Program Interface (API) takes an
argument that determines whether the network is SPA-S or SpW-PnP. Device
configuration hides the unique aspects of the two underlying PnP protocols. For a
SPA network, this means replying to the probe message — sent by the SPA Lookup
Service — with a message containing the component’s Universally Unique Identifier
(UUID) and the UUID for its Extensible Transducer Electronic Data Sheet (xTEDS).
For an SpW-PnP network, this means contacting the device identification service for a
device’s configuration. In SPA, the lookup service must be interrogated to establish
the connection. In SpW-PnP, the sources and sinks must work through the network
manager to establish the connection. Functions in the adaptation API are also
provided to make connections, identify when connections are ready, and send and
receive data across either type of network (e.g., using the lookup service vs. the
network manager).

Table 3. Minimal API for Adaptation

Function Description
spnp_init(network type) Configures the SpaceWire abstraction library.
spnp_device_configure(device id, network type) Configures the device for the network type.
spnp_device_connect(device id) Establishes a connection between the device and a data-service

on the network. This connection may be bi-directional.
spnp_device_release(connection handle) Releases an existing connection.
spnp_device_data_avail(connection handle) Callback to notify the device that data from the service it’s

connected to is ready.
spnp_device_data_recv(connection handle, options, receive
buffer)

Receives data from the connected service.

spnp_device_data_send(connection handle, options,
transmit buffer)

Sends device data to the connected service.

11

Applications must respond automatically to the system messages of both PnP
protocols. This should be handled by the adaptation layer. For example, a request
may come in from an SpW-PnP network as an NMS_READ_NETWORK_ID
message. Since this message is specific to SpW-PnP, the adaptation layer will know
that it (the adaptation layer) needs to respond with the NMS_READ_NETWORK_ID
indication containing the specific SpW-PnP network ID. Similarly, if a SPA network
status request message comes in on a SPA network, the adaptation layer must respond
with a SPA network status reply message.

3 DATA STORAGE CHALLENGE TASK
Given an abstraction layer, a suitable challenge task was needed to validate the
approach. The idea of a Network Attached Storage device was selected as a good
challenge task, since storage devices in the form of solid-state recorders are used on
many spacecraft. Terrestrial Network Attached Storage devices are complex devices
that need to support a richer set of capabilities than that needed for space applications.
We have begun to develop concepts for a protocol for such a device. Some of the
capabilities an NAS protocol must address include:

 Reporting configuration and status information

 Setting configuration values

 Reading and writing data

The protocol is organized according to requests and responses.

Table 4. NAS Protocol Requests

Request Data Elements
Information probe  General configuration information

 Bad block information
 Error Detection and Correction (EDAC)

information
 Metrics information

Import Bad Block Map Bit map of bad blocks
Write Data  Address

 Count (blocks)
 Data

Read Data  Address
 Count (blocks)

12

Table 5. NAS Protocol Responses

Response Data Elements
Configuration/Status
Data

Configuration/Status items/value pairs
 Power mode
 Block size
 Memory size
 Bank count

Bad Block Map Bit map of bad blocks
EDAC Data EDAC counters
Metrics Data Memory metrics values
Requested Data  Count (blocks)

 Data values

The information probe/response is shown in Figure 1. This figure shows the request
format including an 8-bit field for the requested data. The probed device responds
with requested data. In the figure, the format of a response to an information probe
(the Configuration/Status Item/Value Response) is shown. Figure 1 also shows the
write request protocol. The request consists of an Information Probe that includes the
request code. Figure 2 shows the data read request protocol. Several fields are large
to allow for device growth. In addition to the large size of the address and data fields,
the reserved bits will allow for the extension of the protocol in the future for
additional capability. This is indicated by the most significant bit in the request and
response protocol words.

Figure 1. Information Probe/Response and Write Request Protocol

Reserved Request

07831

Information Probe/General Request

Reserved Item

0151631

Configuration/Status Item/Value Response

Value

031

Reserved Response = Cfg/
Status Items

07831

E

30

30

E

Data Write Request

Count

031

Address

0

31

Data Values (count values)

031

Reserved Request = Write

07831

E

30

13

Figure 2. Data Read Request Protocol

4 BUILDING A TEST BED
Figure 3 shows the organization of the test bed. The test bed consists of several
workstations connected through a pair of STAR-Dundee SpW routers. Separate
workstations are dedicated for the simulated producer, consumer, and NAS functions.
All workstations use the Ubuntu variant of the Linux Operating System. Each
machine has a custom SpW interface (I/F) board and a corresponding driver. One of
the core capabilities of these boards is a Field-Programmable Gate Array (FPGA)
implementation of RMAP. An optional system can be incorporated by connecting the
SpW routers via a USB. These connections are used to configure and monitor the
routers.

Having the producer, consumer, and NAS use the same configuration allowed us to
focus on the concerns of the adaptation layer and SpW protocol specifics. Later
extensions to this work could include demonstrating the adaptation layer on other
platforms, particularly embedded systems to ensure a truly universal interface. We
hope our experience with this adaptation layer can contribute to work on the
standards.

Figure 3. Test Bed

Data Read Request

0
Reserved Request = Read

07831

Count

031

Address

31

Data Read Response

Values

031

Reserved Response = Read
Data

07831

Count

031

E E

30 30

Linux
Workstation
(Simulated NAS)

SpW I/F

Linux
Workstation
(Simulated
Producer)

Linux
Workstation
(Simulated
Consumer)

SpW router

SpW router

Linux
Workstation

(Monitor System)

USB

USB

SpW I/F

SpW I/F

Protocol
Stack

Protocol
Stack

Protocol
Stack

14

Figure 4 shows the protocol stack for the test bed. The positioning of the adaptation
layer can clearly be seen between the specific protocols and the higher levels.
Depending on the sophistication of the adaptation layer, it could be built to work
integrated with the operating system and file system layers or to bypass them. The
benefits of the two approaches are greater portability on the one hand and lower
overhead and a potentially simpler interface on the other.

Figure 4. Protocol Layers

The raw communication level has been achieved at this time. Application programs
for the producer and consumer have been written to communicate directly to each
other over the SpW I/F without any PnP elements present. The I/F operates at nearly
5 Mbits/s without data loss. This data rate is not significantly affected regardless of
whether the data passes through one or both of the SpW routers. The producer and
consumer applications will be modified to work with the adaptation layer and
read/write to the simulated NAS device. A simulated NAS device is being produced
as well. We plan to run experiments on the test bed to evaluate the impact of the
adaptation layer on efficiency, ease of use, etc.

5 CONCLUSION
Building an adaptation layer should be possible. Some areas of incompatibility may
require changes to the standards to reconcile effectively (i.e., to eliminate special
protocol unique knowledge in the adaptation layer). Work is progressing on the test
bed; and, through the use of reference implementations for the two standards, a
practical evaluation of an adaptation layer can be achieved.

6 REFERENCES

1. Space Technology Centre, "SpaceWire-PnP Protocol Definition," University of
Dundee, Dundee, Scotland, UK, Draft A, Issue 2.1, September 16, 2009.

2. American Institute of Aeronautics and Astronautics, "Standards Development
Guidebook for Space Plug and Play Architecture," March 2011.

SpaceWire I/F
(physical layer)

SpW I/F Driver

PnP Layer
(ESA PnP)

File System Layer

Operation System

Application
(producer)

Application
(consumer)

PnP Adaptation Layer
(common API)

PnP Layer
(AFRL PnP)

NAS

15

3. American Institute of Aeronautics and Astronautics, "Space Plug-and-Play
Architecture Standard: Networking," March 2011.

4. Albert Ferrer Florit, Steve Parkes, and Peter Mendham, "SpaceWire Plug-and-
Play: A Roadmap," in Proceedings of the 2nd International SpaceWire
Conference, Nara, Japan, 2008.

16

A SOFTWARE ADAPTATION LAYER FOR SUPPORTING MULTIPLE
SPACEWIRE PLUG AND PLAY STANDARDIZATIONS

Session: SpaceWire Networks and Protocols

Long Paper

Sue A. Baldor, Paul B. Wood, Allison R. Bertrand, Dan Goes

Southwest Research Institute®, 6220 Culebra Road, San Antonio, Texas 78238
E-mail: sue.baldor@swri.org, paul.wood@swri.org, allison.bertrand@swri.org,

dan.goes@swri.org

ABSTRACT
Over the past few years, two s tandards for SpaceWire enabled P lug-and-Play (PnP)
have em erged, one f rom t he Air F orce R esearch Laboratory (AFRL) and t he ot her
from t he E uropean Space Agency (ESA). This mu ltiplicity h inders th e s oftware
designer’s ability to build reusable software that can work with either PnP platform.
Fortunately, these SpaceWire-enabled PnP protocols share enough in common that a
unifying interface may be d efined. W ith a s uitable abstraction la yer, application
software w ill be por table a cross p rotocols, r educing the costs of de ployment of t he
different pr otocols a nd f acilitating t he e valuation of pr otocols a gainst a ctual
application usage patterns.

1 INTRODUCTION
Abstraction is a p aradigm t hat h as be en us ed i n c omputer s cience a nd s oftware
engineering f or de cades t o pr ovide a c ommon i nterface t o di ffering networking
protocols or ha rdware. Utilizing t his i nterface, programmers m ay readily port t heir
applications to mu ltiple target p latforms, greatly r educing t he de velopment c osts t o
support the different target environments.

As s tandards f or P lug-and-Play (PnP)-enabled S paceWire n etworks co ntinue t o b e
developed, the concept of abstraction can be applied to these protocols. Two standards
presently exist for PnP with SpaceWire: Space Plug-and-Play Architecture (SPA) and
SpaceWire-PnP (SpW-PnP). B y exploiting the s imilarities a nd h andling th e
differences at t he l ower l evel, w e can c reate a common i nterface t hat a ssists b oth
software and spacecraft designers in assembling functional networks.

In t his i nvestigation, w e apply this methodology to d efine a co mmon Application
Programming Interface (API) for supporting SPA—with SpaceWire support—and the
SpW-PnP standards.

2 COMPARISON OF TWO PLUG-AND-PLAY STANDARDS
At first glance, one may see little commonality between the core services described in
these s tandards. H owever, i f w e l ook at t he network a s a whole w e c an f ind

17

mailto:sue.baldor@swri.org�
mailto:paul.wood@swri.org�
mailto:allison.bertrand@swri.org�
mailto:dan.goes@swri.org�

similarities in their operations. Though the service decomposition may be different for
each, we can see that similar operations are performed on each network type.

2.1 CORE SERVICES

In SpW-PnP, the term service is used more to describe the capabilities offered by the
network than to describe a traditional software service. This stems from the standard’s
philosophy of largely leaving implementation details out. There are considered to be
four core services within the SpW-PnP standard: the Device Identification, Network
Management, Link C onfiguration, a nd R outer C onfiguration s ervices. Additionally,
the standard envisions support capability services that offer higher-level capabilities.
Currently, t wo cap ability s ervices are d escribed: the Remote M emory Access
Protocol (RMAP) Data Source and the RMAP Data Sink.

Table 1. SpaceWire-PnP Services

Core Services
Device Identification Service: The Device Identification Service acts as a ce ntral repository
where one c an que ry i nformation a bout a de vice s uch a s i ts s tatus a nd p rovided c apability
services. The parameters stored for each device include the device’s identity, type, status, PnP
level of service, and aforementioned capabilities. With the Level 2 PnP network, an additional
field is defined in the device status for the owner identity. Device errors may also be reported
through this service.
Network Management Service: The N etwork Ma nagement S ervice permits acc ess t o
parameters which are required for the discovery of devices and network topology. In a Level
1 n etwork, t he si ngle active n ode al so takes t he r ole o f the m anagement ser vice. Wh en
multiple a ctive nod es a re introduced w ith the L evel 2 ne twork, s ome mechanism must be
introduced to a rbitrate c onflicts b etween p otential de vice ow ners. I n s uch a ne twork, e ach
active node ha s a c orresponding N etwork M anager. U sing a n additional pa rameter f or the
node priority, conflicts in node ownership are resolved by a vote based on this priority; and, in
the event of a tie, the port number.
Link Configuration Service: The Link Configuration Service provides a mechanism for the
links of a d evice to be queried and configured. This service will configure the link rates for
each SpaceWire link on a ll connected devices. Additionally, status information including the
current link rate and port activity may be queried.
Router Configuration Service: The R outer C onfiguration S ervice p ermits t he f eatures of
each SpaceWire router to be queried and configured. Foremost, the service is responsible for
configuring the routing tables for each SpaceWire router under the active node’s ownership.
Additionally, t he routing c ontrol p arameters of the r outer a re c onfigured, including th e
watchdog t imer, arbitration, and t ime code settings. The status of all router settings may be
queried through this service.
Optional Capability Services
RMAP Data Source: The Data Source service allows a device to disclose data in a standard
way o n an R MAP i nterface. B oth R MAP t argets and i nitiators m ay b e d escribed an d
configured t hrough t he ca pability ser vice. A t arget data source p rovides a n i nterface f or
RMAP reads, while an initiator data source provides an interface for RMAP writes. Only one
component may use the data source at a time. Optionally, a target data source service may
support a queue for pending read operations.
RMAP Data Sink: Data sinks operate in a similar manner to data sources, but in the opposite
data d irection. T arget si nks provide an i nterface f or R MAP w rites, w hile initiator sinks
provide an interface for RMAP reads.

18

The c ore s ervices of a SPA ne twork, know n a s t he S PA Services M anager (SSM),
extend be yond ne twork di scovery a nd c onfiguration. T he c ore s ervices i n a SPA
network with SPA-SpaceWire (SPA-S) infrastructure provide for topology discovery
and de vice di scovery as w ell a s pr oviding m echanisms b y w hich c omponents m ay
locate desired data services and establish a connection to them. Four core services are
necessary i n t he S PA n etwork: t he C entral A ddressing S ervice (CAS), t he S PA
Lookup Service, t he SPA-X subnet manager – a SPA-S m anager i n t he case o f our
SpaceWire network, and the SPA Local manager.

Table 2. SPA (with SPA-S Subnet) Core Services

Core Services
Central Addressing Service: The C entral A ddressing Service is r esponsible for i ssuing
blocks of addresses to subnet managers. When a SPA system starts up, the subnet managers
request a block of addresses from the CAS. The CAS responds with a block of addresses for
the requesting subnet manager to use. The CAS must reside on a node that contains a SPA
Local Manager.
SPA Lookup Service: The S PA L ookup S ervice s erves a s a c entral r epository f or
information about the components on t he network. This information includes the Extensible
Transducer Electronic Data Sheet (xTEDS) for a device and its unique ID. Within the xTEDS,
a device will describe its configuration and any data services that it may provide. Components
may subscribe to particular data services through the Lookup Service. There is a single active
instance of the Lookup Service on a SPA network.
SPA Subnet Manager: The complexity of a SPA network is largely hidden within the SPA
subnet m anagers. T he s ubnet m anager pe rforms t opology di scovery f or t he s ubnet i t i s
responsible for. The manager detects new components added to the subnetwork and assigns
them a un ique a ddress. S ubnet m anagers a re also responsible for r outing pa ckets t o t he
components that are under its influence.
On a S paceWire su bnetwork, t here would r eside a t l east two S PA managers: a S paceWire
manager an d a local S PA manager. T he SpaceWire subnetwork manager i s r esponsible f or
(managing) t he co nnected S paceWire resources. The S PA L ocal M anager provides an
interface between the SpaceWire manager and the other SPA services.

2.2 NETWORK DISCOVERY AND CONFIGURATION

In a SPA-S network, the SpaceWire subnetwork manager is responsible for network
topology discovery. When the network is first powered on, the subnetwork manager
registers itself with the CAS and acquires a block of addresses that it may allocate to
its s ubnetwork c omponents [2]. Concurrently, the s ubnetwork m anager i teratively
probes its network for connected components. When the manger receives its assigned
block of addresses, it will allocate an address for each component and notify each in
turn of its address [3].

Components i n a S PA n etwork are each responsible f or t heir o wn x TEDS
configuration doc ument. D uring t he t ime t he s ubnetwork m anager is pr obing
components on i ts ne twork, e ach component r eplies w ith its Universally U nique
Identifier (UUID) and its xTEDS UUID. The subnet manager relays this information
to t he SPA Lookup Service. Following the t opology di scovery process, the Lookup
Service w ill s ubmit qu eries f or a component’s x TEDS to t he m anaging s ubnet
manger. The manager in turn forwards this request to the component. The component
responds w ith a m essage c ontaining i ts x TEDS w hich i s f orwarded t o the Lookup
Service [2].

19

While the details of network topology discovery are largely missing f rom the SpW-
PnP draft, papers by the standard’s authors have given methods for how it would be
accomplished. Within the SpW-PnP framework, there is the notion of an active node.
Active node s pe rform n etwork di scovery f or t heir s ection of t he n etwork. P assive
nodes do not have any knowledge of the network topology and must be assigned an
active node owner. Active nodes are a lso responsible for configuring and managing
the passive nodes that they own [1]. The active node discovers the devices connected
to it b y iteratively querying e ach active lin k that it c an f ind. S imulations h ave
indicated that breadth-first searches are most efficient for network discovery [4].

In a n SpW-PnP ne twork, de vice c onfiguration i s pe rformed dur ing t he de vice
discovery pr ocess. H owever, t his doe s n ot e xport t he x TEDS doc uments. It is
conceivable t hat x TEDS s upport c ould be a ccomplished us ing t he da ta s ource a nd
sink capability services described in the standard [3].

2.3 DATA TRANSACTIONS

When a c omponent r egisters w ith t he SPA Lookup S ervice, any d ata s ervices i t
supports a re i ncluded w ith i ts xTEDS doc ument. W hen a c omponent w ishes t o
subscribe to such a data service, the component contacts the Lookup Service to query
for the type of data it wishes to consume. The Lookup Service will provide a route to
the c omponent o r components pr oviding t he t arget da ta s ervice. From t he l ist, t he
component w ill c hoose t o s ubscribe t o one or m ore pr oviders. G enerally, t he
component w ill r equest t he s ubscription f rom the Lookup S ervice w ho m anages
subscriptions so that subscribers can be notified when a provider leaves the network.
As data becomes available, the provider transmits directly to the subscriber.

Within an SpW-PnP network, information about a device’s capability services – data
sinks or da ta s ources – is r ead b y t he Device Identification S ervice. A c omponent
desiring t o r eceive or p ublish a pa rticular d ata product m ay determine a m atching
service by inquiring through the active node. The component will establish an RMAP
connection w ith t he s ource/sink us ing t he capability s ervice’s pr otocol. A fter t he
connection is established, normal RMAP transactions may be used to read or write the
data.

2.4 COMMON ELEMENTS

After co nsidering t he s ervices us ed b y each p rotocol, e lements c ommon to t he t wo
standards become clear. These similarities between SPA and SpW-PnP were compiled
to aid in the process of defining an abstraction layer. Table 3 de scribes some of the
commonalities between the standards as they are deduced from services and pertain to
the mechanics of the network.

20

Table 3. PnP Abstraction API

Similarities Description
Data sheets Both standards are c ommitted to a n E lectronic D ata S heet (EDS)

format, with similarities between the two formats.
Capability database In both, there is a central service in charge of maintaining a lookup of

capabilities provided and services requested by registered devices.
Device dictionaries There e xists in bo th a standardized v irtual device i nformation

repository (Common Data Dictionary and Dictionary of Terms), and
there is evidence that these two dictionaries will align.

Network
identification

In both networks, devices connected to the network are given unique
network identifiers.

Network changes Both networks are able to adapt to topology and composition changes
as they occur.

3 PLUG-AND-PLAY ABSTRACTION
Considering the elements in common between these two s tandards, we can begin to
define an ab straction l ayer capable o f c ommunicating w ith ne tworks conforming t o
either standard.

3.1 PROPOSED ARCHITECTURE AND API

Our pr oposed a pproach t o t he pr oblem of s upporting t hese s tandards i nvolves a
layered s oftware ar chitecture w ith an API for applications. T he A PI e xploits the
commonality we have defined between the PnP s tandards while the complexity and
areas o f d ivergence m ay be h idden i n t he l ower levels o f t he a rchitecture. Figure 1
displays the software hierarchy for the adaptation architecture.

Figure 1. Adaptation Software Hierarchy

Applications invoke the adaptation API directly to communicate with other nodes on
the network. The API will invoke functions from either the SPA adapter or the SpW-
PnP adapter based on the type of PnP network the software resides on or is targeting.
Figure 2 depicts how an application – a Network Attached Storage (NAS) application
in this case – might support communications with both a SPA/SPA-S network and an
SpW-PnP network.

Application

Adaptation API

SPA
Adapter

SpW-PnP/SOIS
Adapter

SPA Network SpW-PnP/SOIS
Network

PnP Software Component

21

Figure 2. Adaptation Network Example

In t he A PI, w e pr opose s upporting t he m ajor f unctions a c omponent m ust perform
when c onnecting t o a P lug-and-Play n etwork. T hese f unctions i nclude component
discovery, component configuration, data services connection, and data transmission
between c omponents. In d efining th is A PI, w e assume that S pW-PnP w ill ha ve a
mechanism in place that supports exporting an xTEDS for a device. This assumption
is necessary to choose a single document format for component configuration. Table 4
lists our proposed functions for the PnP abstraction. We will describe in greater detail
the implementations of these functions in subsequent sections.

Table 4. PnP Abstraction API

Function Description
spnp_init Configures the SpaceWire abstraction library.
spnp_configure Configures the component for the network type.
spnp_connect Establishes a connection between the device and a data service on the

network.
spnp_release Terminates an existing connection.
spnp_data_avail Callback t o n otify t he co mponent t hat d ata f rom t he ser vice it is

connected to is ready.
spnp_data_recv Receives data from the connected service or component.
spnp_data_send Sends device data to the connected service or component.

3.2 NETWORK DISCOVERY AND DEVICE CONFIGURATION

The adaptation layer must comply with the messaging requirements for each standard
during t he ph ase of d evice (and o n a l arger s cale, network) discovery. T his c an
happen a t two points in the l ifetime of the network – during network power-up and
when a device is newly connected to the network. To the application, this process is
abstracted within the spnp_configure function. Each network adapter must respond to
the specific protocol of the network it is configured to operate with. In the case of a
SpaceWire-enabled S PA ne twork, t his r equires waiting for and r esponding t o t he
probe message. Once the subnetwork manager receives its allocation of addresses, the
manager will i ssue a n a ddress t o t he c omponent. The software mu st w ait f or this
address assignment. S imilarly, the SpW-PnP adapter must support the active node’s
query at which time the address of the device is set.

NAS
Application

Adaptation
API

SPA
Adapter

SpW-PnP/
SOIS

AdapterNAS
System

Producer
Application

Adaptation
API

SPA
Adapter

SPA System

Consumer
Application

Adaptation
API

SpW-Pnp/
SOIS

Adapter

SpW-PnP/SOIS System

22

Following a ddress a ssignment, the spnp_configure function w ill in itiate a ny
additional de vice c onfiguration. In t he c ase of a S PA ne twork, t his i nvolves
forwarding i ts x TEDS t o t he Lookup S ervices t hrough the subnetwork m anager. I n
SpW-PnP the mechanism for exporting xTEDS is ambiguous. We assume that either a
capability service or higher-level service – such as the Spacecraft Onboard Interface
Services (SOIS) Device Virtualization Service – will support xTEDS export.

3.3 DATA TRANSACTIONS

In our API, we group data t ransactions into four separate operations: connect, send,
receive, and r elease. T he spnp_connect will es tablish a co nnection b etween
components for either data receipt or transmission. The connection process covers two
phases: 1) finding a n acceptable d ata s ervice pr ovider a nd 2) establishing t he
connection to the provider. For a SPA network, this would involve finding and then
negotiating a c onnection w ith t he L ookup S ervice. In a n S pW-PnP n etwork, t his
requires q uerying t he D evice Identification S ervice f or a co mpatible d ata s ink or
source and then negotiating a connection with the node that provides the data service.

Once t he c onnection ha s be en e stablished, t he application m ay b egin t o r eceive o r
send d ata. If th e application is r eceiving d ata, it mu st w ait f or th e spnp_data_avail
callback. The adapter software will invoke the callback when the data service has data
ready f or t ransmission. D ata receipt and t ransmission a re pe rformed w ithin t he
spnp_data_recv and spnp_data_send functions. D uring spnp_data_send, t he S PA
adapter w ould n eed t o format al l d ata i n a S PA d ata p acket p rior to sending t he
SpaceWire packet. Similarly, the SpW-PnP adapter would need to format an RMAP
packet for the data write. For spnp_data_recv, the respective adapters would strip off
packet headers – the SPA data packet header for SPA networks or the RMAP header
for SpW-PnP networks – before handing the data to the application.

4 CONCLUSION
With mu ltiple P lug-and-Play s tandards emerging f or S paceWire, it is imp ortant to
find c ommon gr ound between t hem for t he s ake of i nteroperability. Having a n
abstraction layer which takes advantage of these common elements would be helpful
to ap plication an d s pacecraft d esigners s eeking t o i ncorporate S paceWire el ements
into their Plug-and-Play network. We were able to analyze the two standards in search
of commonalities, and used our findings to define an API for adapting applications to
be used by either SPA or SpaceWire-PnP.

5 REFERENCES

1. Space T echnology C entre, " SpaceWire-PnP P rotocol D efinition," U niversity of
Dundee, Dundee, Scotland, UK, Draft A, Issue 2.1, September 16, 2009.

2. American Institute of A eronautics and A stronautics, " Standards D evelopment
Guidebook for Space Plug and Play Architecture," March 2011.

3. American Institute o f A eronautics an d A stronautics, "Space P lug-and-Play
Architecture Standard: Networking," March 2011.

23

4. Albert Ferrer Florit, Steve Parkes, and Peter Mendham, "SpaceWire Plug-and-Play:
A Roadmap," in Proceedings of the 2nd International SpaceWire Conference, Nara,
Japan, 2008.

24

NEW TECHNIQUE FOR SPACEWIRE NETWORK DISCOVERY

Session: Networks and Protocols

Long Paper

Kody D. Mason, Justin W. Enderle

Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185-0968

E-mail: kmason@sandia.gov, jwender@sandia.gov

ABSTRACT

Early techniques used to discover the topology of a dynamic SpaceWire network have
typically relied on prior knowledge of some protocol implementation. Systematically
generated request messages, when responded to by each routing switch or end-node,
facilitated discovery. The challenge today, however, is to discover and map network
topology without relying on any one protocol implementation - or even any
SpaceWire protocol. By exploiting the design of SpaceWire routing switches,
discovery is possible on dynamic, heterogeneous SpaceWire networks using the
concept and technique of looping messages back to oneself. Exploring the advantages
and implications of such a viable technique may lead to a new standard for network
discovery.

1 NETWORKS AND NODES
Using the te rms a nd d efinitions from t he European C ooperation f or S pace
Standardization (ECSS) Glossary, and bui lding u pon the S paceWire foundation [1],
the notion of a dynamic SpaceWire network is one in which the links between routing
switches and nodes c an be added or removed in a Plug-n-Play like fashion. When
links be tween r outing s witches a re m anipulated, t he t opology of t he S paceWire
network changes. W hen l inks between nodes and routing switches are manipulated,
packet sources and destinations appear and disappear.

This p aper w ill b egin by d ifferentiating b etween Network Discovery and Node
Discovery. T he f ormer i nvolves t he s ystematic pr obing f or S paceWire r outing
switches, a nd t he l atter i nvolves pol ling s witches f or l inks t o node s, and then
identifying such.

When pr obing f or r outing s witches, early network discovery t echniques t ypically
relied on each routing switch’s configuration port to respond to identification requests
to confirm the routing switch’s presence. A request packet was typically dispatched to
the configuration port, and a response packet provided confirmation of existence.

This s ame r equest/response ap proach w as generally u sed for node i dentification a s
well. D ispatching one or m ore r equests t o a n active l ink (which m ight be node o r

25

another r outing s witch) c ould pr oduce a r esponse i f a node w as pr esent a nd i t
understood the protocol.

Recent proposals, such as the SpaceWire PnP Protocol Definition Draft [2], put forth
basic Service Definitions for device identification, network management, and link and
router configuration. This paper will blur the boundaries between Network Discovery
and routing switch configuration. Link configuration (particularly speed) is assumed
to be automatic or take place prior to physical link connection.

2 NEW PROBING TECHNIQUE
Per the SpaceWire PnP Draft [2], “SpaceWire does not o ffer a s tandard mechanism
for detecting the topology of a network.” One aim of this paper is to propose such a
standard.

The ne w probing t echnique involves a shift away from the r equest/response model.
Rather t han di spatching a r equest t o s ome pos sible ph ysical-path-address on t he
network, and awaiting a response from a packet receiving/processing/replying entity,
a s ingle pa cket i s addressed w ith a r ound-trip physical-path-address th at w ill
essentially “loop” through a possible routing switch and be returned to the originator
with all path-addressing bytes removed along the way out and back.

Perhaps the best way to visualize this technique is to think of the SpaceWire routing
switch a s a “ roundabout” i ntersection w ith a v ehicle (packet) both entering a nd
exiting the roundabout at the same point.

The s ignificance to the p robing entity is that if it r eceives the recognizable payload
portion of a packet back, then that round-trip physical address is valid in most cases.

To more explicitly reiterate this technique, consider a node acting as a probing entity
connected to routing switch A’s port five. Switch A’s port three links to switch B’s
port two, a nd s witch B’s por t four links t o s witch C ’s por t one. Therefore, t he
physical-path-address from the probe to switch C is “34”, and the return path is “125”.

26

By a ddressing a pr obe p acket, [PACKET], with “34125”, t hen t he pr obe node w ill
receive back [PACKET] after it loops through switch C. Notionally, switch C’s port
one (1) is the “turn-around point” or the “turn-around port.”

The Network Discovery process is typically breadth-first. General practice is to begin
probing one l ink (or “ hop”) f rom t he pr obing node, t hen a s r outing s witches a re
discovered, a n ew lis t o f p otentially viable physical-paths i s generated for one hop
beyond that. P robing can be stopped when the hop c ount reaches a point where the
new potentially viable list yields no results.

2.1 BREADTH-FIRST PROBING
Recall that SpaceWire physical-path-addressing uses addresses in the range of one to
thirty-one (1-31.) A pr obing e ntity c an di scover i ts ow n por t num ber on i ts r outing
switch with a single-byte physical address preceding its probe packet payload. F rom
Figure 2, the packet containing “5[PACKET]”, when written, will cause “[PACKET]”
to be read back.

Round-trip physical-path-addresses are always an odd number of bytes. The iteration
technique, w hen generating t he pot ential l ist of a ddresses f or t he ne xt hop c ount,
involves inserting different pairs of port numbers just before the turn-around point of
each known round-trip-address at the previous hop.

For example, i f the list of known round-trip-addresses for hop num ber two (hop #2)
was simply “325”, then the initial potential list for hop number three (hop #3) would
be:

a) 311
b) 3

25
12

c) 3
25

13
d) 3

25
14

e) 3
25

15
f) 3

25
16

g) 3
25

17
h) 3

25
18

i) ...
25

lll) 388

where the maximum port to be probed is either thirty-one (31) or an implementation-
defined maximum. F rom the list above, the maximum port to be probed for is eight
(8.) H owever, generating pos sible r ound-trip-addresses i s su bject to certain p itfalls
(see section 2.3.)

25

2.2 BASIC ROUTER IDENTIFICATION REQUIREMENT
Discovering physical-path-addresses t hat i ndicate a potentially valid r ound-trip path
through a routing switch is the first step in mapping a network topology. In order to
be able to accurately create a topology map, some unique indicator must be available
to identify routing switch instances in order to distinguish newly discovered switches
from ones previously discovered through other physical paths.

27

Since the SpaceWire routing switch design has a configuration component, a request
for a r outer ID i s one method of r outing s witch identification. A p otential best
practice for hardware designers is to allow a hardware component to be used to set a
unique default ID pe r r outer (not unl ike t he pu rpose of a “MAC” Address fo r a n
Ethernet “PHY”.)

Another option for identification involves using the Remote Memory Access Protocol
(RMAP) [3] t o r ead an identification number o r s tring from a non-volatile memory
location. The SpaceWire PnP Draft [2] proposes something even more advanced.

2.3 POTENTIAL PITFALLS
Probing in the manner described above is subject to several pitfalls. These pitfalls fall
into t hree basic categories: d iscovery logic, r outing s witch d esign, a nd nod e
robustness.

2.3.1 COINCIDENTAL RETURN PATHS (DISCOVERY LOGIC PITFALL)
As mentioned above, the receipt of a r ecognizable probe payload does not guarantee
that t he round-trip physical-path-address actually l ooped at a turn-around point in a
routing s witch. There i s a ch ance t hat, b y co incidence, t wo s eparate r eturn p aths
coming back from the r outing s witch are i dentical e xcept for t he turn-around port,
itself. In t his case, t he fact t hat t wo p robe p ackets (with i dentical out bound pa ths)
successfully m ade their w ay ba ck t o t he pr obing e ntity i s t he c lue n ecessary t o
identify th is s ituation a nd tr igger f urther a nalysis. One r eturn p ath co mpletes t he
loop-back through the routing switch, but the other return path flows through different
links back to the probing entity.

Referencing Figure 3, two probe packets addressed as “12115” and “12415” will both
be r eturned t o t he pr obe e ntity. Likewise, t wo ot hers a ddressed as “ 42115” a nd
“42415” will also. When only the turn-around port is different in the round-trip path-
addresses, the coincidental path should be discarded. Determining which one should
be d iscarded requires c onfirming t he i dentity of t he s witch one hop prior t o t he
suspected turn-around point. In the case of the “12115” and “12415” pair, confirming
that the identity returned by addressing “1” (switch B) matches that returned by “124”
(also switch B) is required to know that “12415” is the one to keep, and “12115” is
the one to discard.

2.3.2 ECHOING (DISCOVERY LOGIC PITFALL)
In the course of generating the l ist of potentially viable round-trip paths at the next
hop c ount, c are m ust be t aken not t o “ echo” b ack a nd f orth be tween t wo r outing

28

switches. F or ex ample, as d epicted i n F igure 4 , i f a di scovered round-trip pa th i s
“34125”, then the temptation to probe for “3414125” should be avoided.

2.3.3 NEVER BACKWARDS (DISCOVERY LOGIC PITFALL)
Even more general than the echoing pi tfall i s the condition when generating the l ist
produces any next hop r ound-trip path-address where the next outbound port (at the
next hop) matches the previous turn-around point. A s an example, consider the new
potential pa th of “341x125” (where ‘ x’ i s a nything.) A s l ong a s t he bolded ‘ 1’
matches th e ‘ 1’ in “ 125”, t he route w ill br ing t he pa cket ba ckwards (closer to th e
probe.)

2.3.4 INACTIVE OR NON-EXISTENT PORTS (ROUTING SWITCH DESIGN PITFALL)
As a pr obing e ntity t ransmits i ts di scovery pa ckets a cross t he ne twork, routing
switches w ill i nvariably r eceive p ackets p hysically addressed t o por ts that a re not
active, or do not even exist. D epending on t he routing switch design, an attempt to
remove the next physical-address-byte and write the remaining packet to such a port
could cause a router lockup. One best practice for a SpaceWire routing switch design
is to always silently drop packets destined for inactive or non-existent ports.

2.3.5 BUFFER LIMITATIONS (ROUTING SWITCH DESIGN PITFALL)
So far, little has been mentioned regarding the contents of the probe packet payload –
the b ytes that f ind their way back to the p robing entity indicating that a potentially
valid round-trip address was di scovered. The i ssue a t hand i s not so much what the
probe packet payload contents is, but rather how large it is.

Using the roundabout analogy presented earlier, suppose that a large truck is pulling
three large trailers as it attempts to circum-navigate the roundabout. Before the third
trailer enters the roundabout from the side street, suppose the front of the truck runs
into it. The SpaceWire routing switch design may limit the number of bytes that can
be buf fered while a packet i s r etrieved f rom a por t and then written back to i t. T o
minimize the likelihood of such an occurrence, very small payloads should be used in
the probe packets.

Note: S ince t he num ber of b ytes w hich h ave t o l oop t hrough t he r outing s witch
include both t he r eturn-path portion of t he address and the payload, t hen the buf fer
size used in the routing switch design is the key to determining the maximum number
of “hops” that can be discovered with this technique.

2.3.6 PACKET PARSING ERRORS (NODE ROBUSTNESS PITFALL)
This new technique for Network Discovery can create a manageable “storm” of probe
packets on t he S paceWire ne twork. T he blast intervals and d elays b etween packet
transmissions are easily configurable within the probing entity; however, the effects
of all these physical-path-addressed probe packets on nodes could be problematic.

29

As potentially viable probe packets find their way across links from routing switches
to nodes, the nodes may encounter bytes from the physical-path-address or from the
probe packet payload contents. These bytes may fall where a SpaceWire protocol byte
is expected. Nodes have the potential of misinterpreting these packets (if they appear
to be a recognized SpaceWire protocol), or in other cases, nodes may fail to disregard
these packets (if they appear to be an unknown or unsupported protocol.)

Although on the surface, this new Network Discovery technique appears to introduce
the r isk of node failures, i t actually c an have the oppos ite e ffect. B y r equiring this
discovery technique to be used during the design and testing of routing switches and
nodes, the entire network can be tested for a higher level of reliability and robustness
before final implementation.

2.4 COMPLETING NETWORK DISCOVERY
When the probing process is completed, a results table will contain all valid round-
trip physical-path-addresses a nd c orresponding r outer i dentities. M ultiple r ows m ay
be found for any router identity signifying multiple paths to the router. At this point,
a logical addressing scheme can be used to compile route tables. These tables can be
generated w ith an y d esired r egional a ddressing s upplement. Note t hat section 2. 6
contains a method for consistent logical address assignment based on t he concept of
affinity.

Routing s witches ma y be p artially c onfigured n ow. S pecifically, s witch-to-switch
logical address routes may be inserted into all route tables. Node Discovery is now
possible using ei ther p hysical-path or (routing switch le vel) logical ad dressing
combined with (node level) physical addressing.

Finally, the results table can be used to dynamically visualize the network. Depicted
are t he pr obing e ntity (blue), a nd r outing s witches f rom t wo s eparate vendors (red,
and green.) Presumably, t he i dentification of r outing s witches m ay h ave i nvolved
more than one technique (per section 2.2.)

2.5 POLLING FOR NODES
The process o f Node Discovery involves the systematic p olling of nodes for
management information. Node D iscovery requires t hat e ach node r eceive an d
process a request packet, then respond.

30

As of the writing of this paper, the authors are unaware of an adopted standard in the
SpaceWire community to address Node Discovery in a multi-vendor, heterogeneous
SpaceWire network.

A proposal to adopt an Internet s tandard, such as the S imple Network Management
Protocol (SNMP), could remedy the situation. Specifically, adoption of SNMPv1 [4]
as a S paceWire-supported pr otocol w ith a m inimal required implementation o f th e
“System” group fro m R FC-1213 [5] c ould enable s tandardized Node D iscovery as
well a s pr ovide a s ingle t echnique f or r outing s witch a nd e nd-node identification.
Such adoption may be consistent with one of the aims of the SpaceWire PnP Draft [2]
to “leverage existing technologies as much as possible.”

2.6 LOGICAL ADDRESS ASSIGNMENTS – AFFINITY
The notion of affinity (of a S paceWire logical address to a particular switch or node)
can be bor rowed f rom t he plug-n-play behaviour of m any c omputers a nd pe rsonal
computing devices. Consider how portable storage devices or serial communications
devices are often managed when they are attached to a computer:

For example, upon the first attachment of a USB modem to a personal computer (PC),
the U SB plug-n-play device m anager w ill d etermine t he d evice t ype an d s erial
number of the modem. If this specific device is not listed within a registry, then it is
assigned the next unused “COM” port and added to the registry. In the future, each
time the device is subsequently attached, its registry information is used to re-assign
the s ame “COM” por t a s be fore, s o t he de vice has a n affinity t o a pa rticular por t
number. T he rationale f or th is b ehaviour is th at h umans w ill n aturally remember
which C OM por t i s which ove r t ime, a nd hum ans w ill w ant c onsistency i n
assignments.

Another example of affinity is the manner in which Dynamic Host Control Program
(DHCP) servers typically assign Internet Protocol (IP) addresses. When a request for
an IP address is made, most DHCP servers will attempt to re-assign one that was last
used by the requesting MAC if that IP address is not already in use.

This same notion applies to dynamic plug-n-play SpaceWire networks. When a new
routing s witch or node i s di scovered, t he pr obe e ntity c an a ssign t he n ext unus ed
logical a ddress f or t he r egion. If t he pr obe ha s a m eans t o pe rsistently save t he
identity of t he di scovered s witch or node , along w ith its n ewly a ssigned lo gical
address, t hen s ubsequent r e-discoveries of t he s ame e ntity can r esult i n c onsistent
logical address re-assignment.

3 SUMMARY

The t echniques de scribed a bove f or Network Discovery and Node Discovery are
indeed different. W hile the request/response type of discovery technique is required
for node di scovery, t he be nefits of us ing r ound-trip p hysical-path-addressed
SpaceWire packets to discover routing switches are many. Chief among them is not
relying on packet processing entities to support (understand) one or more SpaceWire
protocols. E ssentially, i f a routing switch has active l inks on t he network, and i t i s
functioning with a unique identity, then it can be discovered and mapped through its
switch-to-switch links.

31

4 REFERENCES

1 ECSS-E-ST-50-12C, European C ooperation f or S pace S tandardization,
“SpaceWire – Links, nodes, routers and networks”, 31 July 2008, 15-22.

2 SpW-PnP-PD, Space Technology Centre, School of Computing, University of
Dundee, “SpaceWire PnP Protocol Definition, Draft A Issue 21” 16 September
2009, 16-17, 41.

3 ECSS-E-ST-50-52C, E uropean C ooperation f or S pace S tandardization,
“SpaceWire – Remote memory access protocol”, 5 February 2010, 13-15.

4 J. Case et al ., RFC-1157, “A S imple Network Management P rotocol (SNMP)”,
May 1990, 2-33.

5 K. M cCloghrie et a l., RFC-1213, “Management Information B ase f or Network

Management of TCP/IP-based internets: MIB-II”, March 1991, 10-13.

Unclassified Unlimited Release (UUR) SAND 2011-5935C

Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for
the U .S. D epartment o f E nergy's N ational N uclear S ecurity A dministration unde r
contract DE-AC04-94AL85000.

32

TOWARDS SPACEWIRE PLUG-AND-PLAY ECSS STANDARD

Session: Networks and Protocols

Long Paper

David Jameux

Company European Space Agency / European Space Technology Centre,

Keplerlaan 1, 2201 AZ Noordwijk ZH (The Netherlands)

E-mail: david.jameux@esa.int

ABSTRACT
The SpaceWire working group on Plug-And-Play have drafted a protocol
specification to allow network discovery and the detection of configuration changes in
the network. The objective of using these techniques is to support rapid integration of
future spacecraft that are using SpaceWire networks. In this paper, we recall the need
for formalising and breadboarding the current draft standard for SpaceWire
Plug-And-Play as well as the features that a demonstrator for such breadboard should
exhibit. We also explain how this issue should be tackled through the ESA/TRP
activity “Network Discovery Protocols”. We discuss the capabilities of SpaceWire
Plug-And-Play on an example of complex on-board data systems architecture and we
describe the steps still to be taken in order to prepare for the standardisation of the
SpaceWire Plug-And-Play protocol by the appropriate ECSS Working Group.

1 BACKGROUND
Through several years of standardisation and technology development activities, the
European Space Agency (ESA) have prepared the SpaceWire technology that allows
embarking high speed data networks on board spacecraft. This new technology has
become widely adopted not only by ESA missions but also by other agencies and
industries.

The SpaceWire standard [1] defines the aspects of a highly flexible and capable
communication system which roughly correspond to the physical and data-link layers
of the ISO Open Systems Interconnection (OSI) basic reference model. The standard
also defines a number of features which fit into the network layer of this model.
Whilst following the standard does ensure a certain degree of interoperability, which
is further extended by the protocol identification mechanism [2] and the SpaceWire
standard protocol suite ([3], [4]), SpaceWire networks must still be designed,
constructed, and configured carefully for a given application, usually requiring
customised software and/or hardware.

The lack of standardisation for simple configuration tasks required on almost all
SpaceWire networks limits the level of interoperability which may exist between
devices and software, and the extent to which both hardware and software can be re-
used between different applications.

33

The SpaceWire working group on Plug-And-Play (PnP), consisting in European and
US experts from industry as well space agencies, have drafted a protocol specification
to allow network discovery and the detection of configuration changes in the
network [7]. The objective of using these techniques is to support rapid integration of
future spacecraft subsystems that are using SpaceWire networks.

In its latest version, the draft SpaceWire PnP protocol is based on the syntax and
synchronisation rules of the SpaceWire Remote Memory Access Protocol
(RMAP) [3]. This draft protocol specification is quite advanced but, in view of its
standardisation in the frame of the European Cooperation for Space Standardisation
(ECSS), it must be completed and validated through breadboarding, verification, and
demonstration.

This is currently being done in the frame of the “Network Discovery Protocols”
Research & Development (R&D) contract kicked off in October 2011. This contract is
funded under the ESA Technology Research Programme (TRP).

The overall goal of this activity is to further define design, breadboard, test, and
validate a SpaceWire Plug-And-Play protocol, and produce the related documentation.
To this purpose, such a protocol will first be designed and described in detail. Then, a
SpaceWire Plug-And-Play test bed will be built up mainly from existing SpaceWire
equipment. The necessary functions to support the PnP protocol will be implemented
in firmware and/or in software. Functional tests and overall demonstration will be
performed, assessing the usefulness and deriving recommendations for improvements.

2 OBJECTIVES
SpaceWire does not offer a standard mechanism for detecting the topology of a
network, or what devices are attached to it. Nor does it offer a standard mechanism for
configuring the various aspects of a SpaceWire network, such as links and switches.
SpaceWire also lacks standard features to assist detection or configuration beyond the
network, in the service domain. It is the aim of the SpaceWire-PnP protocol to add
these features, within the scope of what is practical.

The first objective of this activity is to design a SpaceWire Plug-And-Play protocol
that fulfils all these needs and to describe it in a form as close as possible to current
ECSS writing rules in order to prepare for later standardisation of this protocol at
European level.

2.1 BASIC PRINCIPLES OF PLUG-AND-PLAY

The aim of SpaceWire-PnP (Plug-And-Play) is to provide standardised, interoperable
mechanisms for performing key functions associated with SpaceWire networks. The
term ‘Plug-And-Play’ originates from the commercial electronics market where a
range of techniques were developed to improve the user experience of device
integration. From the perspective of a space user, application of the term
‘Plug-And-Play’ indicates that it should be possible to interface two or more arbitrary
devices without the need for configuration. Plug-And-Play generally involves two key
aspects:

34

Figure 1 - Example of configuration to demonstrate SpW PnP features

1. Automatic discovery and configuration of hardware and software systems in
response to changes in physical interfacing or availability, including whilst the system
is running (‘hot plugging’); in other words, the capability to detect any connection or
disconnection of Plug-And-Play enabled devices.

2. Detection, registration, and configuration of the services that a newly
connected Plug-And-Play enabled device provides; as well as detection and de-
registration of the services that a newly disconnected Plug-And-Play enabled device
was providing.

2.2 FULL COMPATIBILITY WITH THE CURRENT SPACEWIRE STANDARD SUITE

The overall goal of the SpaceWire-PnP standard is interoperability at the Network
Level as defined in [1]. As such, SpaceWire-PnP should provide services to discover,
identify and configure the features of a SpaceWire network, as covered by the next
revision of the SpaceWire standard [5], plus a few more corresponding to only the
most common use cases.

SpaceWire-PnP should not require devices to support more of the SpaceWire standard
than is required to achieve their objectives: if something is optional in the SpaceWire
standard, SpaceWire-PnP should not require that it be implemented.

35

2.3 VALIDATION

The second objective of this activity is to implement and test the SpaceWire network
discovery and configuration capabilities of the Plug-And-Play protocol and techniques
over a real SpaceWire network. This will be done through testing of each protocol
feature whenever possible, and through demonstration of the overall capabilities of
the protocol. From the testing and demonstration, recommendations for improvements
will be derived which will support the process of standardisation of the SpaceWire
Plug-And-Play protocol.

For the validation of these new features at breadboard level, the test setup should be
mainly based on existing SpaceWire equipment modified and upgraded with the
Plug-And-Play capabilities. Figure 1 shows an example of configuration to
demonstrate SpW PnP features.

3 EXAMPLE
Figure 2 shows a representative architecture for on-board data systems as well as
space-to-ground telecommunication.

3.1 LINEAR NETWORKS

We consider now Figure 2 in which the SpaceWire link in dotted lines between the
two central switches (S2 and S4) is not connected, because the rate of the data
potentially flowing between these two switches is, in the worst case, lower than the
maximum SpaceWire data rate allowed for the given on-board data systems
architecture. Assuming that the network is discovered from each of the Payload Data
Handling Units (PDHU) and according to the algorithm baselined for the SpW PnP
protocol ([7], [12]), the resulting networks explored, before node merging phase, is
shown in Figure 3.

The first conclusion that we can draw from this network exploration is that networks
#4 and #7 are identical, as well as networks #3 and #8. The second conclusion is that,
although the on-board data systems network shown in Figure 2 seems very complex,
there is actually no loop in the explored networks. The second phase of the network
discovery algorithm (merging nodes or networks) is therefore not required in this
case. This on-board data system is in fact made of six linear networks. The SpaceWire
Plug-And-Play service can then proceed with the discovery and configuration of the
services provides by each of the terminal nodes in each network.

The configuration of logical addresses for these six networks is straightforward –
since they contain no loop – and can be fully handled by the SpaceWire
Plug-And-Play service. The six networks being independent, the same logical address
may be assigned to the four SpaceWire interfaces of the PDHU, which might reduce
the complexity of the applications running on other terminal nodes (instruments and
Spacecraft Management Unit – SMU). The same applies to the two SpaceWire
interfaces of the SMU. For the same purpose, it is also possible to assign the same
logical address to the Nominal and Redundant SpaceWire interfaces of each
instrument, provided that the switching tables in each switch is carefully designed.

36

Figure 2 - Example of representative data systems architecture

37

With this scheme, it is even possible to allow Group Adaptive Routing (GAR, as
defined in [1]) between the two switches to enable SpaceWire-level automatic Failure
Detection, Isolation, and Recovery (FDIR).

Figure 3 - Exploration of Linear SpaceWire Networks

3.2 NON-LINEAR NETWORKS WITH SIMPLE LOOPS

We now assume that a second link is connecting the two central switches (the
SpaceWire link in dotted lines between switches S2 and S4 in Figure 2 is now
connected) in order to accommodate more data rate between these two switches. As
shown in Figure 4, a simple loop is introduced in network #4/7. Since this loop
involves only two switches, the node merging phase of the network discovery
algorithm is straightforward and the assignment of logical addresses can follow the
same pattern as described for the previous case (linear network).

3.3 NON-LINEAR NETWORKS WITH COMPLEX LOOPS

If we want to increase even more the possibility of using redundant paths in case of
failure, we can connect switches S1 and S2 together via an additional SpaceWire link,

38

as well as switches S3 and S4. This introduces a complex loop and increases
significantly the number of possible paths from one terminal node to another, e.g.
from an instrument to the PDHU.

An illustration is provided in Figure 5. A reasonable network discovery algorithm
would now consider this physical network as only one logical network, assigning
different logical addresses to each of the terminal nodes, and therefore to different
SpaceWire interfaces of the same spacecraft unit (e.g. the PDHU), although this might
not be the preferred option for the system spacecraft designer.

This advocates for the SpaceWire Plug-And-Play services to be complemented with
some tools allowing Computer Aided Design (CAD) of SpaceWire networks.

Figure 4 - Exploration of Non-Linear
SpaceWire Networks with Simple Loops

Figure 5 - Exploration of Non-Linear
SpaceWire Networks with Complex Loops

39

4 CONCLUSION
Once designed, formally verified, breadboarded, and validated, the Plug-And-Play
services and protocol presented in this paper will be handed over to the SpaceWire
Working Group for endorsement. They will then be subject to formal standardisation
by the European Cooperation for Space Standardisation (ECSS).

This paper also showed the need for the SpaceWire Plug-And-Play services to be
complemented with some tools allowing Computer Aided Design (CAD) of
SpaceWire networks. Such tool should be specified by the SpaceWire Working
Group. Its breadboarding and validation could possibly be supported by ESA R&D
activities.

5 REFERENCES
1. ECSS-E-ST-50-12C, “SpaceWire – Links, nodes, routers”, 31 July 2008

2. ECSS-E-ST-50-51C, “SpaceWire protocol identification”, 5 February 2010

3. ECSS-E-ST-50-52C, “SpaceWire - Remote memory access protocol”, 5 February
2010

4. ECSS-E-ST-50-53C, “SpaceWire - CCSDS packet transfer protocol”, 5 February
2010

5. David Jameux, “SpaceWire Evolutions”, International SpaceWire Conference,
San Antonio, November 2011

6. Martin Süß, “SpaceWire Standard Evolution”, International SpaceWire
Conference, Nara, November 2008

7. Peter Mendham, SpaceWire-PnP Protocol Definition, Draft A Issue 2.1, 16th
September 2009

8. Peter Mendham, Albert Ferrer Florit, Steve Parkes, “SpaceWire Plug-And-Play: A
Roadmap”, International SpaceWire Conference, Nara, November 2008,

9. “SpaceWire Plug-and-Play: Fault-Tolerant Network Management for Arbitrary
Network Topologies”, International SpaceWire Conference, September 2007,
Albert Ferrer Florit, Martin Süss

10. ESA & NASA, “ESA and NASA requirements on SpaceWire PnP”, March 2007,

11. “SpaceWire Plug-and-Play: An Early Implementation and Lessons Learned”,
AIAA Infotech@Aerospace 2007 Conference and Exhibit, May 2007, Barry M
Cook and C Paul H Walker, 4Links LtdBarry Cook, Paul Walker, “PnP aspects,
4Links contribution”, 8th SpaceWire Working Group, ESTEC, January 2007

12. Albert Ferrer Florit, “PnP aspects, ESA contribution”, 8th SpaceWire Working
Group, ESTEC, January 2007

13. “PnP aspects, 4Links contribution”, 8th SpaceWire Working Group, January
2007, Barry Cook, Paul Walker, 4Links Ltd.

40

PERFORMANCE OF SPACEWIRE PLUG-AND-PLAY PROTOCOLS

Session: SpaceWire Networks and Protocols

Short Paper

Robert A. Klar, Dan Goes, Paul B. Wood, and Sue A. Baldor

Southwest Research Institute®, 6220 Culebra Road, San Antonio, Texas 78238
E-mail: robert.klar@swri.org, dan.goes@swri.org, paul.wood@swri.org,

and sue.baldor@swri.org

ABSTRACT
Historically, the integration of spacecraft systems has been an expensive proposition
because it requires much dedicated time. Plug-and-Play (PnP) describes a mechanism
by which devices can be discovered and configured automatically to be ready for use
soon after th ey are in serted in to a s ystem. Although P nP i s already ub iquitous i n
terrestrial c omputing, it h as n ot yet b ecome w ell e stablished in s pacecraft s ystems.
Application of P nP t o s pacecraft s ystems pr ovides m uch pr omise f or r educing
integration efforts.

Since f irst s tandardized, S paceWire ha s ga ined w idespread popul arity for us e i n
spacecraft systems because of its simple circuitry, low power consumption, and high
link speeds. In 2007, a working group developed an initial proposal for adding PnP
capabilities to SpaceWire. Based on t his work, two different proposals emerged and
are n ow und er consideration f or s tandardization. The first, “S pace Plug-and-Play
Avionics – SpaceWire” (SPA-S) w as s ubmitted t o t he American Institute o f
Aeronautics a nd A stronautics (AIAA). The second, “S paceWire-PnP P rotocol
Definition,” w as s ubmitted to th e European C ooperation f or S pace S tandardization
(ECSS). In t his pa per, we ch aracterize the expected p erformance of t hese pr otocols
for network discovery and identify some factors that could influence performance.

1 INTRODUCTION
Historically, s pacecraft integration has b een both a time-consuming and ex pensive
proposition. A key challenge has been to quickly establish communication pathways
between a myriad of spacecraft components in order to establish proper data flow. A
part of the difficulty lies in the fact that many spacecraft are purposed for a particular
mission a nd consequently have unique c ombinations of s ensors, a ctuators, a nd
processors.

Recent years h ave s een a significant push f or a r eduction in c ost a nd dur ation of
spacecraft integration efforts. The U.S. Department of Defense has funded a series of
initiatives for Operationally Responsive Space (ORS) aimed at decreasing the cost of
creating space assets and increasing the speed of deployment. In April 2007, a report
was s ubmitted to th e C ongressional A rmed Services C ommittee w hich broadly
defined ORS as “assured space power focused on t imely s atisfaction of J oint Force
Commanders’ needs” [1]. The report breaks down responsiveness into tiers, with the

41

mailto:robert.klar@swri.org�
mailto:dan.goes@swri.org�
mailto:paul.wood@swri.org�
mailto:sue.baldor@swri.org�

goal for delivery of capabilities requiring existing technologies on the order of days-
to-weeks. In addition to the U.S., Europe has also expressed interest in improving the
responsiveness o f t he s pace enterprise [2]. An important e lement o f improving
responsiveness is the development of better technologies.

Plug-and-Play (PnP) is one t echnology which offers some promise f or r educing
integration e ffort. The term P nP i s of ten us ed t o describe a m echanism b y w hich
devices can be di scovered and configured automatically soon after they are inserted
into a system. It is a lready ubiquitous in terrestrial computing, and efforts are well
underway to apply it effectively to spacecraft systems.

In 2007, a s mall w orking group de veloped a n i nitial pr oposal f or a dding P nP
capabilities t o S paceWire. From th is in itial e ffort, tw o proposed standard pr otocols
emerged: Space P lug-and-Play A rchitecture - SpaceWire (SPA-S) an d
SpaceWire-PnP. Each pr oposed s tandard ha s a s lightly di fferent s et o f s ervices an d
benefits.

In this paper, we highlight some of the dissimilarities between the proposed standards
with e mphasis on ne twork di scovery and device configuration. In a ddition t o
describing some of t he protocol features, w e p rovide some analysis o f t he ex pected
performance of each.

2 COMPARISON OF PLUG-AND-PLAY PROTOCOLS
SPA-S a nd SpaceWire-PnP provide slightly different a pproaches to a ccomplishing
network discovery and device configuration on a SpaceWire network.

2.1 SPA-S

Space Plug-and-Play Architecture (SPA) is a collection of standards to facilitate rapid
development, i ntegration, and t esting of s pacecraft. SPA w as i ntroduced by t he Air
Force Research Laboratory (AFRL) and later investigated by collaboration with many
other government a nd i ndustry partners [3]. A SPA r eference imp lementation was
implemented in s oftware by a group at the U tah S tate University S pace D ynamics
Lab. SPA a llows a ne twork of s ensors, a ctuators, a nd pr ocessors t o s elf-organize
regardless of t he t opology and c omposition of t he ne twork. SPA-S provides a
subnetwork specification for SPA with SpaceWire as the physical layer.

With th e SPA, ne twork di scovery i s dr iven b y network m anagers

Because a SpaceWire subnetwork can be connected to multiple subnetworks, several
network m anagers can coexist o n t he s ame subnetwork. Every ne twork m anager
performs ne twork di scovery f or i tself, de termining a pa th t o e ach e lement of t he
subnetwork to w hich i t i s co nnected. Network managers do not take o wnership of
nodes. Instead, they simply learn the location of each node and pass down addressing
and identification from the core SPA services to them.

 that live at th e
border of two adjacent subnetworks. For instance, a network manager might bridge a
SpaceWire s ubnetwork (SPA-S) a nd a l ocal s ubnetwork (SPA-L). O ther c ore SPA
services are attached to these local subnetworks.

42

2.2 SPACEWIRE-PNP

Another proposed standard, S paceWire-PnP, w as de veloped b y t he U niversity o f
Dundee and submitted for s tandardization t o t he E uropean C ooperation f or S pace
Standardization (ECSS) [4]. A pr ototype implementation is currently under
development b y S ciSys and will be us ed t o evaluate t he pr otocol. SpaceWire-PnP
includes the f ollowing services: device id entification, n etwork ma nagement, lin k
configuration, and router configuration.

The de vice i dentification a nd ne twork m anagement s ervices pr ovide t he s upport
needed by S paceWire-PnP for ne twork di scovery. At t he h eart of t he ne twork
management service is the concept of active nodes

The SpaceWire-PnP provides two support levels: Level-1) M anaged N etworks a nd
Level-2) Open Networks. In a

. When active nodes come online,
they discover the nodes on the network by doing a breadth-first search. Active nodes
gain “ownership” of passive nodes as they are d iscovered. Complex networks may
have more than one active node.

Managed Network, network designers ensure that there
is no c ompetition between active nodes for ownership of passive nodes. In an Open
Network

3 PERFORMANCE

, m ultiple a ctive node s vi e f or ow nership of pa ssive node s; a r esolution
algorithm is used to eliminate conflicts.

Network di scovery for both S PA-S an d S paceWire-PnP de pend on a breadth-first
search al gorithm. Each n etwork m anager o r a ctive n ode m ust s earch t he en tire
subnetwork. Thus, expected performance is O(N +L), where N is the number of nodes
on the network and L is the number of links.

For both pr otocols, specific timing r equirements ha ve not be en l evied on de vices.
This makes comparison of t iming between the protocols di fficult without evaluating
particular implementations. Experimental research i s needed to realistically evaluate
performance. Southwest Research Institute (SwRI®) is currently conducting ongoing
experimental research to evaluate implementations of these protocols.

Performance will be influenced by several implementation factors:

• Device Protocol Support.

The message format for S paceWire-PnP i s ba sed on t he R emote M emory
Access Protocol (RMAP). Since many devices today support a hardware core
implementation of RMAP, these could be adapted to support SpaceWire-PnP.
Since t he pr otocol us es c ommand-response m essaging, ha rdware s upport
would improve speed.

To comply with SPA-S, an end node must only keep a routing path to a Subnet
Manager (SM-s). Nevertheless, since routing messages through the SM-s can
overload i t, i t is de sirable f or e nd node s t o c ache r outes t o ot her node s that
they communicate with often.

43

• Network Topology.

A larger network will take longer to map than a smaller one. Timing delays
for an Open Network will be less controlled than a Managed Network.

4 CONCLUSION
Protocols for adding plug-and-play capability to SpaceWire have started to mature. As
we move forward to adopt these implementations for use on missions, we must keep a
cautious eye o n p erformance. Performance w ill l ikely b e i nfluenced much by t he
support included within SpaceWire devices for these emerging protocols.

5 REFERENCES
1. Sega, R . M ., and Cartwright, J . E ., “ Plan f or O perationally R esponsive Space,”

Department of Defense, April 17, 2007.

2. Remuss, N ina-Louisa, “Responsive S pace f or E urope,” E uropean S pace P olicy
Institute Report 22, February 2010.

3. “Space P lug-and-Play A rchitecture Standard – SpaceWire S ubnet A daptation,”
American Institute of Aeronautics and Astronautics, 2010, DRAFT.

4. Mendham, P., Florit, A. F., and Parkes, S., “Spacewire-PnP Protocol Definition,”
Space Technology Centre, University of Dundee, September 16, 2009, DRAFT.

44

Networks and Protocols 2

45

CCSDS TIME DISTRIBUTION OVER SPACEWIRE

SpaceWire Networks and Protocols

Sandi Habinc, Marko Isomäki, Daniel Hellström
Aeroflex Gaisler, Kungsgatan 12, SE-411 19 Göteborg, Sweden

E-mail: sandi@gaisler.com, marko@gaisler.com, daniel@gaisler.com

ABSTRACT
Aeroflex Gaisler has developed in collaboration with the European Space Agency
(ESA) an initial protocol for the transmission and synchronization of CCSDS
Unsegmented Code (CUC) time in SpaceWire networks. The working name of the
protocol is "SpaceWire - CCSDS Unsegmented Code Transfer Protocol" (CUCTP).

Aeroflex Gaisler has developed under indirect funding from the European Space
Agency (ESA) a new IP core that implements the SpaceWire - CCSDS Unsegmented
Code Transfer Protocol named SPWCUC, providing automatic SpaceWire Time-
Code transmission and reception, and automatic CUCTP packet reception. It also
provides support for CUCTP packet transmission.

The CUCTP protocol and its implementation is a first iteration to solve some of the
time distribution problems that exist in SpaceWire networks. Additional work is to be
performed both on the specification side as well as on the implementation side before
a standard protocol can be established. This paper provides the background to the
work and it discusses the current draft solution, with an outlook on what needs to
done in the future.

1. BACKGROUND

Time synchronization in spacecraft is becoming increasingly important. For example
instruments & navigational on-board resources can now be combined for establishing
scientific observations and therefore need to be well synchronized in time.

Traditionally time synchronization has been done via dedicated signals or via
deterministic on-board buses (e.g. MIL-STD-1553 or OBDH). With the advent of
SpaceWire point-to-point links and router switches being used for critical control
functions, the need for accurate time synchronization via this network has arisen.

The SpaceWire protocol provides rudimentary time-code transmission, but lacks
support for automatic time message distribution and time synchronization. It has no
means for handling latency (delays) and jitter caused by routing or drift caused by
unstable oscillators.

2. TIME IN SPACEWIRE NETWORKS – A PROBLEM DEFINITION

The SpaceWire (SpW) standard ECSS-E-ST-50-12C is currently being proposed to be
used as well for critical real-time control applications. A missing element is a
coherent and accurate means of time message distribution and time synchronization.

46

Ongoing work is focused on these two aspects, with the direct benefit of being useful
for these critical real-time control applications as well as for any type of mission
requiring highly accurate time distribution over a SpW network. The aim s to address
some of the main time distribution issues that are common to many types of networks
or buses and to develop a solution specifically for the SpW network that allows
controlling time distribution latency (delay), jitter and drift as defined below.

The standard specifies a Time-Code character that is propagated throughout a SpW
network and is used for time distribution. The Time-Code character has the highest
transmission priority and is broadcast through the complete network via one or many
router switches or directly via point-to-point links.

The transmission time of a Time-Code character is at least 14 transmission clock
periods (ESC + data character), which is multiplied by the number of links that the
Time-Code has to traverse from the time source to the destination. This introduces a
minimum delay or latency of 7 us for each link at 2 Mbit/s transfer rate. This defines
the time distribution delay.

Although the time Time-Code character has priority over other characters defined in
the protocol, its transmission on a link can be seen as asynchronous with respect to the
on-going transmitted character stream. Thus, the actual time of the Time-Code
transmission depends on whatever is being transmitted at the SpW link at the time of
the Time-Code transmission request. The delay between this Time-Code request and
the actual transmission is equal to the time left to complete the transmission of the on-
going character. The difference between the shortest and longest time left depends on
the character being sent and is in the range of 10 transmission clock periods. Thus for
a 2 Mbit/s transfer rate the achievable accuracy for a point-to-point link is in the range
of 5 us. The problem is compounded when multiple router switches have to be passed
in a network, each router switch contributing to the uncertainty. This defines the jitter.

The SpW network is asynchronous, i.e. there is no common clock signal being
distributed for the communication, with each node being responsible for its own
clock. This means that the local clocks run independently and can exhibit different
stability. The variation between the different clocks (be that oscillators or crystals)
will lead to drift and mismatches over time. For example, a SpW node might be
clocked by an oscillator that not only a slight frequency offset and may experience
also frequency variations over time. This will lead to an increasing difference between
the times kept by two nodes in a system. This describes the drift.

3. CURRENT PROTOCOL FORMAT

The current SpaceWire - CCSDS Unsegmented Code Transfer Protocol (CUCTP)
packet conforms to the ECSS SpaceWire standard. It contains the CCSDS
Unsegmented Code (CUC) field. The CUC field is fixed to a P-Field (possibly
extended) and 7-byte T-Field. The T-Field of the CUC format comprises two parts:
the coarse time part and the fine time part. The former is in this case a 32-bit counter
counting integer number of seconds. The latter is in this case a 24-bit counter
counting fractions of seconds, from 2-1 down to 2-24. The CUCTP packet is being used
for transmitting time-information, it is however not used for transmitting the actual
time synchronization events, for which SpaceWire Time-Codes are being used
instead.

47

4. CURRENT PROTOCOL OPERATION

CUCTP provides synchronization between Elapsed Time (ET) counters in the local
node and remote nodes, by means of SpaceWire Time-Codes and SpaceWire packets.

SpaceWire Time-Codes are continuously transmitted from a master node to all slave
nodes. The transmission of the Time-Codes is synchronized with the local ET counter
in the master node. The six bits of the Time-Code time-information correspond to six
bits of the local ET counter (its exact mapping being programmable by means of
register access). The ET bits with lower weights than the six bits mapped to the Time-
Code time-information bits are all zero at time of Time-Code transmission.

When a Time-Code is received in a slave node, the Time-Code time-information is
first verified to be an increment of the previously received time-information. The
event of the Time-Code reception is assumed to occur synchronously with the local
ET counter in the slave node.

Additionally, whenever the Time-Code time-information wraps from 0x3F to 0x00 it
is possible to synchronize the ET bits that have a higher weight than the bits mapped
to the Time-Code time-information bits. This is performed whenever a new CUCTP
packet has been received preceding the reception of the Time-Code with the wrapping
time-information. If no such packet has been received, then the synchronization will
be as described above, but with an increment of the ET bits with the higher weight.

To summarize, ET bits mapped to the Time-Code time-information bits and ET bits
with lower weight are checked for every Time-Code received; whilst ET bits with
higher weight are checked whenever the time-information is wrapping. ET bits with
lower weight can be offset from the all zero value. ET bits with the lowest weight can
be ignored to form a window of tolerance.

5. CURRENT PROTOCOL IMPLEMENTATION

The SpaceWire - CCSDS Unsegmented Code Transfer Protocol interface IP core,
named SPWCUC, operates in an AMBA bus system. The AMBA bus is used for
configuration, control and status handling. The interface is tightly coupled with
Aeroflex Gaisler’s CCSDS Time Manager (GRCTM) and SpaceWire codec with
AHB Interface and RMAP target (GRSPW2) IP cores.

The IP core has already been integrated in the RASTA (Reference Avionics System
Testbench Activity), and has been delivered to SciSys and Astrium for usage in
activities related to CCSDS Spacecraft Onboard Interface Services (SOIS).

6. OUTLOOK

The current CUCTP protocol implementation does solve some of the problems related
to time distribution in SpaceWire networks, but there is still some work to be done.

The CUCTP protocol is currently under review and modifications are being foreseen,
possibly using an RMAP based approach. Also different methods to counteract
latency, jitter and long term drift are being considered for further work. The goal is to
include CCSDS based time distribution in the ECSS SpaceWire protocol standards.

48

7. REFERENCES

1. SpaceWire - Links, Nodes, Routers and Networks, ECSS-E-ST-50-12C
2. SpaceWire - SpaceWire protocol identification, ECSS-E-ST-50-51C
3. SpaceWire - Remote memory access protocol, ECSS-E-ST-50-52C
4. Time Code Formats, CCSDS 301.0-B-3, www.ccsds.org
5. RASTA Interface Control Document (ICD) - Software, TEC-EDD/2007.32/GF
6. RASTA Interface Control Document (ICD) - Hardware, TEC-EDD/2007.31/GF
7. GRLIB IP Library User's Manual, Aeroflex Gaisler, www.gaisler.com
8. GRLIB IP Core User's Manual, Aeroflex Gaisler, www.gaisler.com

49

THE QUANTITATIVE ANALYSIS AND RESEARCH OF SPACEWIRE DELAY
JITTER

Network and Protocols

Short Paper

Chen Xiaomin, Hou Jianru, Cao Song, Sun Huixian

Center for Space Science and Applied Research, Chinese Academy of Sciences
E-mail: Chenxm@cssar.ac.cn , houjianru1985@gmail.com ,

caosong@cssar.ac.cn, shxian@cssar.ac.cn

1 INTRODUCTION:

Delay jitter is the key parameter to reflect the network transmission performance,
which measures the difference between the maximum transmission delay and the
minimum transmission delay from end to end. For large bandwidth traffic flow,
greater delay jitter requires larger cache for sending and receiving. If the maximum
transmission delay is too long, the real-time transmission performance of the network
will fall, causing the bus performance degradation. Delay jitter performance has
especially obvious impact on the quality of images and videos transmission with high
bandwidth. Meanwhile, the highly real-time control services also have higher
requirements on delay jitter performance of the bus. Currently, all kinds of satellites
are equipped with more and more images-payload. Parameters like Delay jitter are
always of concern to system designers.

Through theoretical calculations and modeling simulations, this essay carried out
quantitative analysis and research for the delay jitter of the SpaceWire under specific
application scenarios. Theoretical calculations get the delay jitter under particular
scenarios by theoretical derivation. Modeling simulations, on the other hand,
established simulation model by Opnet, and obtained the maximum transmission
delay and minimum transmission delay by simulation. In this way, it is possible to
calculate the delay jitter, qualitatively and quantitatively. By comparison, we obtain
the parameters which have key impact on delay jitter. Recommendations and methods
to improve the delay jitter are given by analyzing the conclusions. The research
results of this article can provide a reference for the SpaceWire design to build a low
delay jitter SpaceWire network.

2 CHARACTERISTICS OF TRANSMISSION SERVICE OF THE ON-BOARD DATA
NETWORK

For accurately analyzing the delay jitter performance of SpaceWire network, the
characteristics of transmission service of the on-board data network must be firstly
clarified. Based on the requirements for the parameters such as bandwidth, real-time
performance (delay jitter), and data reliability of the transmission service stream, the
services can be classified into 3 types, as shown in Table 1.

50

mailto:Chenxm@cssar.ac.cn�
mailto:houjianru1985@gmail.com�
mailto:caosong@cssar.ac.cn�
mailto:shxian@cssar.ac.cn�

Table 1 Transmission Service Types of the On-board Data Network

Service Type Bandwidth Real-time
Performance

(Delay Jitter)

Data
Reliability

Control service low average to high high

High real-time data
service

high high low

Low real-time data
service

average low average

3 SIMULATION AND ANALYSIS

We first build a chain topology. Low-speed device node_0, high-speed equipment
node_2 and node_5 are connected to the 4-port router node_4 and node_6. Node_7 is
connected to a 4-port router which is a hot module (such as CPU, mass storage).
Routers are connected to form a chain topology. Peripheral nodes, which are node_2
and node_5, send data flow fn1 and fn2. Fn1 is the controlling data stream which is
low-speed and low real-time. Fn2 is the data stream sent by high-speed device.

Using Opnet Software to create the following model

In this model, node_0, node_2 and node_5 are source nodes. Intervals between
packets can be set to a variety of functions distribution. Here we set the intervals of
the node_0 as constant distribution, and set the intervals of the node_2 and node_5 as
random distribution, which are uniform patterns. In this case, when node_0 is counted,
the packet intervals are consistent so that they are easy to compare. Meanwhile,
node_2 and node_5 are sending packets randomly so that it is easy to manufacture
collisions.

51

Node_4 and node_6 are routing nodes. Node_7 only counts the end-to-end delay
when node_0 is sending packets. In order to see more directly the situation during the
simulation, when packets are blocked causing the end-to-end delay increases, we set
node_0 to send packets at the simulation time of 0.01s, node_2 at 0.009998s and
node_5 at 0.009999s. Each of the three nodes sends packets of 1024 bit. First, we set
the sending interval of node_0 is constantly 0.0001, and it send 100 packets in total.
The sending intervals of node_2 and node_5 are random numbers between 0.0001 and
0.0002. Simulation gets statistics as following:

Statistics in the chart are the end-to-end delays. Every line consists of 128 dots each
of which represents an N-char delay. In this simulation, the start time of end-to-end
delay records from the creation of the package, and the ending time records from
when each N-char is received. It leads end-to-end delay of each N-char increase. The
highest point of each vertical line is the end-to-end delay of the packet. The
simulation time of the task is 0.02s in total, but according to the simulation results,
some packets’ delay will be longer than average due to congestion. The first packet’s
delay is particularly long. This is deliberately made when setting the packet’s sending
time, which is in line with the expectation.

In above case, sending speed of node_5 is equal to node_0. Despite the first package
reflects relatively long delay, the overall delay is quite steady. In our plan, node_5 is
high-speed device. When node_5 sending according to the function which is
randomly distributed from 0.00001 to 0.00002 (that is 10 times larger than the above),
we get the following results.

This shows that without high-level routing protocols, high-speed devices can cause
interference with high real-time device, thus greatly increasing the end-to-end delay

52

of it. In extreme cases, node_5 sends packets according to the function which is
randomly distributed from 0.000005 to 0.000006 (it close to the total capacity of the
link). We get the following results:

It shows that end-to-end delay increases. This is because node_5 occupies almost all
links so that node_6 is always in collision. The routing program used random
selection for collision, while end-to-end delay records from the creation of the
package, leads this result. We can see link utilization of node_5-> node_6:

4 IMPROVEMENT OF SPACEWIRE END-TO-END DELAY

In the simulation we can see, real-time data may not arrive on time due to the lack of
high-level agreements. If only for extreme cases described in the end, priority rotation
of the routes can solve the problem. But if we want to effectively control the delay
jitter of a source, here are two options:

4.1 Division of Priority

When a packet with high priority enters the route, sending of the low-priority packet
is immediately stopped and replaced with high-priority packets. Low-priority packet
is put in cache and waits until high-priority data is finished.

4.2 Division of time fragment

Routing behaviour can be divided into multiple time fragments. Each fragment is
allocated to different routing ports fairly. This is easy for implement, but will extend
end-to-end delay of all packets.

53

5 CONCLUSION

SpaceWire bus standard is still expanding and improving. It is playing a more and
more important role in analyzing the characteristics of the SpaceWire network
transmission delay. Since SpaceWire technology has been successfully applied in a
number of space missions, it is hopefully to become future bus standard of in-orbit.
However, analysis and research on the characteristics of its network delay is still not
enough.

This article analyzes the factors that influence the data stream delay characteristics of
SpaceWire network under the typical topology structure based on an OPNET model.
It carries out the quantitative and qualitative analysis on the delay jitter performance
under different conditions, thereby providing a universally applicable method for
designing the SpaceWire network and also the guidance for the design in the aspect of
improving the delay jitter.

REFERENCE

1. Guo Lin, Cao Song, Chen Xiaomin. Research on The Delay Jitter Performance of
SpaceWire, Network for Space Applications, IEEE ICCDA 2010

54

NETWORK MANAGEMENT AND FDIR FOR SPACEWIRE NETWORKS

Session: SpaceWire networks and protocols

Long Paper

David Jameux

European Space Technology Centre,

Keplerlaan 1, 2200 AG Noordwijk (The Netherlands)

E-mail: david.jameux@esa.int

ABSTRACT
Through several years of standardisation and technology development activities, ESA
has prepared the SpaceWire technology that allows embarking high speed data
networks on board spacecraft. This new technology has become widely adopted not
only by ESA missions but also by other agencies and industries. However, some
evolutions of the SpaceWire standard have been proposed by the SpaceWire Working
Group.

The working group identified shortcomings of the current SpaceWire protocol stack in
terms of network management and FDIR. This issue was already addressed several
times within the frame of ESA funded R&D activities. First, the “Unified On-Board
Processor Architecture for Spacecraft Avionics, Payload Processing and Data
Handling” (UNIONICS) GSTP contract investigated the possibilities of task
migration over a distributed SpaceWire network. Then, the TRP contract “Multi-
processor On-board System for Robotic Exploration” (MOSREM) consolidated the
concept by applying it to the most demanding application in terms of space on-board
computing, i.e. space robotics. Recently, the GSTP contract “Modular Architecture
for Robust Computing” (MARC) allowed proposing some FDIR scheme based on
SpaceWire backplane networks.

These techniques are highly promising but they need to be harmonised and
breadboarded prior to their eventual standardisation because they will be adopted by
the SpaceWire community only if they are backwards compatible, i.e. if they can
operate with existing SpaceWire devices.

This will be done in the frame of the ESA/TRP “Network management and FDIR for
SpaceWire networks” to be kicked off in July 2011.

In this paper, we recall the need for the design of SpaceWire networking protocol to
address the issue of network management and FDIR as well as the improvements
foreseen to be developed, breadboarded and documented in ECSS standardisation
format through the ESA/TRP activity “Network management and FDIR for
SpaceWire networks”. We inform about the achievements of the project team [in
August 2011] and describe the steps still to be taken in order to prepare for the
revision of the SpaceWire standard by the appropriate ECSS Working Group.

55

SPACEWIRE NETWORK PACKET ERROR HANDLING

Session: SpaceWire Networks and Protocol

Long Paper

Christopher T. Dailey

Dell Services Federal Government, Fairfax, Virginia, USA

E-mail: Christopher.T.Dailey@nasa.gov

Michael W. Pagen

MEI Technologies, Inc., Seabrook, Maryland, USA

E-mail: Michael.W.Pagen@nasa.gov

ABSTRACT
Packet error handling is an essential aspect for reliable, fault tolerant SpaceWire

(SpW) networks. Without packet error handling, some faults in a subsystem could

propagate through a SpW network, disrupting other packets or possibly the entire

network. Due to SpW’s unbounded packet size and wormhole routing, these faults

must be mitigated at the network level. The packet error handling logic was revised in

the National Aeronautics and Space Administration (NASA) Goddard Space Flight

Center (GSFC) developed SpW Router Field Programmable Gate Array (FPGA) to

automatically preclude packet fault propagation by adding logic on top of the SpW

protocol which has been tested and performs as intended.

1 INTRODUCTION
SpW is becoming commonly used for communication networks between and within

spacecraft subsystems. This is the case for the Magnetospheric Multiscale (MMS)

Mission SpW network, which uses the NASA GSFC developed SpW Remote

Memory Access Protocol (RMAP) and Node cores as well as Router FPGAs to

connect subsystems within each of the four MMS spacecraft.

The GSFC SpW Router FPGA consists of a multi-port non-blocking routing switch.

Multiple SpW Nodes and Routers are typically connected together to implement a

SpW network. While SpW networks can have any topological form, including loops,

SpW traffic on spacecraft typically resembles a funnel shape. On networks like these,

such as MMS, some paths only carry packets to and from one node while other paths

are shared, carrying packets from one or more sources to one or more destinations.

Shared paths can propagate faults when one source or destination fails such that a

packet takes too long, either temporarily or (more likely) indefinitely to wormhole

through the shared path. Note that brief stalls are normal consequences of packet

funneling which contribute to packet latency through a network and are not faults.

When a packet stalls for too long, other packets that need to use the shared path(s) are

precluded from doing so, effectively propagating the fault in one board or subsystem

over the network to other boards within the subsystem and/or to other subsystems.

56

mailto:Christopher.T.Dailey@nasa.gov
mailto:Michael.W.Pagen@nasa.gov

A packet can take too long to wormhole through a shared path due to:

 A fault in the source that increases the packet size to be too long or infinite

 A fault in a source that stops sending a packet for too long (without ending the

packet with an End Of Packet (EOP) or Error End of Packet (EEP) and

without increasing its intended size)

 A fault in a destination that starts receiving a packet then stops for too long

The packet error handling logic was revised in the NASA GSFC SpW Router FPGA

by the Code 561 Flight Data Systems & Radiation Effects Branch for, and funded by,

the MMS mission to automatically preclude packet fault propagation. The packet

error handling logic added to the GSFC Router FPGA exists on top of and transparent

to the SpW protocol and assumes the SpW router(s) in a network are properly

designed such that that radiation upsets or faults within the router(s) cannot credibly

cause a packet to take too long to wormhole through a shared path.

2 SPACECRAFT SPW TRAFFIC
On spacecraft SpW networks, SpW nodes and routers are used to move command and

telemetry packets between and within several subsystems. Below, a generic network

topology shows command packets funneling-out from the processor in Figure 1 while

telemetry packets flow back to the processor for processing and downlink in Figure 2.

57

SpW Link

SpW Link

SpW Link

SpW Link

S
W
I
T
C
H

SpW Router

SpW Link

SpW Link

SpW Link

SpW Link

S
W
I
T
C
H

SpW Router

SpW Link

SpW Link

SpW Link

SpW Link

S
W
I
T
C
H

SpW Router

SpW Link Downlink

SpW Link Processor

SpW Link Subsystem
SpW Node

SpW Node

SpW Node

SpW Link Subsystem

SpW Link Subsystem
SpW Node

SpW Node

SpW Link Subsystem

SpW Link Subsystem

SpW Link Subsystem
SpW Node

SpW Node

SpW Node

Figure 1: Generic Command Packet Flows

58

SpW Link

SpW Link

SpW Link

SpW Link

S
W
I
T
C
H

SpW Router

SpW Link

SpW Link

SpW Link

SpW Link

S
W
I
T
C
H

SpW Router

SpW Link

SpW Link

SpW Link

SpW Link

S
W
I
T
C
H

SpW Router

SpW Link Downlink

SpW Link Processor

SpW Link Subsystem
SpW Node

SpW Node

SpW Node

SpW Link Subsystem

SpW Link Subsystem
SpW Node

SpW Node

SpW Link Subsystem

SpW Link Subsystem

SpW Link Subsystem
SpW Node

SpW Node

SpW Node

Figure 2: SC FSW Processed Telemetry Packet Flows

The command and telemetry paths within the SpW network have shared paths. A fault

in any one of the subsystems that causes packets to take too long to wormhole through

the shared paths would block communication to/from the others, propagating the fault.

3 PACKET ERROR HANDLING
Packet error handling is provided in the GSFC Router FPGA and not in the GSFC

Node core as its purpose is to prevent fault propagation on shared paths. A node and

the link it connects to comprise a dedicated path in a SpW network. Therefore a fault

in a node’s board or subsystem only affects that board or subsystem, provided the

fault is not propagated. However, inside a router, the routing switch can have shared

paths which, if blocked, can propagate faults.

3.1 NETWORK LEVEL

Faults that leave wormholes open on shared paths have to be mitigated at the network

level, specifically the network switch boundaries, as these cannot always be mitigated

in other levels. This is a consequence of SpW’s unbounded packet size and wormhole

routing.

59

Since packets can be of any size, there is no time limit on wormhole routing in the

SpW standard. Therefore, a wormhole that remains open does not violate any of the

“rules” for the physical, signal, character, exchange, packet or network levels. In fact

the rules are followed in order for the wormhole to remain open. The link remains in

the RUN state but is only passing NULL characters (stalled packet) or is also passing

bytes of data (infinite packet) but not an EOP or EEP.

Mitigating at the transport or application levels, such as automated (watchdog) or

operator initiated resets or power cycles, may or may not stop fault propagation.

If a fault was due to a transient problem then resetting or power cycling may allow

operations to be restarted, provided the cause of the problem was cleared by the reset

or power cycle. When faults propagate, it can be difficult to determine the cause and

therefore difficult to know what to reset or power cycle. Also, resetting or power

cycling is typically best left as a last resort as doing so can erase status information,

making troubleshooting more difficult, and usually has significant mission impacts.

If the fault is persistent, then the stuck-open wormhole problem would re-occur after

the reset or power cycle, re-propagating the fault. Resetting or power cycling, even

repeatedly, would not stop fault propagation in this case.

Thus it is best to mitigate stuck-open wormhole faults at the network level, above the

SpW protocol and below any transport or application level services, such as RMAP.

3.2 STUCK-OPEN WORMHOLE MITIGATIONS

Packet error handling to prevent fault propagation from stuck-open wormholes is

implemented via two types of limit checks: maximum packet size and packet timeout.

If either limit is exceeded, the packet is truncated with an EEP so that the wormhole is

closed. Closing the wormhole allows subsequent packets to pass through the path that

was stuck, thereby limiting the fault to its source or destination in the SpW network

and precluding a fault with this packet from propagating to other packets.

The maximum packet size limit is selectable from several values including an option

to disable this limit check (allow packets of any size), via writing registers within the

routers. When enabled, the number of bytes in each packet is counted as the packet

bytes traverse the routing switch. If the byte count exceeds the limit, the routing

switch logic performs the packet error handling steps below.

The packet timeout limit is also selectable from several values including an option to

disable this limit check, via writing registers within the routers. When enabled, a timer

starts as packet bytes traverse the routing switch. If a timeout occurs, it is due to either

a fault in the source or destination. If the empty flag of the source First-In First-Out

(FIFO) is asserted for longer than the timeout value, then a fault has occurred in the

source of the packet. If the destination FIFO’s full flag is asserted for longer than the

timeout value, then a fault has occurred in the destination of the packet. Depending on

which occurred, the routing switch logic performs the packet error handling steps

below.

60

The packet error handling steps are:

 Disconnect the path between the source and destination switch ports inside the

router

o Subsequent packets from other sources can then arbitrate for the

destination port, thereby precluding fault propagation from faults in

packet sources

 Discard the remainder of the packet from the source port by draining the

source FIFO until an EOP or EEP is found

o This may never complete if the source is sending an infinitely long

packet or has stalled sending a packet

o If the source completes sending the packet (with an EOP or EEP) then

subsequent packets from this source can arbitrate for destination ports

in the routing switch

 This would be the case if the fault did not occur in the source or

the source was able to recover from the fault

 Truncate the packet at the destination port by appending an EEP

o If the destination port has failed to read the packet before the timeout

value then the destination port is marked as failed and any subsequent

packets requesting this port will be discarded

 This allows any subsequent packets arriving through the source

port to arbitrate for other destination ports, thereby precluding

fault propagation from faults in packet destinations

 If the fault in the destination is fixed such that its destination

port FIFO in the router is read then the destination port’s fail

flag is automatically cleared and the destination port can

resume receiving new packets

 Set the appropriate error status

3.3 NETWORK SWITCH BOUNDARIES

Packet error handling should be performed as close as possible to the cause of the

fault. This can be done by only performing packet error handling at the network

switch boundaries, where packets begin or end their wormhole paths through one or

more routers. Packet error handling could be performed at intermediate points inside

the network switch boundaries but doing so is unlikely to be beneficial.

Packet error handling can be enabled or disabled for each switch port in each router

individually so that it is only applied to the network switch boundaries. This is

necessary to preclude destination timeout packet error handling from occurring in

intermediate routers along a packet’s wormhole path. Otherwise, destination timeouts

61

could disable destination ports in intermediate routers, which would be a form of fault

propagation, rather than just the destination port in the last router.

3.4 VERIFICATION AND VALIDATION

The packet error handling logic has been verified through simulation and

inadvertently validated in integration and test of MMS. Software sent a command

packet with a logical address that opened a wormhole from the processor to a node

which was mis-configured and did not accept the packet. This stalled the packet and

resulted in a destination port timeout in the (properly configured) router port, which

disconnected the wormhole at the destination node. Subsequent packets sent by

software to other subsystems were then able to pass through the router.

The configuration fault was not propagated, which provided for quicker

troubleshooting as a communication failure was reported. Had the packet error

handling logic not been present (and enabled), software would not have been able to

send any packets to any other subsystems after sending the command packet. The

problem likely would have been reported as the whole SpW network locked-up and

finding root cause would have taken longer.

4 CONCLUSION
This paper described the packet error handling enhancements added to the GSFC

SpW Router and how these are applied to the MMS SpW network. Rationale for

performing this error handling at the network level, on top of the SpW protocol and

not at higher levels, as well as at network switch boundaries was also discussed. The

packet error handling logic has been verified though simulation and validated in

integration and test.

62

Components 1

63

LOW MASS SPACEWIRE

Session: Components

Short Paper

Gilles Rouchaud

AXON' CABLE S.A.S. - Route de Chalons-en Champagne - 51210 Montmirail -

France.

 Jorgen Ilstad

ESTEC, Keplerlaan 1 + P.O Box 299 - 2200 AG Noordwijk ZH - The Netherlands.

Florent Mettendorff

AXON’ CABLE LTD -AXON' AGORA - Admiralty park- Rosyth - Dunfermline-Fife

KY11 2YW – United Kingdom

E-mail: g.rouchaud@axon-cable.com, Jorgen.Ilstad@esa.int, f.mettendorff@axon-

cable.co.uk

1 INTRODUCTION

This presentation concerns the Low Mass SpaceWire project, reference A0/1-

6214/09, in cooperation with the European Space Agency. There is an existing

standard for SpaceWire and its reference is ECSS-ST-50-12C [1].

It would appear that this existing SpaceWire standard is too oriented to detailing the

cable construction when the reality of space applications require greater focus to be

given to the physical and electrical properties and particularly to the length and the

flexibility of the SpaceWire cable assembly (Link).

A possible consequence is that long SpaceWire links may be too lossy, while short

connections may be more rigid and heavier than necessary. Another possibility is that

the SpaceWire solution may sometimes be discarded by users as being too simplistic

and having too many physical and electrical limitations compared to what they need

for their application.

This project provides an opportunity to review the SpaceWire standard with the

primary objective of reducing its mass by half. The approach is in three steps:

development, manufacture and test of a Low Mass SpaceWire cable. The same or

equivalent performance levels shall be maintained for the cable assembly.

64

2 DEVELOPMENT

This project started by the definition of additional physical and electrical parameters

for the Low Mass SpaceWire cable plus a review of the existing requirements. This

information was compiled in a Requirements Specification Document (RSD). Among

these a specification for insertion losses have been added and the skew has been

reduced.

The preliminary design of the cable was based on this RSD and shows at this stage a

few potential solutions.

Depending on the forthcoming test results, the main construction changes could be :

- the removal of the overall shield covering the four inner shielded twisted pairs

or overall and inner shields in contact

- the silver plated copper shields to be replaced by silver plated aluminium

- full cable shielding and termination through bulkhead connector/backshell

interface, unlike the current inner shields of the two signal pairs on each side

left floating.

- Use of non-twisted sub-miniature coaxial cables instead of shielded twisted

pairs as a potentially very interesting and flexible solution for short lengths.

This technology also could allow the forming of the cable into a ribbon shape.

- Polyimide material for the outer insulation instead of PFA for improved

irradiation behaviour

The calculations indicate these changes should make the required mass reduction

possible (preliminary manufacturing reached 55g/m and 32g/m for the subminiature

coaxial cable assembly, as opposed to typically 80g/m for standard SpaceWire).

A second objective of this project was to investigate the possibility of an existing,

alternative matched impedance connector to the current rectangular micro-miniature

Micro-D) connector defined in the standard.

As a result of the survey, two types of connectors show potential for a SpaceWire

application:

- one developped by an Axon competitor with NASA (4-way twinax)

- one developped by Axon with CNES (AXOMACH)

Other configurations of the microminiature connectors (circular or with additional

EMI protection) are also under consideration. And a nanominiature potential

alternative (albeit without matched impedance) is being investigated.

As the project progressed, an interesting potential innovation in the cable properties

was identified. The idea was to explore the feasibility of using a slightly conductive

65

material as an outer insulation of the cable to support applications exposed to space

and therefore requiring improved eletrostatic discharge (ESD) performance.

An investigation revealed that this matter goes beyond the frame of the current Low

Mass SpaceWire project, and it was agreed with ESA that it should be potentially

considered as a separate project by itself.

3 MANUFACTURE AND TESTS

At the time of writing this short paper, the manufacture of four different Low Mass

SpaceWire candidate cables was still on-going.

The quite radical changes in the design imposed some optimisation to the existing

manufacturing processes. But the few issues encountered during the first production

have now all been overcome and processes mastered.

The four cable samples in manufacture shall serve as test vehicles to undergo the

Qualification Test Plan (QTP) recorded in a Test Specification Document and

validated by ESA.

The tests concerned will cover the physical, electrical and mechanical aspects

required for the Low Mass SpaceWire.

Moreover an innovative test from ESA for conductive susceptibility measurement

will be included. The purpose of this test is to characterize the robustness of a Low

Mass SpaceWire cable assembly against external EMI disturbances. The procedure

was proposed by ESA along with a suggested test equipment scenario. Some test

components were manufactured in partnership between Axon and Astrium in France.

4 SPACEWIRE SPECIFICATIONS UPDATE

Once the tests are completed and the conclusions drawn from the results, in

collaboration with ESA and one of the original authors of the existing SpaceWire

standard (Steve Parkes), Axon has to prepare:

• a SpaceWire Cable specification and a PID

a draft, revised issue of the ESCC3902/003 standard [2] (just the cable only

specification of the Low Mass SpaceWire (not terminated to connectors)) was

created during the development phase to help the future ECSS update mentioned

previously. This specification retains the 2 existing conductor solutions (AWG26 and

AWG28) and includes some new lightweight variants.

• a SpaceWire Standardisation document

 The intention is to update the sections relating to the cable specification in the

SpaceWire standard ECSS-ST-50-12 eventually.

66

5 CONCLUSION

Despite the significant challenge launched by ESA to reduce by half the mass of the

existing SpaceWire cable, the development phase has shown that, in theory, it is

achievable using new or modified designs.

Furthermore, the new media proposed will be better featured and have a higher

margin of performance in relation to the proposed new wording of the standard.

6 REFERENCES

1. European Space Agency - ECSS Secretariat, ECSS-E-ST-50-12C, Space

engineering, SpaceWire – Links, nodes, routers and networks , 31
st
 of July 2008,

129 pages.

2. European Space Agency, ESCC Detail Specification No. 3902/003 issue 2,

CABLE, “SPACEWIRE”, ROUND, QUAD USING SYMMETRIC CABLES,

FLEXIBLE, -200 TO +180 OC, June 2008, 24 pages.

67

IMPLEMENTATION ASPECTS OF THE PHYSICAL LAYER IN SPACEWIRE

Session: Components

 Short Paper

Wahida Gasti, Jorgen Ilstad, Farid Guettache, Giorgio Magistrati

ESTEC / European Space Agency, Noordwijk , Netherlands

E-mail: wahida.gasti@esa.int, farid.guettache@esa.int, Giorgio.magistrati@esa.int,

jorgen.ilstad@esa.int

ABSTRACT
This paper will focus on the following three areas of the SpW physical layer:

What are the pros and cons of discrete vs. integrated implementation of EIA/TIA
644 LVDS transceivers in flight units?

A trade-off between the two possible implementations of SpW transceivers in on-

board equipment will be presented. The advantages or disadvantages of an

implementation using discrete LVDS transceivers external to the ASIC/ FPGA versus

an integrated LVDS transceiver solution embedded in the ASIC/FPGA will be looked

at closely. Key criteria considered are: application (inside or intra units), fault voltage

susceptibility, robustness against ESD, redundancy and cross strapping aspects, risks

and associated effects in case of failures etc.

How are fail safe requirements defined in ECSS-E-ST-50-12 verified?
The verification of the fail safe requirements defined in section 6.2 of the ECSS-E-

ST050-12C is analyzed in particular for implementations where the LVDS

transceivers are embedded in an ASIC/FPGA.

How does common mode voltage drift affect communication integrity?
Results from tests related to signal and communication integrity in presence of a

common mode voltage difference between units will be presented. The two LVDS

transceiver options, embedded vs. discrete transceivers, as discussed above, will

conclude the paper. The tests results include SpaceWire components with embedded

LVDS transceivers and discrete (external) LVDS transceivers with both nominal and

extended common mode voltage ranges.

68

mailto:farid.guettache@esa.int
mailto:Giorgio.magistrati@esa.int

Introduction
The SpW physical layer is based on differential signal transmission.

ANSI/EIA/TIA-644a LVDS is the technology used for the physical layer. LVDS as

differential transmission mode presents many advantages over single ended signaling

by allowing high data rate, low power consumption, immunity to noise and low EMI,

but on the other side it requires extra care to be taken in the design to preserve the

symmetry of the differential signal, to keep the impedance matching and to deliver at

the receiving end the required quality of the signal. In the beginning mostly discrete

circuits from various manufacturers has been used. Nowadays with increased

complexity of SpW based designs like router or SoC, the trend is to integrate LVDS

transceivers in the ASIC. The same is also true for the FPGA circuits, and the most

recent include LVDS transceivers. This option at first glance seems attractive mainly

to save area on the PCB. Interoperability between different implementations requires

compliance to ANSI/TIA/EIA-664a in the development of the circuit and to follow

recommended practices and design guidelines in the design of the application (PCB),

the objective is to preserve the integrity of the signal. In this paper our interest will

focus mainly on integrated LVDS transceivers in particular those embedded in the

Atmel SpaceWire 10X router. The performances of embedded transceivers will be

compared to those of the discrete circuits. In the first part of the paper the main

advantages to use integrated drivers versus discrete will be outlined. In the second

part and starting from SpW standard failsafe requirements, it is addressed how to

proceed for verification in the case of integrated transceivers and finally in the last

part how common mode drift will affect the signal integrity.

1-Pros and cons of discrete versus integrated implementation of LVDS
transceivers in flight units

The trade-offs between the two possible implementation of LVDS transceivers in

on-board equipment is presented in the current paragraph (embedded LVDS drivers in

FPGA/ASIC and discrete LVDS transceivers).We will focus on the following

criteria’s:

 General signal consideration

-Signal integrity, power-thermal, ESD etc,

 And more specific to space

 -Redundancy and cross-trapping and risk associated in case of failure

1-PCB issues:

When placing LVDS drivers on PCB the recommended stub maximum lengths is 2.5

cm. It is still possible to use stub with trace lengths longer than 2.5 cm, but

transmission can suffer from problems like ringing, overshoot, undershoot, stair step

waveforms crosstalk and reflections. If an LVDS transceiver is integrated into an

FPGA/ASIC the possibilities of placement on the PCB and close to the backplane

connector are limited and depend on several factors among them:

- The I/O density in the FPGA

- Size of the board i.e. distance between component and connector

- PCB layers

- Component placement density

- Signal rate i.e. transition time of the rising and falling edges of the signal.

69

These factors have a direct an impact on the signal integrity. High density of

embedded I/O and component on the board can make the PCB design more difficult

and more complex in particular if we want to preserve the signal quality. However

embedded signal drivers free up space to implement other components and enable

also to overcome the CMOS connection length limiting factor

Discrete I/O enables the placement of drivers on the PCB for optimised distance to the

connectors and the board designer will have less hassle about impedance matching

along the transmission tracks. In case embedded drivers is the only solution, LVDS

repeater can be used to overcome the limitation

2-The I/O load capacitance of an FPGA can be higher than for a discrete I/O

(approximately double) A higher capacitance tend to lower the transmission line

impedance, and narrow the available noise margin (example in the

SN65LVDS31circuit the input capacitance is 3 pF, and for Actel serie RTAX-S/SL

Radiation-Tolerant FPGAs the input capacitance is 10 pF)

3-Power: using discrete I/O buffers, which are dissipating devices, helps dissipate

heat to keep the ASIC/FPGA cooler (Atmel router consume 3.6 w, at 200Mbits/s with

all ports active). We can add flexibility when selecting discrete LVDS drivers due to

the fact that drivers with appropriate power supply can be selected.

4-ESD: Discrete I/O have often higher tolerance against ESD (10kV) than

FPGA/ASIC I/O (2-2.5 kV)

5-Environmental noise: the receiver is usually connected to a harness which can

collect noise and static electricity from the environment and discrete drivers may

enable to isolate the FPGA/ASIC from this noise

6-Gain from the ASIC rad-tolerant design which is not always the case for discrete

circuit

7-Discrete I/O devices often use larger technology (example 0.35 um) than

ASIC/FPGA which make them more robust to high voltage and current and more

immune to noise and EMI. But ASIC/FPGA have more resources (in terms of

available transistors) to make additional protection in the design

8- Cross-strapping and error propagation

In the ECSS-E-ST-50-14C it is stated regarding cross-trapping:

In case of signal cross‐strapping, no single failure of either interface circuit shall propagate to

the other one

Two cases should be considered: warm redundancy and cold redundancy. In warm

redundancy and in operation the LVDS driver is always active and the cable can be

considered never disconnected from the driver and the receiver input is never shorted

together. In cold redundancy the link is not always active and when the driver output

is in high impedance the receiver can be considered disconnected, when the

transmission line is not shielded (case PCB traces) it can act like antenna and collect

noise, in the case of a shielded cable the risk is lowered. Discrete circuits offer more

flexibility than ASIC/FPGA as it is always possible to power-off or disable the

70

redundant link. Even in case of failure of the LVDS transceiver the error has little

chance to propagate beyond the transceiver to reach other stages of the system. A

failure of an embedded transceiver could expose the whole ASIC/FPGA to the risk of

being damaged

TB

2-How are fail safe requirements defined in ECSS-E-ST-50-12 verified?

The paragraph 6.2 (Failsafe operation of LVDS) of the ECSS-E-ST-50-12 [1] state

the following:

A When any of the following fault conditions occur, the receiver outputs

shall not oscillate and shall be locked to high logic level provided that

a noise threshold of 10mV is not exceeded at the receiver input.

1. Driver not powered.

2. Driver disabled.

3. Driver not connected to receiver

4. Receiver inputs open circuit (i.e. cable or wire in cable

disconnected).

5. Receiver inputs shorted together

B When the driver is not powered its output should be high impedance

i.e. > 100 k.

C When the receiver is not powered its input should be high impedance

i.e. > 100 k.

For embedded LVDS transceivers [6,8] it is difficult to test the case a) because the

receiver output are not accessible for measurement and is connected directly to the

SpW codec. If we inject continuously one of the sequence outlined below:

- Start the SpW link - short together the receiver input - restart the SpW link.

- Start the SpW link - disconnect receiver inputs – restart the SpW link.

The exchanged packets between the two endpoint of the link can be recorded and

analysed later. Stored packet will help to detect any impact of the faulty operations on

the receiver inputs side.

In theorie to detect receiver oscillation the power supply consumption could be

monitored for slight variations.

Figure 1: Full cross-strapping of nominal and redundant on-board units.

N N

R R

71

Simulation using PSpice and IBIS models is an alternative way that can be used to

analyse fail safe conditions and to verify the data sheet specs.

 The starting sequence of the SpW protocol seems robust enough to cope with the

faulty condition mentioned in the SpW standard because it constitute a reel barrier

against these faulty conditions and it seems to supersedes the fail-safety of LVDS

drivers. A continuous stream of error free characters (NULL and application data) is

the absolute condition to maintain the link alive. In the event of spurious transitions

on a transceiver the likelihood of this being determined as valid data is very small due

to the odd parity scheme, causing the link to disconnect if not obeyed, and the fact

that the data has to match certain values to be accepted by the node. The latter case is

especially true when higher level protocols are used.

3-How does common mode voltage drift affect
communication integrity?

The illustrated test set-up in figure 2 is a SpW connection channel between an Atmel

router using embedded MH1-RT LVDS transceivers and an SMCS116 [13]

evaluation board using the Aeroflex LVDS transceivers for it physical layer

We have performed common mode variation test using DC signal as well AC

signal and monitoring the signal integrity through SpW startup sequence

(disconnections, parity errors). The common of Atmel router SpW interface has been

subjected to a voltage variation.

For the DC test we noticed that common mode difference that +/- 1V is

conceivable and has not impact on data integrity on the SpaceWire link. Further tests

revealed that common mode voltage shifts up to 1.4V did not cause data corruption

with subsequent disconnect.

For The AC conducted susceptibility test a sinusoidal waveform with a

maximum amplitude of 1 V (2 V pkpk) in a frequency range of 50kHZ – 100MHz

has been injected and the SpW link has been monitored for degradation of

performances at each test frequency. The SpW communication link was operated at

two different data rates: 10 Mbit/s and 100 Mbit/s and has been kept active during the

whole test. The results are summarized in the table 1, we can notice that there was no

perturbation of the connection for the injected disturbance signal at frequencies lower

than 100MHz but at 100 MHz the shield start to loose its effectiveness and from

certain level of signal amplitude errors start to appear on the SpW link. The shield

seems appropriate to remove any intrusion of common mode fluctuations.

 Frequency (MHz) Test results
0.05 Ok no disconnection
0.1 Ok no disconnection
0.3 Ok no disconnection
1 Ok no disconnection

72

3 Ok no disconnection
10 Ok no disconnection
30 Ok no disconnection
100 Ok up to slightly lower than

the max level of 1V

Table 1: Summary of results from AC common mode test

SMCS116SpW (AT7912F)
w. Aeroflex UT54LV31 & 32

Signal
Generator
SMA 100

SpaceWire Router 10X
(AT7910E)

Development board

Power Supply 1 Power Supply 2

SpW Cable,
10m

50kHz – 100MHz
modulation

broadband
amplifier

AR50WD1000

F-130A
BCI

PROBE
<100MHz

F-16
Monitoring

probe
20MHz – 100MHz

Star Dundee
SpW Router

USB
USB

Control
and

monitoring

Figure 2: EMC AC Conducted susceptibility test.

Figure 3: Oscilloscope plots from DC common mode voltage shift.

 C1 = Input A of Aeroflex Receiver (Strobe of Port 7),

C2 = Differential Voltage at Aeroflex Receiver
Inputs (A-B).Delta V from 0 up to 1.4 V (.2,.8,1, 1.2, 1.4
V) have
been over-imposed.. No errors (disconnection or
parity) occurs
until the DeltaV reaches 1.5 V

C1 = Input A of Aeroflex Receiver (Strobe of Port 7),
C2 = Differential Voltage at Aeroflex Receiver
Inputs (A-B).
Delta V from 0 down to -1.4 V (-.4,-.6, -.8, -1, -1.2 V)
have been over-imposed.
No errors (disconnection or parity) occurs until
the DeltaV reaches -1.4 V !!!

73

Conclusion

The LVDS standard TIA-EIA-644 requirements are defined with sufficient

margins that even if fully compliance is not achieved, the LVDS transceivers is able

to deliver and decode signals with the required quality level.

Embedded transceivers and discrete circuits have pros and cons, the selection

is application dependant, signal integrity is an important metric but at the end it is up

to the designer to perform the trade-off.

References

1. ECSS-E-ST-50-12C Spacewire -Links, nodes, routers and networks

2. ANSI/TIA/EIA-644-A-2001 Electrical Characteristics of Low Voltage Differential Signaling (L

VDS) Interface Circuits

3. ECSS-E-10-03A testing

4. ECSS-E-ST-20-07C Electromagnetic compatibility

5. ECSS-E-ST-50-14C Spacecraft discrete interfaces

6. Technical Note on LVDS in MH1RT Asic Technology 4 November 2011 ATMEL

7. Test on LVDS Components at ESA 29 June 2011 LVDS-Day TEC-ED, TEC-EDD, TEC-EDP

8. AT7910E SpW-10X SpaceWire Router Datasheet 7796-AERO-07/09

9. UT54LVDS031LV/E Low Voltage 3.3 V Quad Driver Aeroflex Datasheet Dec 2008

10. SMCS116SpW User manual Astrium

11. Data sheet SN65LVDS32 T.I

12. AN1194 Failsafe Biasing of LVDS Interfaces Dec 2001

13. Using LVDS for Actel's Axcelerator® and RTAX-S/SL Devices Actel A.N

14. Virtex-E High Performance Differential Solutions: Low Voltage Differential Signalling

(LVDS)LVDS Owner’s

15. Using LVDS in APEX 20KE Devices Altera

16. LVDS owner manual Nation Semi-conductor

74

NASA-GSFC REMOTE MEMORY ACCESS PROTOCOL TARGET IP CORE

 Session: Components

Short Paper

Omar A. Haddad

Dell Services Federal Government/NASA GSFC Code 561

Greenbelt MD 20771

E-mail: omar.a.haddad@nasa.gov

ABSTRACT
The Magnetospheric Multiscale mission (MMS) was the first Goddard Space Flight

Center (GSFC) project to adopt Remote Memory Access Protocol (RMAP) over

SpaceWire. Adopting RMAP on several SpaceWire-enabled boards of the mission

reduces the effort required of board and FPGA designers to implement the SpaceWire

interface. It also simplifies the flight software because fewer SpaceWire protocols

need to be supported. This paper describes the features of RMAP that GSFC

implemented, discusses development and testing issues encountered, and summarizes

the end results of implementing RMAP over SpaceWire on MMS.

1 THE ADVANTAGE OF RMAP
Like any network, SpaceWire has layers of communication. Figure 1 below shows

the layers implemented on MMS, in accordance with [1]. RMAP resides in the packet

layer.

Figure 1

The advantage of implementing RMAP on a board that is considered a target,

peripheral, or end point is illustrated in Figure 2 below. While the User Logic block

is design-specific, all other blocks are provided to the board/FPGA designers as

reference designs which require no development. This is a significant advantage over

past designs where the board/FPGA designers needed to dive deeper into the lower

layers in order to properly design, debug, and test the SpaceWire interface.

Physical Signal Character Exchange Packet Network Application

Physical

Connector

Cable

Board

Transceiver

Layout

FPGA

SpaceWire
IP Core

RMAP
Target IP

Core

User Logic

Memory

Registers

State
Machines

Addr
Data

Control

75

mailto:omar.a.haddad@nasa.gov

Figure 2

1.1 HIDING THE PACKET LAYER

With RMAP as the packet layer, the user logic connects to a simple

address/data/control bus and maps the functionality and control of the board into an

address space that can be accessed by the network host. Handling packet parsing,

validation, error handling, and recovery is done by the RMAP Target IP core and

doesn‟t need to be thoroughly understood by the board designer.

1.2 REINVENTING THE WHEEL

Since each RMAP-enabled board is given the same reference blocks for their

SpaceWire interfaces, the design only needs to be reviewed once. The software

interface to all the RMAP enabled boards can use a common element that handles

RMAP packets. The hardware and flight software reference designs can be reused

from mission to mission without having to „reinvent the wheel‟ for each one.

2 RMAP FEATURES IMPLEMENTED
The RMAP standard [2] spells out the partial implementation of the RMAP standard.

This section discusses the features of RMAP standard that were implemented by the

GSFC RMAP Target IP core along with some non-standard features that were found

to be useful.

Read and Write Commands – The GSFC RMAP target supports all variations of

read and write commands. The verified write commands are limited to a length of 4

data bytes. This is long enough for critical 32-bit registers to be safely written to and

doesn‟t require a large internal buffer to hold data. The RMW command was not

implemented in the GSFC RMAP target core because the MMS mission only had one

RMAP initiator, thus, obviating the need for the RMW command.

Event Signalling – Reference [3] provides a description of the event signalling

feature which was later left out of reference [2]. With this feature, a read command

triggers a user-defined event which must complete before the response is generated

and returned to the requestor. This feature was used by MMS to request and capture

„freshly‟ sampled analog telemetry. The read command would trigger an ADC

conversion event. Upon completion, the result was returned to the requestor so that

stale data is never used.

Bypass Port – For RMAP-enabled target devices that wish to support additional

SpaceWire packet formats, the GSFC RMAP target core implements a bypass port

that diverts non-RMAP packets past the RMAP target core. The bypass port is

bidirectional and uses the logical address in the packet header to determine how to

route packets.

SpaceWire Device Register Interface – The GSFC RMAP target core has a special

register interface that can be connected the SpaceWire IP Core which establishes

communication over the SpaceWire link/cable. This allows the network host to use

RMAP commands to read SpaceWire status and configure the SpaceWire operation of

that device.

76

Back-end Timeout – The GSFC RMAP target core was written such that access to

the user‟s address space hand-shake with the user‟s logic to know when the read/write

transaction had completed. Response packets can then be generated. However, if the

user‟s logic never ends the transaction, the RMAP core would wait forever and

effectively lock-up. To avoid this scenario, the RMAP core has a programmable

timeout counter. If the RMAP core encounters a timeout while waiting for the user

logic to respond, the transaction is aborted and an error status is returned to the

RMAP initiator/host, if requested.

3 DEVELOPMENT AND TESTING ISSUES
The GSFC RMAP target core was developed and tested as an in-house effort. This

section describes some of the challenges and issues that were overcome.

3.1 CRC ALGORITHM CONFUSION

The RMAP format contains two CRC fields, one for the header and one for the data.

To assist with calculating the CRC fields properly, reference [3] contained an

appendix with sample VHDL and C code that calculates the CRC. The sample code

provided contained errors; so the first implementation of the GSFC RMAP target core

did not generate the CRC field correctly. This error in reference [3] was corrected in

reference [2], however, the error was not discovered in the GSFC core until it was

used with third party software that generated the CRC differently.

3.2 LESSONS LEARNED

With so many users of the GSFC RMAP IP core, it became evident that the

specification documentation for the core had to be very detailed and clearly written.

There were many instances where users required the specification to be updated to

contain the information they needed such as data field byte order, transaction

latencies, and handling of multiple event signalling transactions.

3.3 COMPLIANCE

Another NASA mission, Astro-H, used the GSFC RMAP IP core to interface to a

component built by JAXA. Astro-H performed RMAP standard compliance testing

on the GSFC RMAP IP core and found it to be 100% compliant with the mandatory

functionality.

4 RESULTS
Implementing standardized interfaces often comes with unnecessary overhead that

makes a design less optimal in resource usage. This cost is incurred in the hopes that

it is outweighed by the advantages that it buys. Therefore, it is important to assess the

benefits of using RMAP on MMS.

4.1 REUSE

In terms of reuse, the concept of using RMAP on target devices that can be fully

controlled by address mapped logic was very successful. Not only has MMS taken

advantage of this, but multiple other GSFC missions are now using the RMAP target

IP core and it is anticipated that many future GSFC missions will also adopt it. The

77

IP core was used on multiple FPGAs by multiple agencies without requiring

individual modification. Even elements of the verification environment were reused

from one test bench to another.

4.2 SIMPLIFICATION

Sharing a reference circuit design and FPGA IP core worked out very well and made

the effort of designing a SpaceWire RMAP-enabled board less complex. Each board

designer received a sample test bench tailored for RMAP-enabled boards. This test

bench was used as a starting point for board/FPGA designers to use when exercising

their user (board-specific) logic.

4.3 STANDARDIZATION

The use of RMAP enabled the MMS flight software to standardize on how SpaceWire

nodes are controlled. This reduces software complexity and increases reliability.

Designing a RMAP target IP core that is standard compliant was a task of reasonable

effort that has paid dividends many times over. The standardization of the SpaceWire

protocol has been also been an advantage in selecting and using lab test equipment

with multiple RMAP-enabled devices.

4.4 SUFFICIENCY OF RMAP

Although the adoption of RMAP was a positive experience on MMS, it was

determined that RMAP alone is not enough to meet the architectural needs of MMS.

The reason for this is that RMAP requires that target nodes do not „speak‟ unless

„spoken‟ to. For this reason, it was necessary to implement another SpaceWire packet

protocol that allows for target nodes to freely forward data as it becomes available.

Although potential RMAP solutions were considered, they were ruled out due to the

complexity of fault detection and recovery.

5 REFERENCES
1. European Cooperation For Space Standardiziation, “SpaceWire – Links, nodes,

routers, and networks”, ECSS-E-50-12A, January 24, 2003, 27-35.

2. European Cooperation For Space Standardiziation, “SpaceWire protocols”, ECSS-

E-ST-50-11, July 2008.

3. European Cooperation For Space Standardiziation, “Remote memory access

protocol”, ECSS-E-50-11 Draft F, December 4, 2006.

78

1553 TO SPACEWIRE BRIDGE

Session: SpaceWire Components

Short Paper

Jennifer Larsen

Aeroflex Colorado Springs
4350 Centennial Blvd. Colorado Springs, CO 80907

E-mail: Jennifer.Larsen@aeroflex.com

ABSTRACT

The 1553 to SpaceWire Bridge allows devices, which are compliant to MIL-STD-
1553[2], to access and communicate on a SpaceWire (SpW) bus. This bridge allows
existing instruments to be used within a system where the main data bus has been
updated to SpaceWire. MIL-STD-1553B messages are decoded and translated into
ECSS-E-ST-50-12C[4] compliant messages and communicated over the SpW bus.
The bridge device also translates SpW messages into 1553 messages for full duplex
data transfer.

1 SPACEWIRE TO 1553 BRIDGE ARCHITECTURE

For SpaceWire to be designed into future missions a bridge from SpaceWire to 1553
and vice-versa is necessary. This bridge requires a large buffer memory to handle the
1MHz 1553 operating frequency verses the relatively high operational frequency of
SpaceWire of 2 to 400Mbps as defined in SpaceWire Standard ECSS-E-ST-50-12C.
The 1553 to SpW Bridge consumes a small percentage of available SpW bandwidth.

A notional block diagram is presented in Figure 1. The concept of the bridge is to
allow older instruments to be integrated into a new system where the backplane has
been updated to SpaceWire. The integral blocks of the 1553 to SpW Bridge include:

• SpaceWire Physical Interface
• A and B 1553 channels
• 1553 control bits
• SpW and 1553 message decode
• Required buffer memory

The bridge provides one full duplex ECSS-E-ST-50-12C compliant node interface.
This node contains transmit and receive FIFOs used to buffer data being sent within
the SpW network. The transmit FIFO takes translated data from the 1553 interface

79

mailto:Jennifer.Larsen@aeroflex.com

and transmits it to an external node. Conversely the SpW receive FIFO accepts data
from an external node and passes it to the buffer memory and message decode, then to
the 1553 interface.

1553 Controller

rd_Logic

wr_Logic
Primary

TX_FIFO

RX_FIFO

Init

Tx_int

Aeroflex SpaceWire
LPH Core

PHYSICAL
INTERFACE

arbiter

TX_D_LV 2
TX_S_LV
RX_D_LV
RX_S_LV

2

2

2 Rx_int

Look Up Table
Write

look_up
Ram Block

8we

din

CONFIGURATION

TXCLK_INCLOCK and
RESET
Logic RST

SpaceWire to 1553
Bridge

TX_DIV5

1553CLK_INMEMORY/
Processor Interface

BUFFER MEMORY

CHANNEL A

CHANNEL B

CONTROL

MESSAGE DECODE
and Translation

IN
T

C
TR

L

A
D

D
R

ES
S

D
A

TA

Figure 1. Notional Block Diagram

2 MESSAGE DECODE
The SpW to 1553 Bridge is capable of translating and transferring data to and from
the 1553 interface as a Remote Terminal (RT) which comprises the electronics
necessary to transfer data between the 1553 data bus and the external node. The Bridge
also translates and transfers data from a Bus Controller (BC) which sends commands
that direct the flow of data on the 1553 data bus.

There are a few key differences between 1553 and SpW data transfers, see Table 1.

Table 1. 1553 and SpW Protocol Differences

Parameter 1553 SpaceWire
Data Rate 1 MHz up to 400Mbps
Word Length 20 bits User Defined
Data Bits / Word 16 bits User Defined
Message Length Maximum of 32 data words User Defined
Transmission Technique Half-duplex Full-Duplex
Protocol Command/response User Defined
Bus Control Single or Multiple Point-to-Point

The Bridge will take 1553 messages using the command and response format and
transfer the 1553 messages to a RMAP ECSS-S-ST-50-52C command[5]. The
information transfer formats of MIL-STD-1553 specifically the BC-RT and RT-BC

80

commands are mapped to RMAP Write and Read commands. The 1553 20-Bit
command words contain information such as Sync, RT address, Transmit/Receive,
Subaddress/Mode, Word Count, and Parity. The 20bit Status words contain Sync, RT
address, error information, Service Request, Command Received, Acceptance,
Terminal Flag, and Parity.

A BC-RT command coming from the MIL-STD-1553B instrument to the SpaceWire
bus is decoded as illustrated in figures 2A and B below.

Receive
Command Data Word Data Word Data Word Status Word

Response Time
Figure 2A. MIL-STD-1553 BC-RT Information Transfer Format

Target Logical Address Protocol Identifier
0x01

Packet type, Command, Source
Path Address Length Key

Source Logical Addresses Transaction Identifier MSB Transaction Identifier LSB Extended Write Address

Write Address
MSB Write Address Write Address Write Address

LSB
Data Length

MSB Data Length Data Length
LSB Header CRC

DATA DATA DATA DATA

DATA DATA DATA DATA

DATA Data CRC EOP

Target SpW Address --- Target SpW Address

Reply Address Reply Address Reply Address Reply Address

Reply Address Reply Address Reply Address Reply Address

Reply Address Reply Address Reply Address Reply Address

Figure 2B. RMAP Write Command

3 EXAMPLE
Assume a 1553 instrument wanted to send the following BC-RT messages,
referencing figure 3 and the Aeroflex 1553 Product Handbook. The Bridge device
would ensure that the COMMAND WORD, minus the SYNC and Parity bits, are
placed in the first data bit of a RMAP Write command. Depending on the overall
network topology the RMAP packet will look similar to the figure 4.

Please note that the data length bytes in the RMAP Write command (Figure 2B) have
been set to accommodate for the 48-bit (0x30) 1553 BC-RT information transfer.

Converting from binary 1553 messages to Hex SpW RMAP commands: (minus the
SYNC and parity bits)

• Command Word: 00001000 00100010 = 0x08 0x22
• Data Word 1: 01101101 10100010 = 0x6D 0xA2
• Data Word 2: 00100001 00100000 = 0x21 0x20
• Status Word: not part of the RMAP Write packet, this bit stream will be part

of a Write Reply command from the RT to the BC

81

0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0SYNC

Terminal Address

TX
/R

X Subaddress/Mode

4 5 6 7 8 9 10 11 12 13 14321 15 16 17 18 19 20

Word Count Parity

COMMAND WORD

0 1 1 0 1 1 0 1 1 0 1 0 0 0 1 0 1SYNC

DATA

4 5 6 7 8 9 10 11 12 13 14321 15 16 17 18 19 20

Parity

DATA WORD 1

0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0SYNC

DATA

4 5 6 7 8 9 10 11 12 13 14321 15 16 17 18 19 20

Parity

DATA WORD 2

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0SYNC

M
es

sa
ge

 E
rr

or

4 5 6 7 8 9 10 11 12 13 14321 15 16 17 18 19 20

Parity

STATUS WORD

Terminal Address

In
st

ru
m

en
ta

tio
n

Se
rv

ic
e

R
eq

ue
st RESERVED

B
ro

ad
ca

st

B
us

y

Su
bs

ys
te

m
 F

la
g

D
yn

am
ic

 B
us

 A
cc

ep
ta

nc
e

Te
rm

in
al

 F
la

g

Figure 3. 1553 BC-RT

Target Logical Address Protocol Identifier
0x01

Packet type, Command, Source
Path Address Length Key

Source Logical Addresses Transaction Identifier MSB Transaction Identifier LSB Extended Write Address

Write Address
MSB Write Address Write Address Write Address

LSB

0x00 0x00 0x30 Header CRC

0x08 0x22 0x6D

EOP

Target SpW Address --- Target SpW Address

Reply Address Reply Address Reply Address Reply Address

Reply Address Reply Address Reply Address Reply Address

Reply Address Reply Address Reply Address Reply Address

0xA2

0x21 0x20

Figure 4. SpW RMAP Write

4 CONCLUSION

The 1553[2] to SpW[4] Bridge will allow devices/instruments compliant to MIL-
STD-1553 to access and communicate on a SpaceWire bus. Even with the differences
between the two data bus standards, RMAP[5] commands can be used to bridge
information from a SpaceWire bus to a 1553 bus. This Bridge device provides a
solution that translates between 1553 and the SpaceWire busses.

82

5 REFERENCES
1. Aeroflex Colorado Springs, “1553 Product Handbook,” October 1992.

2. Military Standard, “Aircraft Internal Time Division Command/Response
Multiplex Data Bus MIL-STD-1553B,” (Notice 2), September 1978

3. IEEE P1355, “Standard for Heterogeneous InterConnect (HIC) IEEE 1355-1995,”
Conference Title, Location, June 12, 1996.

4. ESA Publications Division, “SpaceWire Standard Document ECSS-E-ST-50-
12C,” The Netherlands, July 30, 2008.

5. ESA Publications Division, “Remote Memory Access Protocol (RMAP) ECSS-S-
ST-50-52C,” The Netherlands, February 2010.

83

Wednesday 9 November

84

Missions and Applications 1

85

SOLAR PROBE PLUS AND SPACEWIRE: VIRTUAL SPACECRAFT BUS

Session: SpaceWire Missions and Applications
Long Paper

Alan A. Mick, Joseph R. Hennawy, Christopher J. Krupiarz, Horace Malcom

The Johns Hopkins University Applied Physics Laboratory

11100 Johns Hopkins Road, Laurel, MD 20143

E-mail: Alan.Mick@jhuapl.edu Joseph.Hennawy@jhuapl.edu,

Christopher.Krupiarz@jhuapl.edu, Horace.Malcom@jhuapl.edu

ABSTRACT
The Solar Probe Plus (SPP) mission will explore the Sun’s corona, one of the last

unexplored regions of the solar system. The spacecraft will carry a complement of

instruments closer to the Sun than any spacecraft has ever ventured. The mission

concept calls for a minimum perihelion of 9.5 solar radii over an extended campaign

of in-situ and simultaneous remote observations.

To meet the power, mass, fault management and electromagnetic interference

constraints of the mission, the SPP spacecraft architecture uses SpaceWire as the

primary data communication interface. SpaceWire has been widely used for payload

data-handling on more than 30 space missions and includes many desirable features,

such as integrated time code distribution, more than adequate through put, and a

flexible network configuration that supports the Solar Probe avionics architecture.

This paper describes the Solar Probe Plus SpaceWire architecture in detail with a

focus on the development of a transaction protocol and schedule that meets the

deterministic requirements for the Solar Probe Plus avionics control functions.

1 THE SOLAR PROBE PLUS MISSION
The Solar Probe Plus (SPP) mission targets the fundamental processes and dynamics

that characterize the Sun’s corona and outwardly expanding solar wind and energetic

particles. Physics of the corona and inner heliosphere connect the activity of the Sun

to the environment and technological infrastructure of the Earth. For more than 50

years, the questions of why the solar corona is so much hotter than the photosphere,

and how the solar wind is accelerated have puzzled scientists. Remote and global

observations have made dramatic discoveries of the phenomenology but still no

consistent, physics-based, first-principles approach can explain coronal temperature

inversion or solar wind origin. The answers to these questions can only be obtained

through local, in-situ measurements of the solar wind down in the corona.

The SPP mission explores the inner region of the heliosphere in great detail

through in-situ and remote sensing observations of the magnetic field, plasma, and

accelerated particles in that region. SPP travels much closer to the Sun than any other

spacecraft in order to repeatedly obtain in-situ and remotely sensed coronal magnetic

field, plasma and energetic particle observations in the region of the Sun that

generates the solar wind, between a minimum perihelion of 9.5 solar radii (Rs) and at

least out through 55 Rs. The perihelion, over the solar equator, must be within the

corona so that the spacecraft passes through the location where acceleration processes

are theorized to occur. The direct plasma, magnetic field, and energetic particle

observations from SPP will allow testing of and discrimination among the broad range

of theories and models that describe the Sun’s coronal magnetic field, the heating and

86

Alan.Mick@jhuapl.edu
mailto:Joseph.Hennawy@jhuapl.edu
mailto:Christopher.Krupiarz@jhuapl.edu
mailto:Horace.Malcom@jhuapl.edu

acceleration of the solar wind, and the generation, acceleration, and propagation of

energetic particles. By making direct, in-situ measurements of the region where the

solar wind is created and where some of the most hazardous solar energetic particles

are energized, Solar Probe Plus will make fundamental contributions to our ability to

characterize and forecast the dynamics of the heliosphere and its radiation

environment, an environment in which future space explorers will live and work.

The primary science goal of the Solar Probe Plus mission is to determine the

structure and dynamics of the Sun’s coronal magnetic field, understand how the solar

corona and wind are heated and accelerated, and determine what mechanisms

accelerate and transport energetic particles. The SPP mission will achieve this by

identifying and quantifying the basic plasma physical processes at the heart of the

heliosphere. The primary SPP mission science goal defines three overarching science

objectives as follows:

 Trace the flow of energy that heats and accelerates the solar corona and solar wind.

 Determine the structure and dynamics of the plasma and magnetic fields at the

sources of the solar wind.

 Explore mechanisms that accelerate and transport energetic particles.

NASA selected five science investigations to achieve the answers to these long

posed questions. The Fields Experiment (FIELDS) will make direct measurements of

electric and magnetic fields and waves, Poynting flux, absolute plasma density and

electron temperature, spacecraft floating potential and density fluctuations, and radio

emissions. The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation

will count the most abundant particles in the solar wind -- electrons, protons and

helium ions -- and measure their properties such as velocity, density, and temperature.

The Integrated Science Investigation of the Sun (ISIS) makes observations of

energetic electrons, protons and heavy ions that are accelerated to high energies (10s

of keV to ~100 MeV) in the Sun's atmosphere and inner heliosphere, and correlates

them with solar wind and coronal structures. The Wide-field Imager for Solar PRobe

(WISPR) will take images of the solar corona and inner heliosphere. The telescope

will also provide images of the solar wind, shocks and other structures as they

approach and pass the spacecraft. This investigation complements the other

instruments on the spacecraft providing direct measurements by imaging the plasma

the other instruments sample. In addition to the instrument payload, NASA also

selected an Observatory Scientist (OS) investigation - Heliospheric origins with Solar

Probe Plus (HeliOSPP) - to address the SPP science objectives using the SPP system

of measurements. The OS provides theoretical input and independent advice to

maximize the scientific return from the mission.

The observational campaign consists of 24 perihelion passes inside of 35 RS over

~7 years with gradually decreasing perihelia. The very first orbit will bring SPP closer

to the Sun than any other mission has ever been. 19 perihelia will be within 20 RS and

yield 961 hours of observations. The final three perihelia will be at 9.5 RS, within the

region where the crucial acceleration processes are theorized to occur. Over the course

of these observation, Solar Probe Plus will spend a total of 961 hours inside 20 RS,

434 hours inside 15 RS, and 30 hours inside 10 RS. Because of the mission’s timing

towards the end of one solar cycle and the peak of the next, the solar wind will be

sampled in all of its various modalities - slow, fast, variable, transient - as it evolves

with rising solar activity toward an increasingly complex structure.

2 THE SOLAR PROBE PLUS SPACECRAFT
The Solar Probe Plus spacecraft, shown below to the left, is three-axis-stabilized.

Stabilization and attitude control are effected through reaction wheels with thrusters

used for momentum dumping. The most prominent feature is a large, flat, ceramic-

87

coated carbon-carbon shield, the Thermal Protection System (TPS), which is

necessitated by the near Sun environment. At minimum perihelion the solar flux will

be roughly 512 times that which is encountered in Earth orbit. The TPS protects the

instruments and spacecraft from exposure to the flux. The only components that

extend outside the TPS umbra during the solar encounter are the solar arrays, the

FIELDS instrument’s antennas and SWEAP’s Faraday Cup.

The solar arrays stay within the TPS’s penumbra, and thus

are partially protected, while the antennas and the cup are

both fully exposed.

Since the solar arrays are necessarily exposed to a higher

than typical solar flux during encounter, an active cooling

system is required. This cooling system consists of water

cooled solar array substrates and a mechanical pump loop

which transfers heat from the solar arrays to radiators located

under the TPS. Active cooling requires mass and consumes

power, and thus the arrays must be minimally exposed,

which in turn limits power.

3 SOLAR PROBE AVIONICS
The Solar Probe Plus avionics design is driven by several critical factors: low mass,

low power and the need to keep the thermal protection shield pointed towards the sun,

particularly during perihelion science operations. During this period solar pressure

torque (due to the offset between the center of pressure and center of mass) tends to

offpoint the TPS from the sun, which would expose the spacecraft to the full solar

flux. Attitude control is very important and must be maintained and reestablished

quickly even through a severe fault that would induce a processor reset or permanent

failure.

Figure 1: Solar Probe Plus Avionics and SpaceWire Network [4]

For this reason, a hot spare processor was desired and a three processor

configuration was chosen: a Prime, a Hot Spare, and a Warm Spare. This

configuration is shown in figure 1, labeled the Avionics Redundant Processor Module.

88

One of the three single board computers (SBC) serves as the primary C&DH and

G&C processor (the SBC-Prime) and the other two serve as the hot and warm spares.

The SBC-Prime drives one of two redundant Avionics strings consisting of a

SpaceWire router, a spacecraft interface card (SCIF), a solid state recorder (SSR), and

a thruster / actuator control card (TAC). The other string is normally powered off. The

transponders (part of the Telecommunications subsystem) and the SSRs are cross

strapped so that either one can be reached from the other side. This allows these two

components to be powered on and used regardless of which redundant string is being

used. The two strings are labeled Avionics Redundant Electronics Module (Side-A

and Side-B) in figure 1.

Although a data interconnect such as 1553 could have been used to link the SBCs

and the two strings, SpaceWire was chosen instead for two reasons. First,

measurements made on previous 1553 bus implementations have detected emissions

that would interfere with SPP science magnetometer measurements. Second, 1553

does not have adequate bandwidth for all data transfers; additional point-to-point

serial links would have been required to off load the 1553 bus for SPP.

4 SPACEWIRE-D
Because of low tolerance for magnetic contamination SpaceWire was selected as the

primary data interface for the major spacecraft components. SpaceWire has been used

on more than 30 missions for payload data handling [3], and at about 4 Mbps, the

over-all data throughput requirements for Solar Probe are not very demanding. A

relatively low signaling rate of 20 to 30 MHz was deemed sufficient to handle this

volume and desirable in order to simplify FPGA development. However, SpaceWire

does not directly address the deterministic delivery of information within responsive

time constraints for avionics control applications. As the principle avionics data

interconnect, this became the driving requirement for the avionics and data handling

network. In order to meet this requirement SpaceWire-D, a deterministic data

handling protocol for SpaceWire (D for Deterministic), was considered.

In their paper SpaceWire-D, Parkes, et. al. provide a succinct summary of the

characteristics that make deterministic data delivery over SpaceWire problematic [3].

SpaceWire networks employ an asynchronous data delivery protocol with varying

packet sizes and worm-hole routing. With worm-hole routing, the leading bytes of a

SpaceWire packet determines its route through the network using path or logical

addressing. As a packet arrives and the addressing information is determined by the

router, the packet is switched to the output port right away. The size of the packet is

unknown until the end of packet is signaled at the end of the data stream. Storing and

forwarding of packets is not a feature of SpaceWire routers. While this reduces the

amount of buffer memory required for a router and simplifies its implementation, if an

output port is already in use by another packet, the incoming packet is left distributed

across the network path from the router back to the source for an indeterminate

amount of time.

On the receiving end, a node may not be ready to accept the full packet and, once

again, the packet may be blocked along its full path and prevent the use of network

resources efficiently and deterministically. In order to ensure deterministic data

delivery and throughput, SpaceWire traffic must be carefully controlled and the basic,

standard SpaceWire implementation does not allow for this to be easily done.

SpaceWire-D is a proposed protocol standard for deterministic data delivery over

SpaceWire being developed under the auspices of the European Space Agency. It is a

higher level protocol layered over standard SpaceWire utilizing the Remote Memory

Access Protocol (RMAP) and the SpaceWire time code distribution facility. Since it

makes use only of standard SpaceWire elements without requiring any changes at

89

lower levels, it can be implemented as part of any standard SpaceWire network using

any standard SpaceWire components.

To control the network interactions and prevent conflicting use of network

resources, SpaceWire-D utilizes the technique of time-division multiplexing.

SpaceWire’s time code signaling capability is used to synchronize network

interactions by establishing a 64 time-slot schedule. In the simplest case, within each

slot one specific node (the initiator) is given full control of the network, and all other

nodes remain passive. The initiator uses the RMAP protocol to initiate and complete

one read or one write to the target. Since there are no conflicting transactions on the

network, any arbitrary node may be the target.

A more complex and efficient schedule may be developed by allowing multiple

initiators within a particular time slot as long as they confine interactions to a subset

of targets that cannot create conflicting transactions on the network. It is also possible

to allow for transactions that span more than one time slot, as long as the schedule can

be accommodated without conflicts.

The SpaceWire-D protocol provides a robust, general purpose means of assuring

deterministic quality of service within a standard SpaceWire network. However, in

considering it for the Solar Probe Plus spacecraft, several concerns were noted. The

protocol requires strict partitioning of data into uniform segments to keep each

transfer within a relatively short and uniform time division. The current standard

recommends a maximum of 256 bytes. This would require the development of a

segmentation service over the SpaceWire-D level to partition and reassemble

application data. In some cases, such as FPGA based devices that utilize ―memory

mapped‖ control registers, this may prove problematic. The recommended size of the

data units would lead to a relatively short time slot duration which would result in

interrupt frequencies on the order of tens of thousands per second. This was

considered too burdensome. Because of these considerations, it was decided to use the

basic principles underlying the SpaceWire-D protocol, but to use a less restrictive and

more application specific strategy that would mitigate the concerns.

5 SOLAR PROBE PLUS ADAPTATION OF SPACEWIRE-D CONCEPTS
The basic mechanisms underlying the SpaceWire-D protocol were adapted for use on

the Solar Probe Plus spacecraft in order to provide deterministic data delivery for the

avionics control applications along with sufficient throughput for data handling

applications. The SpaceWire time code distribution function is used to synchronize

data transfers over the network and the RMAP protocol is employed to allow explicit

control over the transaction sequences. Transactions are sequenced in order to

prioritize the critical avionics control functions. Relatively small, uniform transaction

sizes are used, but application transactions generally are not segmented. A simple

schedule is used with only one initiator, which has complete control over the entire

network. While some minor exceptions are allowed to these practices, adoption of

them allows the spacecraft transactions to proceed deterministically and responsively

without conflict.

 Figure 2: 50 Hz / 20 ms Control Frame Transaction Divisions

90

Transactions are divided into several classes: 50 Hz guidance and control, 1 Hz

command and telemetry, writing to mass storage (both solid state recorders A and B),

reading from mass storage (either solid state recorder A or B), and sending telemetry

frames to the transponder. These transaction classes are illustrated in figure 2, which

shows how they are distributed within a 50 Hz / 20 ms control frame.

Each class is roughly the equivalent of the ―slots‖ or ―channels‖ employed by

SpaceWire-D. Each has a characteristic target or set of targets. There are, however,

significant differences. The SpaceWire time codes are used to generate 50 Hz

interrupts at 20 ms intervals – subdividing the 50 Hz interval is not done. This keeps

the interrupt loading low. The divisions within the 50 Hz frame are maintained

sequentially, but are not allocated to rigorous time divisions and do not have to

conform to rigorous size constraints. Actual execution of a transaction may be

optional, such as the case when there is nothing to write to the SSR. In this case, the

schedule advances to the next transaction without delay – thus sending a telemetry

frame to the transponder, if needed, may ―replace‖ reading and writing to the solid

state recorders when there is no need for storage operations.

The ability to flexibly advance the transaction schedule within the 50 Hz frame is

possible because, unlike the more general SpaceWire-D, there is one and only one

transaction initiator on the entire network, the primary single board computer (SBC-P)

running the C&DH application. SpaceWire-D (when adhering to a simple schedule)

assigns each slot to any one of a number of transaction initiators and the assigned

initiator may then communicate with any target on the network. This allows, within

the constraints of the schedule, direct transfers between any two nodes on the

network. But because the SBC-P is the only initiator in the SPP configuration, all

transactions must pass through the SBC-P. Direct node-to-node transactions that do

not pass through the SBC-P are therefore not allowed; they must be implemented as

two discrete transactions with the SBC-P serving as the intermediary. This restriction

did not create any problems for SPP, since virtually all transactions pass through the

SBC-P as a matter of course.

In a sense, this makes the SBC-P the ―bus controller‖ of a ―virtual spacecraft bus‖

implemented over SpaceWire. Only the ―bus controller‖ needs to have explicit

knowledge of the schedule. All other nodes simply respond to transactions initiated by

the ―bus controller‖. Since the ―bus controller‖ can skip transactions that are optional

under various operating modes, only one schedule is needed regardless of current

activity. It also simplifies the implementation by eliminating the need to distribute the

schedule across several components.

As with SpaceWire-D, the RMAP protocol is generally used for transfers over the

SpaceWire network. This has several advantages. RMAP is a robust and reliable

protocol that can be implemented in hardware. Several implementations are

commercially available. It provides positive verification of successful transaction

completion. Three basic operations are available: read, write and read-modify-write.

The read and write operations allow the ―bus controller‖ to initiate transfers in either

direction. The read-modify-write operation, which is useful for bit operations on

control registers, is generally not used.

The SPP network must accommodate a range of devices, both with and without

processors. In order to maintain a uniform approach and implementation across these

devices, a simple ―common buffer transfer‖ method has been adopted. This consists

of two attributes, a buffer size and the buffer itself. For the write operation the

initiator knows the buffer size a priori and transmission of the size is intrinsic to the

RMAP protocol. When needed, the size may be included as the first word in the

transmitted information, so that it is available to the receiver without any modification

91

or special interaction with the RMAP protocol. For the read operation, the size of the

information to be read is not known a priori, and thus two read operations are

performed, one to obtain the size of the buffer and the other for the buffer itself. Since

these conventions are fairly simple, ad hoc modifications for particular transactions

are feasible, for instance, when dealing with a more complicated mass storage device

or a transponder. The read and the write buffers are completely separate memory

areas; thus for any one component, two buffers are necessary, one for reading and one

for writing.

Four general categories of transactions have been established each consisting of

one or more common buffer transfers. These are the 50 Hz G&C transactions, the 1

Hz command and telemetry transactions, the SSR read and write transactions, and the

transponder telemetry frame transactions.

The guidance and control (G&C) avionics application has priority over all other

applications’ transactions. The G&C processing uses a 50 Hz control loop schedule

which determined the SPP 20 ms processing cycle. At the beginning of each 20 ms

―frame,‖ sensor data is transferred over the space wire network and is used to

determine the spacecraft attitude and correct for any deviation by issuing a command

to actuate the reaction wheels or thrusters. All of the available sensor data must be

collected from the SCIF component within four milliseconds at the beginning of the

20 ms control frame and the actuator commands must be received by the TAC 1 ms

before the end of the frame. This leaves 15 ms available for the calculation of the

actuator command. Our current best estimate is that transfer of the G&C data takes

less than 2 ms and G&C processing takes 7.5 ms, which results in a very comfortable

margin.

The 1 Hz transactions transfer spacecraft status (such as current mission elapsed

time) and commands to specific spacecraft components and receive from each

component engineering telemetry. Thus the SBC-P ―bus controller‖ visits the read and

the write buffers for each active component in each second, once to write status and

commands and once to read telemetry. There may be more than one component

resident on a particular SpaceWire node; in this case separate sets of transfer buffers

are used for each component.

There are approximately 25 separate, active components on the spacecraft; since

two 1 Hz operations are performed for each, this gives about 50 transactions, which

fits well with the 50 Hz -―bus schedule‖ established for G&C performance. However,

several of these transactions, specifically those that return science data from the

instruments, are much larger than the others. In order to keep the 1 Hz transaction slot

more or less uniform in duration from one frame to the next, the longer transactions

have been arbitrarily segmented and the shorter transactions have been combined to

roughly balance the longer segments. Thus each of the 1 Hz transaction slots may

optionally contain several transactions, currently one to three per slot. As the

telemetry from each component becomes more defined, this schedule will be altered

to keep the 1 Hz transactions balanced across the 50 frames.

The frequency of the SSR read and write transactions is dependent on the

circumstance and operational mode of the spacecraft. As science and engineering data

is received by the SBC-P from the instruments and spacecraft components, it is

queued for transfer to the SSR. When enough data has accumulated, it is written

redundantly to both SSRs. In a like manner, during downlink a queue of telemetry

frames is maintained by the SBC-P, which are sent to the transponder. As this queue

is depleted, more data is read from one of the two redundant SSRs and used to format

more telemetry frames for transfer. Since the rate at which science and telemetry is

collected, and the rate at which data is downlinked are variable, the rate at which these

92

transactions occur is also variable. However, these rates never exceed the capacity

provided by performing up to two SSR writes and one SSR read per 50 Hz frame.

During downlink, the SBC-P is responsible for sending telemetry frames to the

transponder at a rate sufficient to keep up with the (variable) transmission rate. At the

highest transmission rate (1 Mbps) this requires sending an average of a little over two

telemetry frames per 50 Hz division. The schedule allows up to four telemetry frames

to be sent per division. Typically, two to three frames are sent per division, at the

highest rate.

Because the transponder’s transmission rate may vary independently and without

the knowledge of the SBC-P, the transponder sends a frame request message to the

SBC-P asynchronously to the transaction schedule. This is the only exception to the

rule that the SBC-P initiates all transfers. In order to keep frame requests relatively

infrequent, several frames are requested at once, based on a low-water mark for the

number of frames remaining to be transmitted. The low water mark is three frames

remaining and the number of frames requested is four, giving a seven frame circular

buffer in the transponder. At the highest transmission rate, this allows a frame request

to be easily satisfied within the 50 Hz division following its receipt. The

asynchronous request allows dynamically adjusted transmission rates to be easily

accommodated with loose coupling between the SBC-P ―bus controller‖ and the

transponder.

6 DISCRETE EVENT MODEL

In order to verify and help design the ―virtual bus schedule‖

for the network, a discrete event model, displayed to the left,

was developed using the OmNet++ open-source simulator. A

router component was created that models the characteristic

SpaceWire worm-hole routing. SpaceWire and RMAP

protocol overheads and scheduling inefficiencies are

accounted for dynamically, with more realistic results than

could be obtained through a static, analytical process.

Various operational modes (e.g., data collection during

encounter or downlinking science from the mass storage)

may be run, and can be combined and shuffled into various

―what if‖ scenarios. Link rates, data rates and response times

may be altered to perform margin analysis and optimization. Iterative modeling

helped to develop and validate the initial detailed transaction schedule, and will aid in

further refining it as the Solar Probe Plus design progresses and more definitive

estimates of telemetry and performance are developed. The model will be useful for

designing and refining system and integration tests, and will help us understand and

predict spacecraft behavior in advance.

7 CONCLUSION
The Solar Probe Plus mission utilizes SpaceWire as its principle on-board data

transfer interconnect. While many missions have used SpaceWire for payload data-

handling, Solar Probe Plus also uses it for its avionics applications, in which timely,

deterministic data delivery is important. Using the basic SpaceWire-D concepts of

time divisions based on the SpaceWire time codes and using RMAP as a transport

layer protocol, a ―virtual spacecraft bus‖ was developed that allowed the primary

C&DH processor to serve as the ―bus controller‖ and schedule transactions in order to

achieve the required response times and throughput in a deterministic manner. A

discrete event model that realistically simulates the protocols and the transaction

schedule was used to validate and refine the concept, and will be used as the design

and development work progresses.

93

8 REFERENCES AND WORKS CITED
[1] Solar Probe+: Report of the Science and Technology Definition Team,

NASA/TM—2008–214161, National Aeronautics and Space Administration,

Goddard Space Flight Center, Greenbelt, MD (2008).

http://solarprobe.gsfc.nasa.gov/SolarProbe+Web.pdf

[2] Solar Probe+ Mission Engineering Study Report, NNN06AA01C, National

Aeronautics and Space Administration, Heliophysics Division (2008).

http://lws.gsfc.nasa.gov/documents/solar_probe/Solar_Probe+_Mission_Engin

eering_Study_Report.pdf

[3] S. Parkes, A. Ferrer, S. Mills and A. Mason, SpaceWire-D: Deterministic Data

Delivery with SpaceWire, International SpaceWire Conference, St Petersburg,

Russia, June 2010. http://2010.spacewire-

conference.org/proceedings/Papers/Standardisation/Parkes1.pdf

[4] D. Rodriguez and R. Nichols, Solar Probe Plus Mission Definition Review:

Avionics, October 4, 2011.

94

http://solarprobe.gsfc.nasa.gov/SolarProbe+Web.pdf
http://lws.gsfc.nasa.gov/documents/solar_probe/Solar_Probe+_Mission_Engineering_Study_Report.pdf
http://lws.gsfc.nasa.gov/documents/solar_probe/Solar_Probe+_Mission_Engineering_Study_Report.pdf
http://2010.spacewire-conference.org/proceedings/Papers/Standardisation/Parkes1.pdf
http://2010.spacewire-conference.org/proceedings/Papers/Standardisation/Parkes1.pdf

LA-UR- 11-04814

Approved for public release;
distribution is unlimited.

Title: SpaceWire in the Joint Architecture Standard

Author(s): Leonard Burczyk, Justin W. Enderle, Daniel Gal-
legos, Paul S. Graham, Richard D. Hunt, Jef-
frey L. Kalb, David S. Lee, Jacob E. Leemaster,
John M. Michel, and Justin L. Tripp

Intended for: International SpaceWire Conference 2011

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security,
LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By
acceptance of this article, the publisher recognizes that the U.S. Government retains a non-exclusive, royalty-free license to publish
or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos
National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution,
however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

95

SPACEWIRE IN THE JOINT ARCHITECTURE STANDARD

Session: SpaceWire missions and applications

Long Paper

Leonard Burczyk
1
, Justin W. Enderle

2
, Daniel Gallegos

2
, Paul S. Graham

1
,

Richard D. Hunt
2
, Jeffrey L. Kalb

2
, David S. Lee

2
, Jacob E. Leemaster

2
,

John M. Michel
1
, and Justin L. Tripp

1

1
Los Alamos National Laboratory, Los Alamos NM 87545

2
Sandia National Laboratories, Albuquerque, NM 87185

E-mail: rdhunt@sandia.gov, jtripp@lanl.gov

ABSTRACT
The Joint Architecture Standard (JAS) is a joint project between Los Alamos National

Laboratory and Sandia National Laboratories to provide a common processing and

communication infrastructure upon which to more quickly develop payload sensing

and processing capabilities. JAS offers a flexible, scalable, and reliable solution to

space-based processing for our customer’s applications. This standardized

architecture is a modular design that allows for rapid prototyping and provides faster

system integration and testing that reduces development and integration time and

costs. The adaptable architecture meets a wide range of performance requirements

including: throughput speeds; reliability; Size, Weight and Power (SWaP) reduction;

and mechanical and electrical interfaces. The architecture also allows for evolving

design changes while minimizing impacts to established interfaces.

The primary capability enabling technologies in JAS are packet-switched network

connectivity and reconfigurable computing. The fundamental technology of packet-

switched networks in JAS are serial interconnects. Because JAS has a broad range of

data rate requirements and has the added challenge of providing reliable command,

control and data handling in a space environment, this architecture has employed two

network tiers connected using Consultative Committee for Space Data Systems

(CCSDS) and European Cooperation for Space Standardization (ECSS)

communication protocol standards. One of these tiers is driven by high performance

gigabit-per-second class communication for high bandwidth sensors and data

processing. The other tier is driven by reliable command and control that can also

support moderate data transfer rates. SpaceWire is an excellent candidate and is the

serial interconnect of choice for the latter tier.

BACKGROUND
The JAS hardware architecture defines several standard hardware nodes connected

through a minimal number of serial and discrete interconnects. Each of these nodes

provides a fundamental capability such that a set of them can be combined to form the

basis of a payload data processing system.

96

mailto:rdhunt@sandia.gov

The JAS node types are

shown in Figure 1. The

Configuration and Host

Interface Node (CH) provides

the interface between the

payload and Host Platform.

This node contains a

radiation-hardened processor

to allow it to reliably boot and

operate when power is

applied to the payload. It

runs the application software

used for configuring,

controlling and monitoring

the payload and provides the

interfaces to connect the

payload to the ground system.

The Non-volatile Mass

Storage Node (NV) contains

non-volatile memory for

storing applications and data.

The SDRAM Mass Memory

Node (SD) contains a large

amount of fast and dense memory. It provides a temporary storage capability for

processing nodes to manipulate payload data as well as being a communication buffer

between nodes. The Reconfigurable Processing Node (RP) and Reconfigurable

Sensor Interface Node (RS) contain a large reconfigurable logic device, such as the

Xilinx Virtex 5, that can be configured to run hardware applications or a soft-core

CPU that runs software applications. They are general purpose, high performance

processing nodes intended to process payload data. The network interface node (NI)

provides network connectivity for slower sensors and lower performance critical

processing. The RS and NI nodes contain an I/O interface that allows the

development of program-specific interface boards to connect to payload hardware

devices. The intent of these nodes is to provide an interface to sensors and perform

any necessary pre-processing of their data prior to passing it to other RP, CH or NI

nodes for final processing and downlink.

The number and type of nodes to use in a JAS based payload are determined by

system requirements. Complex custom backplanes are eliminated by having a

minimal number of physical interconnects between nodes which allows this node-

based architecture to scale to most applications. SpaceWire can be used for routing

payload command and state-of-health data as well as moderate bandwidth mission

data. For high bandwidth requirements, additional networks based on Peripheral

Component Interconnect Express (PCIe), Serial RapidIO (SRIO) or custom fast serial

can be used.

Each JAS node contains a field-programmable gate array (FPGA) that provides a set

of common functions to the node. This FPGA is referred to as the System Monitoring

and Communications (SMAC) device. As shown in Figure 2, the SMAC provides a

standard set of physical interfaces for communicating with devices both on and off the

Figure 1: JAS Node Architecture

97

node. It includes a scalable

SpaceWire network router

with at least 5 ports and a

suite of serial and parallel

I/O interfaces.

The SMAC runs a suite of

firmware intellectual prop-

erty (IP) that provides a

standard set of services.

SpaceWire communication

is provided by router and

endpoint cores designed by

NASA Goddard. A Remote

Memory Access Protocol

(RMAP) core provides a

common interface to read

and write to memory-mapped peripherals connected to the SMAC. Standardizing on

RMAP as a communication protocol reduces the number of protocols that must be

supported to communicate with hardware peripherals connected to JAS-based

payloads. In addition to the I/O interfaces, RMAP is also used to communicate with

other standard devices on JAS nodes such as Point-of-Load (POL) power converters

and EEPROM storage devices containing Intelligent Platform Management Interface

(IPMI)-based node identification records. This storage format defines items like node

capabilities, product and firmware versions, and a unique device identifier. By

accessing this information over the SpaceWire network using RMAP, the

configuration host node can gather detailed information about each node using a

standard protocol.

The SMAC may contain additional features as well. A SpaceWire broadcast

capability can be used by any endpoint to deliver a single SpaceWire message to a

variable number of other nodes in an efficient manner. This broadcast capability can

be used in conjunction with SpaceWire time-codes to achieve coarse-grained time

synchronization between nodes without the use of discrete signals. RMAP-accessible

SelectMAP and JTAG interfaces provide remote configuration and debugging of

Xilinx FPGAs over SpaceWire. This library of services will continue to grow as JAS

evolves and the SMAC is a versatile and critical component in standardizing the JAS

architecture.

JAS COMMUNICATION
PROTOCOLS
There are a number of

communication proto-

cols being used on a

JAS Spacewire net-

work. Table 1 shows a

list of these protocols

and their Protocol ID

(PID) values. The

RMAP and RDDP

Figure 2: System Monitor and Communications Device

Protocol Name Value

Remote Memory Access Protocol (RMAP) 1

Reliable Data Delivery Protocol (RDDP) 238

JAS Packet Protocol (JPP) 240

Goddard Memory Access Protocol (GMAP) 241

JAS RDDP (JRDDP) 242

Time Protocol 243

Broadcast 245

Broadcast 246

Table 1: SpaceWire Network Protocols

98

protocols are being used from the defined set of ECSS SpaceWire standard protocols

[3]. The others were developed for JAS and assigned values in the user-defined range.

Software applications built on JAS will use a service oriented architecture based on

the CCSDS Spacecraft Onboard Interface Services (SOIS) standard [4]. This standard

specifies a layered architecture for communicating with devices and applications over

serial data links. A representation of the CCSDS SOIS architecture showing the JAS

data links and protocols is shown in Figure 3. Services can be implemented as

hardware (FPGAs) or as software based on the needs of the application.

SpaceWire is used by JAS for payload command and control as well as low-to-

moderate rate mission data routing. Applications will use one of three fundamental

communication protocols for sending data over SpaceWire: the Remote Memory

Access Protocol (RMAP); the JAS Reliable Data Delivery Protocol (JRDDP); or the

JAS Packet Protocol (JPP). Other SpaceWire protocols are used for specific JAS

functions such as router configuration or broadcasting time between the nodes.

RMAP is used to access remote memory based devices across a SpaceWire data link.

This protocol is implements the standard managed by the ECSS committee [5]. The

protocol itself supports three primary operations: read, write and read-modify-write.

While this is not a reliable delivery protocol in that it will not retransmit the

commands if there is an error, it does support the ability to notify the sender that the

operation was successful. It has the capability of supporting write operations that both

verify the data prior to writing it as well as acknowledge that the data was written.

The JAS Reliable Data Delivery Protocol (JRDDP) is a reliable packet transmission

protocol used for guaranteed data delivery between two applications over a

SpaceWire data link. It is based on the RDDP protocol created by NASA for the

GOES-R program and has been modified to make it more flexible so it can meet the

Application
Layer

Application
Support Layer CMD & Data

Acquisition
Services

C
om

m
unication M

anagem
ent

Subnetwork
Layer

Transfer
Layer

Network Protocol

Time
Access
Service

File &
Packet Store

Services

Message
Transfer
Service

Device
Enumeration

Service

Mission
Specific

Applications

JAS Packet
Service

Memory
Access
Service

Synchronization
Service

Device
Discovery
Service

Test
Service

Transport Protocol

R
M

A
P

JR
D

D
P

SpaceWire Ethernet

S
oc

ke
t

Rapid I/O

R
ap

id
 I/

O

JP
P

G
M

AP

Ti
m

e

B
ro

ad
ca

st

Figure 3: CCSDS SOIS with JAS Protocols

99

needs of JAS payloads [6]. JRDDP consists of essentially two parts, a sender and a

receiver. The sender accepts data from a user application, segments the data into

smaller pieces in accordance with user-defined Maximum Transmission Unit (MTU)

of SpaceWire, packetizes it for transmission, and then sends it over the data link.

Transmission includes a closed-loop acknowledgement packet that is returned to the

sender to confirm correct delivery of the packet to the remote application. The

receiver accepts SpaceWire packets read from the network and reassembles them to

create the original data message. Once reassembled, the data is delivered to the

receiving application in the identical form as originally sent. If any errors occur in

this transmission, timers will expire on the transmission side, and the sender will try

and resend the data for a user-definable number of times.

The JAS Packet Protocol (JPP) provides the capability to send a JAS data packet over

a SpaceWire data link. It is a best-effort protocol that provides little error checking

and no retransmission capabilities. As such, JPP requires little processing overhead

which also makes it easy to implement in hardware or for testing purposes. JPP

supports sending a single JAS packet within a single SpaceWire packet. The

maximum JAS packet size is 64Kbytes. Since JAS packets contain a Cyclic

Redundancy Check (CRC) as part of their definition, this CRC can be used to check

the integrity of the JAS packet by receiving applications. The CRC combined with a

packet sequence counter, provide the tools necessary for reliable data transfer. In the

future, if JAS continues to use this protocol, a segmentation capability will be added

for the case that a maximum SpaceWire MTU size is enforced.

The Goddard Memory Access Protocol (GMAP) is used specifically to configure the

Goddard SpaceWire routers, and the GMAP packet format expands on the SpaceWire

defined packet. There are three GMAP functions: GMAP Write, GMAP Read, and

GMAP Read Response. When sending a GMAP Read request to a Goddard router,

the GMAP protocol inserts a variable length reply address field into the packet which

the router copies byte-for-byte to the address field of the Read Response packet. The

router will also insert a SpaceWire protocol ID into the response packet as well as the

final return address byte. The return address and protocol ID allow the Read

Response packet to be routed to the node that originated the read request and

processed by GMAP protocol service. GMAP writes occur without any response

from the router so there are no additional capabilities in the router to support this

function.

The Time Protocol is used to send an absolute time message from one node to another

within a payload. Typically, a single node will maintain the reference time and

broadcast it out to all other nodes. This protocol is intended to be used along with

SpaceWire timecode packets which are used as the low-latency epoch for telling the

receiving nodes that the previously delivered time is valid. This protocol is also

intended to be used with the broadcast protocol to enable a coarse-grained time

distribution solution for payloads. Discrete hardware signals between nodes can also

be used to implement a time distribution solution if more precise timing is required.

The Broadcast Protocol provides the capability for a single node to send a SpaceWire

packet to any number of nodes in the system. It uses two different SpaceWire

protocol IDs to accomplish this. The combination of the two packet types handles the

broadcasting of the packet to all SpaceWire routers and endpoints while eliminating

any duplicate deliveries.

100

JAS provides standard computing and data services for a wide range of sensor

systems from small, simple networks to large, complex networks consisting of dozens

of nodes. To support this flexibility, the network is divided into subnets at each router

and a two-byte SpaceWire regional address is utilized. The first address byte delivers

a packet to a specific router, and the second byte delivers the packet to a specific

endpoint or application attached to that router. By knowing the topology of the

network, routing tables can be established which will delete the first regional address

byte from the SpaceWire packets intended for its neighbors, leaving only the

application logical address when the packet reaches the intended router. This regional

addressing scheme allows remote nodes to communicate with all other nodes using

only standard SpaceWire routing, but without the need to assign separate logical

addresses for each unique endpoint, which would quickly overrun the available

logical address space.

To establish the topology and routing tables, JAS implements two options. The first

option is a manual process and requires a priori knowledge of the network. Details of

the topology, which includes the physical addressing paths to each router, and the

individual routing tables, can be uplinked to the CH node. Using physical addressing

along with either the GMAP or RMAP protocol, the CH node loads all the routing

tables. The second option uses a network discovery algorithm which, by using

physical addressing and polling each port of a router, establishes the topology. Then,

a routing algorithm establishes the routing tables. This auto-discovery method allows

for a quick way to establish the SpaceWire network as nodes are added or deleted

giving the system a level of plug-and-play capability.

JAS DATA FORMATS
The JAS architecture is designed to be a collection of nodes interconnected through a

peer-to-peer network topology based on SpaceWire. Transferring data across the

network requires a packetized data format. A logical choice was to use a data format

based on the CCSDS Space Packet Protocol Standard [1] and ECSS Packet Utilization

Standard (PUS) [2]. A combination of these standards were used to create the JAS

command and telemetry packet formats (JAS Packets) shown in Figure 4 and Figure

5. The structure of JAS packets are identical to those defined for a CCSDS/PUS

packet with the

optional fields defined

or additional fields

added as needed by

JAS. The source and

destination Application

Identifiers (APIDs) are

used to describe the

generating and

receiving entities for

the packet. The

Transaction_ID can be

used as a sequence

counter by applications

that wish to maintain a

list of outstanding

Figure 4: JAS Command Packet

101

command requests in

which a telemetry

response is expected.

The last two important

fields are the Service

Type and Service

Subtype fields. These

are used to identify the

packet data contents

and follow the services

that are described in

the PUS specification.

The only other

modification to the

standards was to

replace the PUS packet

version number with

the JAS packet version number in the secondary header. We needed a method to

track changes to the JAS packet format and we had no intentions of changing it even

if there are future changes to the PUS standard.

JAS SERVICES
Using JAS packets as the data format for communicating between applications across

a SpaceWire network, a set of services were defined to identify the data contents and

format. The JAS packet services are based on the PUS service concept. There are a

set of standard services described within PUS and these can be used if appropriate but

they are targeted primarily for communication between the payload and ground

system. A set of additional on-board services is needed for communication between

payload applications. Table 2 shows a subset of these additional services, defined for

JAS, along with a brief description of each. The service numbers were chosen based

on the user-definable range expressed within the PUS specification. Within each

service, subtypes were also defined as needed. For example, Table 3 shows two

service subtypes defined for the File Access Service. These subtypes correspond to a

command packet for requesting the contents of a remote file system and the associated

telemetry packet that contains the

response.

JAS services provide a

straightforward interface to

develop applications and provide

for a set of standard services as

well as the capability to create sets

of mission specific services. At

the current stage of JAS

development, these services are

still evolving as the functional

aspects of the nodes evolve. The

intent is that there will be fixed set

of services targeted to JAS

Figure 5: JAS Telemetry Packet

Service

Number
Description

128 Device Access Service

129 File Access Service

130 Platform Management Service

131 Time Management Service

132 Sensor X Service

133 Sensor Y Service

134 Test Service

Table 2: JAS Packet Services

102

common functions, such as the file system service, and there will be a reusable set of

services for program-specific applications.

CONCLUSION
To date, networks ranging from two standalone nodes, a configuration host node and a

network interface node, to a network of a dozen nodes including multiple

reconfigurable processing nodes in a VPX chassis have been demonstrated. Nodes

from both Los Alamos and Sandia have been combined and interconnected with

SpaceWire for the command and control network. SpaceWire nodes can both be

directed from either simulated ground control or networked CH nodes. The rich

protocol support and extensibility has made SpaceWire an excellent candidate for

reliable communication and is the serial interconnect of choice for reliable command

and control at moderate data transfer rates.

REFERENCES
1. The Consultative Committee for Space Data Systems (CCSDS), “Space Packet

Protocol”, CCSDS 133.0-B-1, September 2003

2. European Cooperation for Space Standardization (ECSS), “Ground Systems and

Operations – Telemetry and Telecommand Packet Utilisation”, ECSS-70-41A, 30

January 2003

3. European Cooperation for Space Standardization (ECSS), “SpaceWire Protocols”,

ECSS-E-ST-50-11C Draft 1.3, July 2008

4. The Consultative Committee for Space Data Systems (CCSDS), “Spacecraft

Onboard Interface Services”, CCSDS 850.0-G-1.1, May 2010

5. European Cooperation for Space Standardization (ECSS), “SpaceWire – Remote

Memory Access Protocol”, ECSS-E-ST-50-52C, February 2010

6. Sandia National Laboratories, “Joint Architecture Standard Reliable Data Delivery

Protocol”, JRDDP-001 Version D

7. Sandia National Laboratories, “Joint Architecture Standard Communication

Services Specification”, JAS-CSS-00001 Version C Draft 4

File Access Service

Service

Type

Service

Subtype

Subtype Description Cmd Tlm Service Parameters Data Types and Description

129 1 File System Directory

Listing Request

X File_System_ID File_System_ID is an unsigned integer that identifies the

file system. It is assumed there is only the root directory in

the file systems for JAS so a directory identifier is not

required

129 2 File System Directory

Listing Report

X File_System_ID,

Directory_List

File_System_ID is an unsigned integer that identifies the

file system. Directory_List is a null-terminated string

which is contains a list of each file and attributes. Each

file is a record separated by a '|' (pipe) character and ends

with a '\n' (newline) character. The fields and format of a

single entry would look like

"file_name|size|modification_time|create_time\n".

Table 3: File Service Subtypes

103

IMPLEMENTATION OF THE SOCWIRE PROTOCOL (SOCP) WITHIN THE

DYNAMIC RECONFIGURABLE PROCESSING MODULE

Session: SpaceWire Missions and Applications

Long Paper

Frank Bubenhagen, Holger Michel, Harald Michalik, Björn Fiethe

IDA TU Braunschweig, Hans-Sommer-Str.66, D-38106 Braunschweig, Germany

Björn Osterloh

DSI GmbH, Otto-Lilienthal-Straße 1, 28199 Bremen, Germany

Wayne Sullivan, Alex Wishart

Astrium Ltd, Gunnels Wood Road, Stevenage, Herts, UK SG1 2AS3

Jørgen Ilstad

European Space Agency, ESTEC, Keplerlaan 1, Noordwijk ZH, Netherlands

E-mail: bubenhagen@ida.ing.tu-bs.de

ABSTRACT

Future space missions require high-performance on-board processing capabilities and
a high degree of flexibility. State of the art radiation tolerant SRAM-based FPGAs
with large gate count provide an attractive solution for in-flight dynamic
reconfigurability. With these devices an advanced System-on-Chip (SoC) can be
implemented. However, the system reliability and qualification has to be guaranteed
in the harsh space environment. Previous papers introduced [1] SoCWire as a fault
tolerant high-speed SpaceWire based Network-on-Chip (NoC) solution, and [2] the
Dynamic Reconfigurable Processing Module (DRPM), a hardware platform within
which the SoCWire on-chip communication network is applied. In this paper the new
SoCWire Protocol (SoCP) implementation for such a SoCWire network is presented.
The protocol is inspired by RMAP, but adapted to the requirements for on-chip data
processing chains and considerably simplified to limit resource consumption.

1 INTRODUCTION

Currently, the Dynamic Reconfigurable Processing Module (DRPM), a flexible
processing system which provides full support for in-flight dynamic partial
reconfiguration of hardware, is in development. This work is done under ESA
contract [3] in collaboration with Astrium Limited. For control and monitoring tasks
of such a module a program running on a standard processor is sufficient, since these
tasks imply only a low amount of data and are relatively infrequent, e.g. interpret and
react to telecommands, collect the module status on a regular basis, and provide a
housekeeping report. With a software upload these tasks can also easily be adapted.

104

Quite different is the situation with the huge amounts of data generated by payload
instruments. Since the resolution of sensors providing e.g. image or spectrometer data
has increased rapidly over years and downlink bandwidth is still limited, this data has
to be processed in real-time, which exceeds the processing capabilities of all available
space qualified CPUs. Using FPGAs with dedicated logic to implement specific
hardware processing cores has become common practice in the space business.
Particularly SRAM based FPGAs provide, with their reconfiguration capabilities, new
power and resource efficient ways to implement hardware processing cores. Of course
extra measures against radiation induced single events have to be taken into account
with SRAM based FPGAs, but various mitigation strategies are known to solve this
for specific applications. With several processing cores in a chain a macro processing
pipeline can be created.

Data frames can be passed through these blocks and the functionality of the
processing blocks can be adapted during runtime. For the transmission of the data
frames between the sensor interfaces, the processing blocks and the data memories, a
network-on-chip infrastructure is used which effectively passes the data through the
network. Such a network based approach provides a safe way to isolate a processing
block, which is under reconfiguration, from the rest of the system, which may be still
in operation. In several papers, e.g. [1], we have shown that SoCWire is an effective
and viable solution for this problem. The pure SoCWire network enables the data
transmission between several SoCWire nodes within the on-chip network providing
the lower communication system layers up to packet level. In reconfigurable
applications, further protocol is required to define a set of transactions for the higher
level communication between the different nodes. Since every node in the network
needs a handler for this protocol, its FPGA resource utilization should be minimal to
leave space for the actual processing cores.

2 DYNAMIC RECONFIGURABLE PROCESSING MODULE

Primary objective of the DRPM study is to provide a development environment,
which will demonstrate the feasibility of reconfigurable FPGA technology for flight
programmes. Therefore, the module is primarily equipped with devices and interfaces,
for which space qualified versions are available.

Figure 1 DRPM architecture

105

2.1 GENERAL DRPM ARCHITECTURE

The DRPM architecture shown in Figure 1 is a modular concept and consists of at
least three components: (i) System Controller, (ii) SpaceWire Router and (iii)
Dynamically reconfigurable FPGA (DFPGA) module. The function of the SpaceWire
router is to interconnect all sub modules and provide expandability to additional
DFPGAs or additional DRPMs. With this modular concept processing capacity can
simply be extended by adding further processing modules or hardware redundancy
can simply be achieved by adding additional DFPGAs. The System Controller
controls and supervises the overall DRPM. For these tasks it features a fault-tolerant
LEON based CPU, the SpaceWire RTC ASIC (AT7913E). This CPU already
incorporates SpaceWire based RMAP (Remote Memory Access Protocol) interfaces
for communication with the Spacecraft. Attached to this processor is a high-capacity
non-volatile memory for secure storage of all basic and partial configuration bit files
required for the DFPGA(s).

2.2 DFPGA ARCHITECTURE

The DFPGA (Figure 2) is the actual processing unit within the DRPM architecture.
Therefore it has one or two Reconfigurable FPGAs (RFPGAs) and a Configuration
Controller for overall flow control and managing of the RFPGAs’ configuration. This
configuration management not only has to provide the currently required
configuration bitfiles, but also has to take care of SEU (Single Event Upset)
accumulation within the SRAM based FPGAs and to mitigate these effects. The
Configuration Controller features a LEON3 processor, several low and medium rate
interfaces, interface to a large local reliable data memory, and a data and
configuration interface to the RFPGAs. The data interface to each RFPGA is
implemented with a 16bit SoCWire network interface.

Figure 2 DFPGA architecture

The RFPGA is a module equipped with a reconfigurable Xilinx Virtex 4 FPGA
device, local buffer memory, and high speed interfaces. The dedicated logic of the
Virtex 4 is divided into a small static area and one or several dynamic areas, called

106

Partial Reconfigurable Areas (PRAs), which host the dynamically interchangeable
Partial Reconfigurable Modules (PRMs). A SoCWire switch within the static area
connects to the different PRMs, to the high speed interfaces and to the SoCWire
interface between Configuration Controller and RFPGA.

3 SOCWIRE

Whereas the different subunits of the DRPM architecture are interconnected by a
classical SpaceWire network, the SpaceWire based System-on-Chip Wire (SoCWire)
network architecture is used on the SRAM based FPGA to interconnect several on-
chip processing cores and for interfacing the RFPGAs to the Configuration Controller.
The interconnection to the off-chip SpaceWire network is supported by specific
SpaceWire to SoCWire bridges. SoCWire has been developed as a NoC architecture
which is able to connect PRMs to a host system with the capability to isolate these
PRMs logically and physically from the host system [1], [2]. Unlike ESA’s
SpaceWire standard [4], SoCWire uses a synchronous parallel interface instead of an
asynchronous serial interface since it is intended to work in a synchronous on-chip
environment. Beside the parallel data lines, there are additional lines for a parity bit, a
data control flag and a valid signal. The achievable data rates in the SoCWire network
depend on the application and the available FPGA resources.

A SoCWire link is always a point to point connection of two CODECs with receiver
and transmitter interface. The simplest SoCWire connection consists of two nodes, see
Figure 3(a). SoCWire switches with a configurable number of ports can be
instantiated to create a complete network. To keep the switch small in terms of logic
resources, a simple path addressing scheme and a simple round robin scheduling
algorithm are implemented.

Figure 3 SoCWire network options (a) node to node, and (b) network based on switches

As pointed out in Figure 3(b), the data transfer in a SoCWire network is controlled
and supervised by a host system. Typically the host system consists of a LEON
processor. As a bridge between the AMBA based processor bus and the SoCWire
network, the AHB SoCWire Bridge (AHB2SOCW) was developed [5]. To provide
high data rates with low processor involvement, the AHB master of the bridge is
controlled by two Direct Memory Access (DMA) engines. The bridge supports 16bit
and 32bit SoCWire networks, whereas two 16bit words are combined into one 32bit
word to support the LEON3 native AMBA data width and achieve the highest
performance in combination with the DMA controller.

107

4 SOCWIRE PROTOCOL (SOCP)

Interconnected SoCWire CODECs represent the physical link within a SoCWire
network with protocols defined up to the packet level. With this level data
transmission between two nodes is possible, but a node also has to know how to
interpret the meaning of the received data packets. For our network application a more
generic support by typical transactions is needed, which are defined in SoCP.

4.1 REQUIREMENTS

The typical SoCWire network is shown in Figure 3(b). A processor driven host
system controls and manages the data transfer between the nodes and itself. In a
scientific instrument, for example, one node would be an interface to an image sensor
and the second node would be a processing module providing e.g. some filter
functionality, implemented in dedicated hardware. The image sensor has to know
where in the network the filter is located and that it is allowed to send the acquired
sensor data to the filter module. After the specific data processing by the filter
module, it will send the processed data to the host processor, which will finally buffer
and format the data for transmission via the spacecraft interface to ground.

Since the specific processing nodes are hardware implementations, the protocol
handler has to be implemented in hardware as well. Furthermore, since every node
requires its own protocol handler instantiation, also the logic resources for it are
required multiple times. Therefore, the hardware protocol handler’s resource usage
should be as minimal as possible to leave space for the actual PRMs.

To support this requirement the following limitations and constraints apply to the
SoCP implementation: (i) the number of switches in a network path is limited to three,
(ii) port 0 of a switch must be the route to the host system, (iii) data width of the
SoCWire network is either 16 or 32bit and (iv) the maximum number of ports in a
SoCWire switch is limited to 16.

4.2 IMPLEMENTATION

The SoCP handler is placed between SoCWire CODEC and processing core. These
three units form a single node in a SoCWire network and are realized within the
DRPM context as PRMs (Figure 4). SoCP has to reply to requests, supply the
processing core with data, and provide registers to set and read parameters from the
processing core. The command and reply format is inspired by the Remote Memory
Access Protocol (RMAP) for SpaceWire networks [6]. Like RMAP, SoCP is used to
configure a network and to control and supervise nodes. But whereas RMAP is also
used for remote memory accesses to SpaceWire nodes, the processing nodes within a
SoCWire network typically process the data on consecutive data blocks. One
processed data block is in the context of a macro pipeline directly transmitted to
subsequent processing nodes.

The hardware implementation of the SoCP also supports a limited number of
configurable user registers. With these registers it is possible to adjust parameters of
the processing core during runtime, which avoids the need of reconfiguring the PRM
for each change of a parameter. Additionally the processing core can provide some
status information, which the processor could query.

108

Figure 4 PRM/Node in a SoCWire network

Table 1 shows the transaction types defined in SoCP. Process and Reply packets are
created and consumed by the host system. A packet is sent to a node, processed by it
and sent back to the processor. A variant of this transaction type is that there may be
nodes that are bridges to external interfaces, e.g. SpaceWire or SelectMAP Xilinx
configuration interfaces. The data to be transmitted is then consumed by the node’s
sending process, but a reply is given to indicate the processor that the transmission
was successful. The SocP does not support autonomous error handling, so e.g. an retry
mechanism for missing packets would have to be implemented in the software
protocol handler running on the host system.

Transaction Type Description
Process and Reply Packet generated by host system, processed by a node with reply

sent back to host system

Write Register and Reply Write a register (Reply is sent by node)

Read Register and Reply Read a register (Reply is sent by node)

Streaming Data Transmission Streaming data from a source to a destination node

Plug and Play Init Message Initialization message sent by a node

Table 1 SoCP transaction types

The transactions Write Register and Read Register are intended to support the
processing core with parameters or allow the processing core to provide some status
information. Each core has some fixed registers, up to four optional read, and up to
four optional write user registers. The width of the registers depends on the
configured SoCWire width, i.e. 16 or 32bit. Streaming Data Transmission is the
transaction for use cases as already described in the example above. A data packet
from a node is directly passed to another processing node. Since the source node
needs to know where it has to send the data, i.e. where the destination node in the
SoCWire network is located, a set of 3 forward addresses is stored within the SoCP
core fixed register set. These registers have to be set up by the host system in advance,
since the host system is in charge of the current configuration status of the required
PRMs and their location within the network. After the destination node has processed
the payload data, it will forward the data further to the addresses stored in its register
set. The transaction type Plug and Play Init Message is intended to inform the host
system of a successful reconfiguration of a PRM. Once the new PRM starts running
and the SoCWire connection is established the SoCP core generates a message which
will be sent via pre-defined routing to the host system.

The two main packet definitions for the transactions are depicted in Figure 5. The
packets start with up to three addresses. These are the SoCWire path addresses which

109

define the route of the packet from source to destination node. Each time the packet
passes a SoCWire switch on its way through the network, the heading address is
deleted. Packets reaching the target node start with the Hardware ID of the node.
Therefore, the number of address fields required for a request packet depends on the
number of switches en route. Since the host system is always accessible through port
0, all reply packets to the host system must have three address fields filled with zero
regardless of the number of switches they have to pass. The SoCP handler running on
the host system’s processor (in software) has to remove potential zero words. The
Hardware ID is unique for every node and has to be set up by a generic value during
the instantiation of the IP core. The host system then inserts the Hardware ID of the
target node, which processes the data only when it has verified the ID successfully.
The target’s reply packets will contain the same ID, so that the software protocol
handler knows from which node the reply packet comes from. In case of streaming
data packets, the source node of the packet stream has to send the destination
Hardware ID, which needs to be set up in advance by the host system.

Figure 5 Packet definitions for Process Request/Reply and Stream (a), and for Register

Read/Write Request/Reply (b)

The Transaction/Packet Counter is a sequence counter incremented with every packet
sent by the host system or by the source node of a Streaming packet. The target node
will use the same value within the Reply packet, so that the host system can finally
identify to which Request the Reply belongs to or whether a sequence of Streaming
packets is correct. The Transaction Type identifies the type of packet (see Table 1).
With a reply also some error conditions will be reported to the host system within this
field. Compared to the RMAP terminology the Transaction/Packet Counter
corresponds to the Transaction ID and the Transaction Type corresponds to the
Instruction ID [6]. After the Transaction Type either up to 2064 data bytes are sent in
case of Process and Streaming packets (see Figure 5a), or a Register Address followed
by the Register Data is sent in case of Register packets (see Figure 5b). Finally, every
packet is terminated by an EOP token, complying to SpaceWire.

Error detection on protocol level is realized via parity bits in the Hardware ID,
Transaction/Packet Counter, Transaction Type and Register Address field. Within
each of these fields bit 15 is the parity bit. The Register Data is protected by an
inverted copy of the register value to be read or written. Routing errors are detected
by verifying the Hardware ID. Only when the Hardware ID of the target node is
identical with ID in the packet, the data will be processed. Process and Streaming data
cannot be protected by the SoCP core, since this would require large buffers within
the core, which contradicts the low resource usage requirement. If error detection is
required, then the processing core itself has to take care of this.

110

4.3 RESOURCES

Since the SoCP hardware handler is implemented for every node in a SoCWire
network, it is important that its resource consumption is minimal. Table 2 shows the
amount of resources used by the current SoCP implementation on different space
grade FPGA devices. For comparison the required resources for a SoCWire CODEC
IP core are also listed in this table. Both cores were configured to 16bit data width and
the SoCP IP core’s optional user registers were disabled. These figures represent the
device utilization without TMR (Triple Modular Redundancy) applied.

 SoCP IP Core SoCWire CODEC IP core wo/ RAM
Device Cells/Slices Utilization[%] Cells/Slices Utilization[%]
XQR4VSX55 115 0.47 272 1.11

XQR4VLX200 115 0.13 272 0.31

XQ5VFX130T 67 0.33 160 0.78

RTAX2000S/SL 269 0.83(*) 754 2.34(*)

RT3PE3000L 368 0.49 932 1.24
(*) All flip-flops employ TMR

Table 2 SoCP FPGA resource utilization

5 CONCLUSION

With the DRPM architecture an effective and viable implementation of a
reconfigurable hardware for future space mission has been presented. The SpaceWire
based on-chip communication architecture SoCWire provides a fault-tolerant, high
speed infrastructure for the exchange of data packets between processing nodes,
interfaces and host system. With SoCP an efficient protocol implementation, tailored
to the specific needs of a SoCWire network has been introduced and it has been
shown, that the resource utilization of the SoCP IP core is very small.

6 REFERENCES

1. B. Osterloh, H.Michalik, B. Fiethe, “SoCWire: A SpaceWire inspired fault
tolerant Network-on-Chip for Reconfigurable System-on-Chip Designs in Space
Applications”, ISC, Nara, Japan, 2008

2. F. Bubenhagen, Björn Fiethe, Harald Michalik, Björn Osterloh, “Enhanced
Dynamic Reconfigurable Processing Module for Future Space Applications”, ISC,
St. Petersburg, Russia, 2010

3. ESA, “FPGA bases generic module and dynamic reconfigurator”, TEC-
EDP/2008.30/JI, Issue: 1 Rev.1, Noordwijk, Netherland, 2008

4. ESA-ESTEC, “Space Engineering: SpaceWire-Links, nodes, routers, and
networks”, ECSS-E-50-12A, Noordwijk, Netherlands, January 2003

5. H. Michel, F. Bubenhagen, B. Fiethe, H. Michalik, “AMBA to SoCWire Network
on Chip Bridge as a Backbone for Dynamic Reconfigurable Processing Unit“,
AHS, San Diego, California, USA, 2011

6. ESA-ESTEC, “Space Engineering: SpaceWire - Remote memory access
protocol”, ECSS-E-ST50-52C, Noordwijk, Netherland, February 2010

111

Networks and Protocols 3

112

** Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the United States Department of

Energy under Contract DE-AC04-94AL85000.

SPACEWIRE NETWORK SIMULATION OF SYSTEM TIME PRECISION

Session: Networks and Protocols

Long Paper

Brian Van Leeuwen, John Eldridge, Jacob Leemaster

Sandia National Laboratories**

Albuquerque, USA

E-mail: bpvanle@sandia.gov, jmeldri@sandia.gov , jeleema@sandia.gov

ABSTRACT
Many applications sharing a SpaceWire network require synchronized system time and

SpaceWire can be employed to distribute system time. However, in its current form general

system time distribution capability is lacking. In this paper we present a system time distribution

approach that employs a broadcast extension to the SpaceWire protocol. Broadcast messages

distribute specific time values while SpaceWire Time-Codes clock-in or trigger the specific time

contained within the broadcast. The broadcast approach is effective in minimizing network

resource usage by distributing the broadcast-time message in a partial-parallel method.

Additionally, for the objective of identifying the timing precision and jitter for specific network

architectures and network states, high-fidelity models were developed to quantify the timing

variations and to analyze overall SpaceWire networked system performance.

1. INTRODUCTION
The European Space Agency (ESA) in collaboration with other international space agencies

supports a serial data link standard to enable the transfer of large amounts of data onboard

satellites. The standard named SpaceWire and defined in [1], is a satellite communication

network based in part on the IEEE 1355 standard of communications. A SpaceWire network is

typically comprised of a number of links, nodes and routers. SpaceWire routers are necessary

since a SpaceWire node will only support a few links and thus can only be directly connected to

a limited number of nodes. Routers also reduce the number of point-to-point links and enable

redundant paths in case of link failures. The current standard describes a mechanism that can

enable modern satellite systems to transfer large amounts of data on board the satellite. However,

the standard currently lacks a time distribution capability to enable time synchronization among

the various applications on the SpaceWire network [1].

Additionally, a high-fidelity modeling and simulation capability to perform analysis of

SpaceWire networked systems is lacking. This analysis capability should provide precise time

113

mailto:jmeldri@sandia.gov

synchronization results under various proposed network architectures. This analysis capability

should also provide results as the architecture under study dynamically changes when faults

occur and redundant paths are utilized. To meet these analysis objectives we created high-fidelity

model representations of SpaceWire nodes, links, and routers that can be configured to represent

any proposed network architecture.

In this paper, we present a time distribution mechanism that can be implemented in a SpaceWire

network that employs the standard SpaceWire Time-Code function along with a custom

SpaceWire broadcast capability. Together, the Time-Code function and broadcast capability

enable a means to distribute time to the various applications utilizing the SpaceWire network.

Our approach required that the general broadcast extension be a layer upon the existing

SpaceWire standard. That is it would be compatible with the existing protocol and not

necessitate the modification of existing intellectual property or the revision of the existing

SpaceWire standard. Rather, the objective was to extend the standard to include the new

capability. Our approach met this objective.

2. SYSTEM TIME DISTRIBUTION WITH SPACEWIRE BROADCAST EXTENSION
The current SpaceWire standard lacks both a general time distribution function and broadcast

function. Multiple solutions have been proposed each with their own benefits and deficiencies

[2][4]. To this end, we designed a time distribution function that utilizes a SpaceWire broadcast

capability. The time distribution function is designed to work in concert, be network efficient,

and fully backward compatible with the current SpaceWire standard.

2.1 SYSTEM TIME DISTRIBUTION

The time distribution function distributes what we consider to be system time. In our time

distribution mechanism, system time refers to distributing actual time versus the SpaceWire

standard Time-Code. The standard SpaceWire Time-Code comprises the SpaceWire ESC

character followed by an eight-bit data character. The data character contains 6-bits of system

time and two control flags. A time-master node asserts a periodic “tick” and immediately sends

out a Time-Code with the 6-bit time field incremented prior to transmission [3]. This Time-Code

mechanism is limited to a 6-bit resolution and increments each network device’s internal time

counter from the current Time-Code value to the next. The counter, which is intended to prevent

looping retransmission of the Time-Code and not necessarily to carry a time value, rolls from its

maximum value of 63 to zero because of its 6-bit field size limit.

Our time distribution approach accomplishes synchronization of system time. This is done by the

time-master node sending a system wide broadcast containing what the system time will be at the

next Time-Code “tick.” The broadcast message is transmitted a predetermined time period prior

to the transmission of the Time-Code. The predetermined time period is an estimated value that

is equal to the worst-case time for the broadcast message to propagate throughout the network.

114

The time-master node transmits a Time-Code tick indicating to the network that the time

described in the previous time message is now current. Thus, the various network applications

have access to an unambiguous system time.

Unambiguous system time is a 32-bit integer representation and it is broadcast to all nodes in the

network. When the endpoints receive a SpaceWire Time-Code the broadcasted system time

message is accepted as the current time after having been validated by combinational logic. The

time endpoint evaluates whether it is synchronized with the rest of the SpaceWire network with

every received SpaceWire Time-Code “tick.” If the endpoint believes itself to be synchronized

with the rest of the endpoints in the SpaceWire network, it considers itself to be “locked” and

asserts a corresponding signal.

The endpoint determines if it is “locked” in the following way: After every “tick,” the expected

value of the next system time message is calculated. The calculated value is considered to be the

value of the current system time message plus one. If the next received system time message

matches the expected value, the endpoint concludes that it is synchronized with the rest of the

network.

If the next received time message does not match the expected value, or no system time message

is received by the next “tick,” then the endpoint assumes that a synchronization error has

occurred, indicates that it’s no longer “locked,” and will simply increment its system time as a

“best guess.” If the time message arrives late, it will not interfere with operation so long as the

subsequent time message arrives on time, as the new message will override the late message.

In our approach it takes two correct time message/tick pairs to achieve a synchronization “lock.”

It is a known issue that if a series of two or more time messages are consistently late by a tick

period (or a consistent multiple of the tick period), then the timekeeper will erroneously indicate

a lock and synchronize to the late packets as they appear identical to a correct time message/tick

sequence. Expanding the number of previous packets considered when calculating the expected

time value would reduce the likelihood of such a situation at the cost of increasing the number of

correct packets it takes to achieve a “lock.”

2.2 BROADCAST

Our time distribution function employs a hybrid broadcast approach derived from work

described in [4]. The approach was modified with the goal of distributing system time, be

compatible with existing SpaceWire hardware, and not suffer from loops or broadcast storms.

The approach creates a “broadcast server” to be hosted by each router in the network. Our

implementation of this approach has two main configurable aspects: which local ports will

receive broadcasts and a list of the logical addresses of all other broadcast servers in the network.

A packet intended for broadcast is transmitted to the local “broadcast server,” which then

forwards the packet to all other broadcast servers in the network. Once this is completed every

115

broadcast server in the network will forward the packet to the appropriate local ports on its

respective router. The broadcast servers use several techniques at the protocol level to guarantee

that no loops, infinite broadcast storms, or spurious re-broadcasts occur. The broadcast

mechanism used for our SpaceWire Broadcast Server (SpWBS) includes several stages:

Local-to-Server Stage - A SpWBS receives a Local-to-Server type packet containing the

broadcast message

Server-to-Server Stage - The initiating SpWBS sends a Server-to-Server type packet containing

the broadcast message to every other enabled SpWBS in the network.

Server-to-Local Stage - Once a SpWBS receives a Server-to-Server stage packet or the initiating

SpWBS finishes the Server-to-Server stage transmission it sends Local-to-Server type packets

with the broadcast message to every enabled and connected local port.

This broadcast approach has efficiencies in that it partially distributes bandwidth utilization

across the network and obtains parallelization of the Server-to-Local stage of broadcast. The

approach requires that every router with nodes receiving broadcast messages have an attached

SpWBS and it requires an additional header byte to distinguish between Local-to-Server, Server-

to-Local, and Server-to-Server type messages.

The SpWBS broadcast approach includes mechanisms to prevents broadcast storms. All local

ports and broadcast server addresses are disabled by default and must be explicitly enabled by

server configuration. A configuration error that results in a Server-to-Local packet to be received

by another SpWBS will be detected by identification of an incorrect header byte and prevented

from further broadcast.

3. MODEL DEVELOPMENT
Our SpaceWire model development is done in the OPNET Modeler network simulation

environment [5]. OPNET Modeler includes an extensive model library of network devices;

however, OPNET Modeler does not include SpaceWire models in its standard model library.

Fortunately, OPNET Modeler includes the capability for users to develop nodes based on custom

protocols. To analyze the performance of our time distribution mechanism detailed SpaceWire

models are developed.

The models include many features of the SpaceWire standard including the functionality at the

various communication stack levels in both the end nodes and wormhole router. The models

faithfully implement the disassembly of application layer data and the reassembly of the

resulting NChars at the destination node. Additionally, processes such as the startup sequence,

flow control, Time-Code process, and realistic representation of various buffering and queuing

functions.

116

A modeling objective was to have representative models of the various SpaceWire modules and

protocols to support system design activities in all phases of a project. This modeling would

range from custom protocol extension analysis to assessing SpaceWire architectures and their

operation under stressful scenario conditions resulting from link and node failures. In pursuit of

this objective, we developed models to be modular. The modular approach enables the

combination of end nodes and routers in various architectures. Figure 1 illustrates an example

SpaceWire network and one of the nodes in the example network. In this example, each node is

comprised of three specific modules; an application node, a wormhole router, and a broadcast

server. The SpaceWire router is the connection point that combines the various applications

nodes and broadcast servers.

Figure 1: Example SpaceWire network topology.

Figure 2 illustrates a description of the custom SpaceWire node model and a single process

model as developed in OPNET Modeler. On the left side of Figure 2 is the SpaceWire

application node model that includes the protocols used in each layer of the SpaceWire

communication stack. The node model includes various application types that access the

network. Specifically, a state-of-health (SOH) application that periodically shares state of health

(SOH) details. A standard application layer can be a data producer, such as a sensor, or a data

consumer, such as a telemetry downlink, or a broadcast application that creates messages

intended for broadcast.

Each of the square blocks in a node model represent a single or multiple process model state

machines and implements the protocol of interest. Figure 2 (right side) illustrates an example

process model. The process model illustrated in Figure 2 is a root process that can spawn child

processes. Child processes are particularly applicable in modeling the wormhole router. The root

process spawns a child process for each data flow through the wormhole router. In many cases

multiple child process are in various states as they represent multiple simultaneous data flows

through the router.

117

Figure 2: SpaceWire application node model (left) and an example process model (right).

OPNET Modeler includes rich mechanisms to create network traffic. In our time synchronization

analysis, we are able to clearly identify when messages supporting system time distribution are

created and when they arrive at their intended target. Additional application layer traffic can be

generated to represent actual data files being transported through the network as NChars. Thus,

Time-Code traffic is created and introduced into the network along with typical application layer

traffic and its impact on delaying Time-Code messages.

4. SYSTEM TIME DISTRIBUTION PRECISION ANALYSIS WITH HIGH-FIDELITY SPACEWIRE
MODEL

To demonstrate our time synchronization analysis capability we created a SpaceWire network

comprised of 12 nodes, routers, and broadcast servers as shown in Figure 1. The architecture,

constructed in OPNET Modeler, uses the various custom nodes and process modules. In this

demonstration case Node 10 is considered the time master and thus originates both the Time-

Codes and the system-time broadcast messages. Employing our time distribution mechanism,

Node 10 will create a broadcast message immediately following a Time-Code transmission. The

broadcast message will be transmitted to the broadcast server associated with the router shared

by the broadcast server and Node 10 (i.e., Node 1010). This broadcast message contains the time

that the next transmitted Time-Code will clock into the various network slave nodes. Since

Time-Codes are not delayed by full application layer file transfers the broadcast will not arrive at

a slave node prior to the previously sent Time-Code. However, there is no guarantee that the

broadcast message will arrive at the slave nodes prior to the arrival of the following Time-Code

transmission. In cases, where the following Time-Code arrives at the slave node prior to the

broadcast time message the system is said to have lost synchronization “lock.” We examine the

network in Figure 1 for time synchronization precision.

5. RESULTS AND DISCUSSION
The network in Figure 1 with Node 10 producing both the Time-Codes and the broadcast

messages is assessed for time distribution delay variation. In this analysis, we record the receipt

of a broadcast message and the time the broadcast message time value is clocked into the slave

118

node’s clock. The node’s time is then compared with a global absolute time. The difference of

the absolute time and node clock time is recorded and plotted in Figure 3 as a probability density

function (PDF).

Figure 3: Resulting PDF of the time synchronization error when network is lightly loaded (red

trace) and heavily loaded (blue trace). Note the Y-axis should normalized by dividing by 50E6.

Figure 3 describes a time synchronization error averaging approximately 7.0 µsec. The plot has

three regions centered at approximately 5.5 µsec, 7.3 µsec, and 9.0 µsec. Each region describes

the variation in time synchronization based on the number of hops to forward the Time-Code.

Each additional hop adds more variation and thus leads to more spreading of the plot as you

move from left to right on the time axis. The variation between the lightly loaded network (red

trace) and the heavily loaded network (blue trace) results from additional NChars on the network

that may delay the transmission of a Time-Code. The variation is not significant since a NULL

can cause a delay of up to an 8-bit transmission time whereas an NChar can cause a delay of up

to a ten-bit transmission time. In the demonstration network, the SpaceWire links operate at 10

Mbps. Also note that the Time-Code period was 6 msec. and maximum application-layer file size

was less than 60 Kbits and thus were easily within range so the network would not loose time

synchronization lock. We elaborate on synchronization lock in Section 6.

6. FUTURE WORK AND CONCLUSIONS
Our approach’s time synchronization resolution is limited by the frequency of Time-Code

transmissions. The frequency of Time-Code transmissions is limited by the requirement of

sufficient time for the broadcast system time message to propagate throughout the network. We

believe it is possible to decouple the need for a one-to-one correlation of system time messages

and Time-Code transmissions to obtain an improved synchronization error. However, the

theoretical upper limit of system time synchronization precision is limited by the latency and

jitter inherent in SpaceWire Time-Code function. Time-Code enhancement techniques [7] could

be incorporated into our time distribution approach to improve time synchronization.

119

Additional features will be incorporated into the OPNET Models to expand the representation of

the SpaceWire protocol and the nodes. Specifically a model of Remote Memory Access Protocol

(RMAP) for SpaceWire will be developed. RMAP provides a standard method of reading and

writing to registers and memory across a SpaceWire network. This will further our analysis

capability of application performance.

Additionally, we have developed a Live/Virtual/Constructive capability at Sandia [6] that

combines real devices, emulated devices, and simulated devices in a single hybrid experiment.

We have identified use cases in our SpaceWire development activities that will benefit from

merging our SpaceWire models into hybrid experiments to assess satellite network development

ideas at various stages of the development. This approach is expected to support assessing the

behavior of actual hardware prior to the availability of complete system hardware.

We have demonstrated a viable system distribution approach that can be employed without

modification to the SpaceWire standard. The time distribution approach has been modeled in a

high-fidelity simulator and our analysis has identified the range of time synchronization for

various SpaceWire network architectures. Our broadcast solution has been fully developed in

VHDL and tested in actual custom hardware. We continue with further integration and testing in

actual hardware in our development activity.

7. REFERENCES
[1] European Space Agency, “SpaceWire - Links, nodes, routers, and networks.” ESA-

ESTEC Requirements & Standards Division. 24 January 2003.

[2] Klar, R., Dykes, S., Bertrand, A., Mangels, C., “Integration of Internet Protocols with

SpaceWire using an Efficient Network Broadcast.” International SpaceWire Conference

2007.

[3] Parkes, S., “The Operation and Uses of the SpaceWire Time-code.” ISWS International

SpaceWire Seminar 2003. November 2003.

[4] Roberts, A., Dykes, S. G., Klar, R., & Mangels, C. C. (2007, March). A Link-Layer

Broadcast Service for SpaceWire Networks. Aerospace Conference, 2007 IEEE , 1-10.

[5] OPNET Technologies, Inc., www.opnet.com.

[6] Van Leeuwen, B., Urias, V., Eldridge, J., Villamarin, C., Olsberg, R., "Performing cyber

security analysis using a live, virtual, and constructive (LVC) testbed," IEEE MILCOM

2010, October 2010.

[7] Cook, B., “Reducing SpaceWire Time-code Jitter.” www.4links.co.uk/bibliography/Reducing-

Time-Code-Jitter-on-SpaceWire.pdf , October 2003.

120

HARDWARE IMPLEMENTATION OF AN RMAP NETWORK SCHEDULER

Session: SpaceWire networks and protocols

Long Paper

Albert Ferrer, Steve Parkes

School of Computing, University of Dundee, Dundee, DD1 4HN, Scotland, U.K

E-mail: aferrer@computing.dundee.ac.uk, sparkes@computing.dundee.ac.uk

Alberto G. Villafranca, Martin Suess

On-Board Payload Data Processing Section, ESA/ESTEC,
Noordwijk, The Netherlands

E-mail: gonzalez.alberto@gmail.com, martin.suess@esa.int

ABSTRACT

Payload control applications typically require that SpaceWire packets are delivered to
the destination within certain time constraints, which is difficult to achieve with an
event based wormhole switching network such as SpaceWire. One promising solution
is to schedule the network to avoid contention and obtain a deterministic packet
delivery time. This paper presents a proof of concept with a hardware implementation
of an RMAP Network Scheduler compatible with current generation of network
devices. The VHDL model developed configures and triggers the ESA RMAP IP
Core, depending on the scheduling table stored in the memory allocated to the
different channels, one for each pending user message. The highly configurable
design supports segmentation and priorities, and is tolerant to network errors that
could lead to temporally network congestion when using current generation of
SpaceWire routers.

1 INTRODUCTION

SpaceWire [1] was designed to support payload data-handling applications using
point-to-point links or networks. Data transfer is asynchronous and need not be
deterministic. However, for spacecraft control applications, both payload and platform
control, it is often required that data is delivered within certain time constraints. One
promising solution is to schedule the network using time division multiplexing. With
scheduling, there is no network contention and packet delivery time is deterministic.
Is it then possible to obtain latency and throughput guarantees for the user data. The
required periodic synchronization signal is easily provided using SpaceWire Time-
Code (TC) characters. Time is divided into discrete time intervals or time-slots (TS)
determined by the arrival of a Time-code.

SpaceWire uses wormhole switching, so packets are typically not buffered within the
routers. Therefore, the scheduling is implemented at each transmitting node or
network terminal using a local schedule table. Each local table must be configured
following a global network scheduling, assuring that contention can not occur when
no errors are present in the network.

121

One important question is which packet format or protocol should be used to
encapsulate a user message. In this work the SpaceWire packets follow the Remote
Memory Access Protocol (RMAP) specification [2]. RMAP is a transaction based
protocol with one node, the Initiator, sending an RMAP command to read or write
data to registers in a memory address located in another node, the Target. The use of
RMAP has many advantages. It provides error detection using acknowledgments, it
performs the most usual operations (read or write) with user messages of any size, and
it is usually already implemented in typical SpaceWire systems. Besides, when the
destination address is not a FIFO, it is safe to assume that the destination will be ready
to handle the data of any write operation. In other words, it does not require end to
end flow control to avoid stalling or rejecting a receiving packet.

This paper presents a proof of concept of an RMAP Network Scheduler using current
generation of SpaceWire network devices. It tackles both design and implementation
issues with a focus on simplicity, efficiency and compatibility with existing
components.

The first sections will deal with the design challenges of a time division multiplexing
technique, mainly:

- The duration of a Time-Slot has to be traded off to achieve a high data rate for
payload data and a low latency for command and control operations.

- High priority event-based messages are difficult to schedule.

- Errors in the network can produce timing violations in the global schedule and
induce unexpected contention.

The last sections deal with the actual implementation, based on the ESA RMAP IP
Core [3] interfaced to a scheduler module developed in VHDL language.

2 RMAP SCHEDULER

As explained before, the basic idea of an RMAP scheduler implies that RMAP
packets are sent at specific moments following a global synchronization that ensures
that two different transactions do not use the same network resources at the same
time. The simplest implementation may be the use of a local scheduler at each node
that transmits an RMAP command just after the reception of a Time-Code. Figure 1
shows an example with two nodes that transmit read and write RMAP commands to a
third node using a shared link.

Figure 1: Two nodes transmit read and write RMAP commands to a third node using a
shared link.

122

Multiple transactions could take place at the same time providing that they do not use
the same network resources, i.e. they do not produce contention. RMAP transactions
like SpaceWire links are bidirectional so each RMAP transaction should require a
SpaceWire link. However, two RMAP transactions of the same type could use the
same link without causing contention if they are coming from reverse directions, but
this should be treated with caution.

The duration of a Time-Slot is a key parameter of this system and it must be the same
across all the network, even if different link speeds are used. The data throughput
increases with longer Time-Slots and the latency decreases with shorter Time-Slots.
Besides, the maximum data length of an RMAP packet is restricted by its duration.
This limitation is easily solved by implementing a segmentation layer.

For the trade off let’s assume that only one transaction is allowed to be executed in a
single Time-Slot and we want to optimise this period for the maximum link speed,
200 Mbps, which presents the best performance for space qualified hardware. If we
consider that the protocol header, the network latency and the processing time cause
an overhead of around 15-20 µs then the minimum Time-Slot could be around 62µs
with RMAP data lengths of 512 or 768 bytes. Most command and control messages
can fit within this RMAP data length, but most payload data messages will need to be
segmented. Another option is to use a slot period of 125 µs with 2Kbyte segment size,
but this increases the latency and the gains in throughput depends on the size of the
payload message. For example, a 3Kbyte message will use two segments, one of them
half size. Note that the segment size should be a multiple of a power of two, and the
Time-Slot period should be a power of two division of one second (CCSDS CUC
format compliance).

For longer slot periods then it is recommended to allow multiple transactions per
Time-Slot. This increases the worst case latency and the complexity of the
implementation. The biggest advantage is that it reduces timing constraints of
software implementations and that multiple short control messages can be sent during
the same slot leading to an increased link utilization. Our implementation does not yet
support multiple transactions but provides another mechanism to increase the
maximum throughput called multi-slotting. Multi-slots provide the capability to send
a single RMAP command using multiple consecutive slots, reducing the overall
overhead and increasing the throughput with short Time-Slots. The biggest advantage
is that it allows a network to use different link speeds. For example, a node connected
to a 50Mbit/s link would use four consecutive slots that will be equivalent to a single
slot of a node working at 200Mbit/s.

3 RMAP SCHEDULER CHANNELS

Network scheduling is more efficient when the data traffic is known and periodic. It is
difficult to schedule event-based messages that require low latency, specially if they
use little bandwidth and are rarely generated. With a simple local schedule where each
message must be allocated to a different slot, this rare, high priority message has to be
allocated to at least one slot. This slot will be unused most of the time.

The solution is to implement a priority mechanism on top of the schedule table. This
can be achieved with the introduction of the concept of priority channels within each
node. A channel wraps a single RMAP message configuration (i.e. the header

123

including the destination) and its allocated Time-Slot numbers. It implements a
transparent segmentation layer and provides sending status and error reporting.
Multiple channels can be active at the same time. A channel is active when it has been
configured with all RMAP parameters required and it has not send all its data. A long
message may use multiple slots containing one segment of data. Each channel has a
different priority level. Each Time-Slot the highest priority channel that is active is
used. Once the highest priority channel finished sending its message, the lower
priority channel is used.

To send critical sporadic messages efficiently we configure a high priority channel to
use the same slots that have been already allocated to a long payload message using a
lower priority channel. The long payload message is sent using multiple segments,
one for each slot. When the control message must be sent it will be sent in the
following allocated slot even if the long payload message is still active. The number
of slots required must take into account the total bandwidth required. For example we
could have one channel for payload data that requires six slots and two channels for
two control messages that need half slot each, requiring a total of seven slots per
epoch.

Our implementation requires that a channel must be reconfigured or retriggered each
time an RMAP message is sent, except if the continuous mode is set. This allows to
change the message rate or throughput of a particular channel and implement different
slot allocations depending on the current epoch, increasing the efficiency of the
system. The channel configuration can be performed by the node or by external
network manager using RMAP.

4 ERROR HANDLING

Error detection is a critical feature for command and control operations so it is fully
implemented in the proposed RMAP Network scheduler.

The network scheduling is highly sensitive to synchronization errors. The period
between the arrival of consecutive Time-Code codes is measured with an internal
clock and compared with the expected value. In case of discrepancy the system does
not trigger the sending of any packet and report the error to the user application (early
or late Time-Code arrival). The system also automatically resynchronizes without
further user interaction.

The handling of transmission and reception errors also follows a fail safe approach,
and the system goes silent to avoid error propagation. For example, if a packet is still
being send at the end of a Time-Slot it implies that there is congestion in the network
produced by this or another packet. SpaceWire routers based on the SpW10X model
will remove stalled packets after some time. With our scheduling approach it can be
guaranteed that only the packet that caused the network error will be removed first,
allowing the others to continue towards the destination afterwards. Hence, the
scheduler allows a packet being sent to continue being sent in the next slot. The slot
following this one will be kept silent and not used, to avoid error propagation to all
the network. This is analogue to the TCP congestion control mechanism.

Therefore, a channel is only stopped if a reply packet is not received after a
programmable number of slots, considering that the command was not received or the

124

reply was lost. An error will be reported if there is congestion while transmitting, or if
the RMAP reply did not arrive in the same slot, but the channel will not be
automatically disabled. Note that if the channel is disabled, with the current
generation of routers, any error in the network caused by a single channel could
automatically disable multiple channels in other nodes of the network. It is preferred
to add some extra latency and some loss of throughput than to lose multiple
transactions across the network. This additional bandwidth can be taken into account
at design time following an error probability model.

An optional feature is the activation of certain channels only when another channel
presents an error. This can be used for remote error notification or for redundancy
mechanisms. A retrial mechanism can also be implemented by the user application by
retriggering the channel in error.

5 IMPLEMENTATION ARCHITECTURE

The RMAP scheduler has been prototyped in a Xilinx Virtex II and IV FPGAs with
the ESA RMAP IP Core. A new IP Core has been created around the ESA RMAP IP
Core. This solution was envisaged to minimize the development time.

The user or host application interacts with the scheduler by writing to a specific
memory space containing the configuration for multiple RMAP channels and the
global timing setup. The scheduler generates the RMAP information required by the
ESA RMAP IP Core, mainly the RMAP header and data transaction pointers, for each
segment of an RMAP message defined by the host. This segment is defined by the
current status of the highest priority channel allocated to the next slot. When a Time-
Code is received, it triggers the sending of the scheduled RMAP packet.

The RMAP Network Scheduler memory space (RNS configuration in Figure 2) can
also be accessed by a remote network manager node using RMAP. So the system can
work without a user application in the host and can be easily supervised. Figure 2
shows the architecture described.

Figure 2. RMAP Network Scheduler implementation architecture.

In order to support error detection and the segmentation layer implemented, the lower
byte of the transaction ID field of the RMAP packets sent is used. It contains the

125

channel identification, the sequence number and the flags start and end of message. It
is filled automatically by the network scheduler. Because each channel implements a
send and wait error detection scheme, only one bit for the sequence number is
required.

Figure 3 shows a simplified block diagram. When a Time-Code is received, its timing
it is check by the Time Code Handler. If it is a valid Time Code, the Error Detection
module checks if the scheduled channel and the system is not in error. Then, the
Transaction Trigger module triggers the ESA RMAP IP Core while the Channel
Status Updater updates the state of the channel, including the segmentation status.
Finally, the Transaction Generator selects the channel that will be active in the next
slot, based on the schedule table, the priority level and the status of each channel. This
module also generates the RMAP transaction associated to the selected channel.

Figure 3. RMAP Network Scheduler block diagram.

The module can be configured at run-time with any Time-Code period and each
channel can have a different message size and segmentation size value.

6 RESULTS

The implementation presents a very fast activation upon the arrival of a Time-Code.
Specifically, the latency between a valid Time-Code and the subsequent activation of
the RMAP module is just ~300 ns. The response time from the arrival of a Time-Code
to the sending of the 1st segment (including RMAP IP core delay) is 3 µsec.

Table 1. Resource summary of the RMAP and the RMAP Network Scheduler IP Cores
in a Virtex IV (LX100).

Logic Utilization
RMAP IP

Core
RMAP IP Core +

Network Scheduler
∆

Slice Flip-Flops 3002 3868 + 29 %

4-input LUTS 8722 10498 + 20 %

Occupied Slices 5023 6207 + 24 %

126

Regarding the area used, in Table 1 the values obtained for the whole prototype are
compared against the original RMAP IP Core implementation. The results show how
the part corresponding to the newly developed module roughly requires less than a
quarter of the original RMAP IP core resources.

After having successfully verified the simulation stage, a set-up was designed to test
RMAP Network Scheduler functionalities with real hardware. In Fig. 5 the test
topology is presented. The idea behind the test is the simulation of a realistic scenario.
A PC interacts through a SpaceWire brick with the different elements only for control
purposes. All the system elements are connected through a SpaceWire router. There is
an emulated mass memory element where the instrument and a payload processor
(both featuring the Network Scheduler) can either read or write. An event logger
simulates the registration of a high priority message.

Figure 5. Topology of the test design with the Network Scheduler prototypes.

In the set-up, the instrument sends during even slots information packets to the
memory. The payload processor alternatively reads and writes in the memory during
odd slots simulating a compression process, for example. When manually asserting a
signal, the Network Scheduler activates in the instrument a high priority channel to
the event logger which can be sent in any slot. Note that in this case the payload
processor can still R/W from the mass memory, as they use different paths. Finally,
when the event logger link is disconnected – simulating a network error – an error
channel is enabled at the instrument, then sending the error information to the payload
processor on even channels. Note that the system has different features which are
automatically activated to respond to different situations, providing a high degree of
intelligence to the network. The entire memory space configuration required to
implement this set-up was programmed through a series of Python specific
applications which have been designed ad-hoc.

The test executed successfully, following the expected deterministic behaviour. The
Time-Slot period was set to 50 µsecs. The link speed was set to only 100Mbit/s due to
hardware constrains, and the segment size was set to 256 bytes. As stated, the
response time was only 3 µsecs and there was not any NULL character inserted in the
data stream. This means that the segment size could be slightly increased without
requiring a longer time-slot period.

127

Figure 6 is a screenshot of a oscilloscope that illustrate the measurement of the
latency and jitter of the high priority channel. The left side shows the assertion of the
signal that enables the high priority channel. The right side shows a sequence of lines
that indicate when the associated message has been received. We can see that the jitter
is one slot period because the assertion of the signal is not synchronized with the
Time-Slot period. The latency is higher than one slot period because the signal is
sampled in the previous slot and the message is received some time after the next slot.

Figure 6. Measurement of latency and jitter for the high priority channel.

Another test set-up using a webcam and a computer mouse to simulate data and
control information was presented in a SpaceWire Working Group [4].

7 CONCLUSIONS

A hardware prototype of the RMAP Network Scheduler has been developed in VHDL
using the ESA RMAP IP core. It implements scheduling, segmentation and priority
mechanisms, which provide latency and throughput guarantees with high network
efficiency. The prototype also incorporates flexibility to support multiple
configurations and user cases. Furthermore, the design incorporates advanced error
detection and notification mechanisms. When combined, these solutions deliver high
performance scheduling and segmentation capabilities to RMAP applications with a
small additional cost. The RMAP Network Scheduler has been successfully validated
through simulations and implemented in Virtex II and IV FPGAs. The FPGA version
has proved its capabilities in a realistic scenario with several RMAP devices
interacting in real time.

8 REFERENCES

[1] Parkes S.M. et al, European Cooperation for Space Standardization, Standard
ECSS-E-50-12A, “SpaceWire, Links, Nodes, Routers and Networks", Issue 1,
European Cooperation for Space Data Standardization, February 2003.

[2] Parkes S.M. et al, European Cooperation for Space Standardization, Standard
ECSS-E-50-11, “SpaceWire Remote Memory Access Protocol”, Draft-E, European
Cooperation for Space Data Standardization, 21st December 2005.

[3] SpaceNet RMAP IP core User Manual Issue 1.5, 18th May 2009

[4] ESA, “SpaceWire Working Group Website”, European Space Agency,
http://spacewire.esa.int/WG/SpaceWire/

128

AVOIDING SPACEWIRE NETWORK CONGESTION

Session: SpaceWire Networks and Protocols

Long Paper

Martin Suess

ESA, ESTEC, 2200 AG Noordwijk, The Netherlands

E-mail: martin.suess@esa.int

Albert Ferrer

School of Computing, University of Dundee, Dundee, DD1 4HN, Scotland, U.K

E-mail: aferrer@computing.dundee.ac.uk

ABSTRACT
SpaceWire links, interface components and routing switches support today data rates

up to 200 Mbps between two units for the use on board of satellites. This is more than

two magnitudes higher than what can be provided by Mil Std 1553 or CAN bus.

Despite the very high bandwidth of the links, excessive network congestion can occur

and this might be only discovered late in the project during system integration and

validation. In order to avoid these problems the system designer needs to have a good

understanding of the properties of the SpaceWire network. The right set of

requirements needs to be put not only for the SpaceWire network itself but also for the

design of the connected units and applications.

1 SPACEWIRE NETWORK
SpaceWire is a bidirectional point to point link and the data transmission is regulated

by flow control. It uses data–strobe encoding and LVDS according to ANSI/TIA/EIA-

644 as signalling level. The link starts up with a data rate of 10Mbps and is then

switched to the operational data rate. This operational data rate can be set for each

individual link and can be different for both directions. Whenever there is no data

ready for transmission or if the receiving side is not ready to receive more data the

link is kept busy by transmitting NULL characters.

In a SpaceWire network these links connect SpaceWire nodes as sources and

destinations of SpaceWire packets. The packets start with the path and the logical

address of the destination node followed by the Protocol-ID and end with an End-of-

Packet marker (EOP). The next data character following the EOP is considered to be

the first byte of the following packet. SpaceWire does not define any maximum length

of the cargo transported between the packet header and the EOP.

One or more routing switches are needed if more than two nodes have to be

interconnected. The SpaceWire network is operated asynchronously as the link data

rate is tied to the local clock of the transmitting node. There is also no synchronisation

129

mailto:martin.suess@esa.int

between the nodes and the time of the start of a packet transmission depends only on

the transmitting node. The arbitration needed when two packets from different source

nodes want to access the same link to reach their destination node takes place in the

SpaceWire routing switch. For this paper round robin arbitration is assumed.

2 WORMHOLE SWITCHING
The SpaceWire standard specifies the implementation of wormhole routing within the

routing switches [1]. As soon as the header containing the destination address

information is received the routing switch is forwarding the packet on the next link

leading to the destination while the tail of the packet is still being received. This way

the packet can span like a worm through several links and routing switches in the

network or even all the way between source and destination node. While being routed

the time to reach the destination depends on the network congestion at the routers

which are passed on the way. Once the packet has reached the destination the

remaining transfer time depends on the packet length and effective transfer date rate.

The advantages of wormhole routing is that it only requires minimum buffer space in

the routing switch keeping it simple, low power and offering minimum latency. In

combination with the link level flow control it ensures that no packets are dropped by

the network. Wormhole routing was previously used in Transputer systems and is

today used in many Network-on-Chip.

Another common switching method is called store and forward. It is for example on

of the methods applied in the widely used in Ethernet standard IEEE 802.3. The

routing switches have to be able to buffer incoming packets before forwarding then to

their destination. The size of this buffer automatically sets a limit on the allowed

packet size or requires segmentation of larger packets. Compared to wormhole

switching much more memory needs to be implemented inside the switches. In order

to improve the latency of the store and forward approach the virtual cut through

method [2] has been developed. It provides similar path latency as wormhole routing

with the difference that the packet is buffered in the switch only if the route to the

destination is blocked. By buffering the packet this method can reduce the

propagation of congestion in the network. This is because the buffered packet will not

block like in the wormhole routing case multiple links in the network because its

destination is blocked or a path on the way to the destination is busy.

3 USE OF DIFFERENT LINK SPEEDS IN A NETWORK
As discussed before, SpaceWire can be set to run at a wide range of different link

speeds. At first glance this appears to be an attractive feature but it has to be applied

with great care. In the example shown in Figure 1 the nodes 1, 2 and 3 are instruments

which have to transmit the generated payload data to the mass memory in node 4.

The setup in this simple example could work if the routing switch would implement

store and forward. If wormhole switching is used as it is the case in SpaceWire it will

certainly not provide the required bandwidth. With wormhole switching the slowest

link in the path through the network determines the overall bandwidth of the end to

end connection. For the period of the packet transmission the faster links are

effectively running at the slower speed. In the example shown in Figure 1 the

100Mbps link between the routing switch and node 4 will be used with a maximum

130

throughput of 40Mbps during the transmission of packets from node 3 and even less

during the transmission of packets from the two other nodes. The throughput of

40Mbps corresponds to the maximum data rate which can be transferred over a link

running at 50Mbps. This 20% overhead is due to the parity and the data-control flag

used in addition to the 8 data bits in the coding of a SpaceWire data character.

Node 1
10Mbps

Node 2
4Mbps

Node 3
24Mbps

Routing
Switch Node 4

25 M
bps

10 Mbps

50 Mbps

100 Mbps

Figure 1: Simple SpaceWire network with links operated at different data rates

When assuming that the continuous payload data stream is segmented at the

instrument nodes and that the individual segments are transmitted at the full link

bandwidth a link occupation duty cycle can be defined as the average transmitted data

rate divided by the actually achievable link bandwidth. According to this calculation

the traffic from node 1 and 2 uses their links with a duty cycle of 50% each. The

traffic from node 3 has a duty cycle of 60%. The combined traffic from node 1 and 2

is therefore already fully occupying the capacity of the link to node 4. With the

additional traffic from node 3 the link to node 4 would have a theoretical occupation

of 160% which is clearly exceeding the link capacity. When the instruments are

generating data at a higher rate than the link capacity the local buffer space will fill up

and overflow. This overflow will then lead to a loss of instrument data.

Figure 2: Link duty cycle in % for the links from nodes 1 to 3 if all links are operating at 50Mbps

In order to cure the situation in this example sum of the link occupation duty cycles of

the links from nodes 1 to 3 which has to be transmitted through the single link to node

131

4 must to be kept below 100%. If all the links would be operated at 50Mbps (40Mbps

net) the sum of the link duty cycles 1 to 3 would be 25%+10%+60%=95% which

could be a workable solution as shown in Figure 2. This is of course not the only

solution. When changing for example the speed of the links from node 2 and 3 to

100Mbps the sum of the link duty cycles would be 50%+5%+24%=79%.

Unfortunately avoiding the loss of data is not just a matter of selecting the correct

SpaceWire link speeds. This is already indicated by the conditions given in the

beginning of this simple example. Node specifications often only address the nominal

SpaceWire link speed and not the actual achievable data rate of the node. This data

rate can be significantly less due to internal limitations of the hardware or software in

the node. This effective data rate has to be taken into account when analysing the

network congestion and throughput.

4 DATA BUFFER SIZES
One common application of SpaceWire is the transfer of payload data to the mass

memory on board. When the payload is operating it can often be modelled as a

continuous source of data at a given rate. These data have first to be buffered and

segmented inside the node. Only once the packet containing a data segment is

complete it can be sent out though the link at a data rate that should be close to the net

link data rate. The properties of the data buffer inside the node is therefore of crucial

importance.

The size of this buffer which is required to avoid the loss of data depends on the

product of average source data rate and the worse case latency for the end to end

connection. It can be shown that an upper bound for the worse case latency of a

connection can be calculated analytically for any given network [3], [4], [5]. This

latency depends on the network topology, the interfering data connections, the

effective link speeds and the packet sizes used. One additional factor which needs to

be taken into account as well is the latency of the target node. The target node could

for example be busy with some other task when the packet arrives on the SpaceWire

link and it takes some time before the packet is ingested by this node. The overall

maximum latency can be reduced by introducing segmentation and splitting large data

packets into smaller segments which are transmitted independently.

5 REQUIREMENTS AT NODE LEVEL
All this can be calculated and must be analysed before the SpaceWire network and the

nodes and units are specified. This can then be used to determine the requirements at

node level concerning the SpaceWire network interface.

The following parameters need to be specified for source nodes:

 SpaceWire link speed,

 Minimum effective data rate with which a packet can be sent out on the

network,

 Maximum average data rate the node is allowed to send out,

 Segment or packet size,

 Minimum source buffer size.

132

The following parameters need to be specified for target nodes:

 SpaceWire link speed,

 Segment or packet size,

 Minimum effective data rate with which a single segment or packet can be

received from the network,

 Maximum delay time before packet is received at the effective data rate,

 Minimum average receive data rate that can be sustained which may

sometimes be less than the effective receive data rate.

It can be considered a good practice to perform a network traffic simulation which

included the properties of the nodes [6] in order to validate the specification.

Before system integration all these requirements should be tested and verified at

subsystem level.

6 CONCLUSION
When resources have to be shared in a network there is always the possibility of

contention. If not designed carefully this may lead to a loss of data due to source

buffer overflow. The wormhole switching used in the case of SpaceWire network is

well researched and understood. It does not use any buffering inside the network but it

requires buffers located in the node instead. The required size of these buffers inside

the nodes has to be carefully analysed. Sufficient buffer space is a key property to

avoid data loss. There are a number of parameters which need to be specified for the

nodes in order to control the level network congestion. It is important that these

requirements are tested and verified already at node level. In this way it can be

avoided that excessive network congestion is only discovered after integration during

the overall system test.

7 REFERENCES
[1] ECSS Standard ECSS-E-ST 50-12C, “SpaceWire, Links, Nodes, Routers and

Networks”, 31 July 2008

[2] P, Kermani and L, Kleinrock, “Virtual cut-through: A new computer

communication switching technique,” Computer Networks, vol. 3, pp 267-

286, 1979

[3] Albert Ferrer Florit, “SpaceWire and Determinism: concepts”, Proceedings

SpaceWire WG meeting 14, 22 February 2010.

[4] T. Ferrandiz, F. Frances, Ch. Fraboul, “A Network Calculus Model for

SpaceWire Networks”, Embedded and Real-Time Computing Systems and

Applications (RTCSA), vol.1, no., pp.295-299, 28-31 Aug. 2011

[5] Dally, W.J.; "Performance analysis of k-ary n-cube interconnection networks,"

Computers, IEEE Transactions on , vol.39, no.6, pp.775-785, Jun 1990

[6] P. Fourtier et.al., “Simulation of a SpaceWire Network”, Proceedings

International SpaceWire Conference 2010, 22-24 June, St. Petersburg, Russia

133

Networks and Protocols 4

134

LOW-LATENCY PACKET DELIVERY IN SPACEWIRE NETWORKS

Session: Networks and Protocols

Long Paper

Dr Barry M Cook, C Paul H Walker

4Links Limited

E-mail: barry@4Links.co.uk paul@4Links.co.uk

ABSTRACT
This paper quantifies typical latency requirements and describes a simple technique
that uses virtualization and priorities with dynamic, on-demand segmentation, to
provide deterministic, low latency delivery of packets whilst allowing high utilisation
of the network. Segmentation is low-level and invisible to the user (and to the API).
Packets, of any size, will be delivered to the destination node as a contiguous whole,
without interleaving and with the contents in strict order. The technique offers the
ability to carry data with real-time and low-latency requirements, such as command
and control (including unscheduled events), at the same time as, and completely fire-
walled from, high-bandwidth data such as that from experiments and instruments.

1 INTRODUCTION
This paper brings together with SpaceWire the themes of Virtualization and Time
Triggering. Virtualization has proved to be a secure way to share resources on a
computer, such as virtual servers. Time Triggering has become a popular means of
providing deterministic (but often very high) latency over a bus.

SpaceWire, as defined in [1], offers very low latency for real-time control loops and
for housekeeping accesses, provided that such accesses are not contending with large
data transfers, or with blockage in the network.

We describe an enhancement to SpaceWire that provides Virtual SpaceWire
Networks [2, 3] and thus brings the benefits of protecting users from each other and of
isolating faults. Virtual SpaceWire Networks (VSNs) retain the exceptionally low
latency of current SpaceWire for deterministic real-time traffic. Meanwhile, the low
priority and bulk data transfer can use all the bandwidth that is not taken by the real-
time traffic.

We use priority within the Virtual SpaceWire Networks to ensure that latencies and
control loop times can be guaranteed. Each Virtual Network can have its own
individual priority, or several Virtual Networks can share the same priority.

In this paper, we acknowledge that many missions have control loops and
housekeeping accesses that repeat at 1 second, 100ms, 10ms or shorter periods. We
simply group the accesses in each of these sets of periods into separate Virtual
SpaceWire Networks.

135

mailto:barry@4Links.co.uk
mailto:paul@4Links.co.uk

2 AN EXAMPLE NETWORK AND CALCULATION OF AVAILABLE THROUGHPUT
Table 1 below shows an example set of traffic such as would be used on a satellite and
Figure 1 shows a subset of the activity of that traffic on several Virtual SpaceWire
Networks sharing a single physical SpaceWire link.

The table and figure include traffic for a couple of 5kHz control loops which need to
access data and process it within 200μs. We give this highest priority (priority 1).
Priorities 2 to 5 are used for slower control loops or for regular housekeeping updates,
at frequencies from 1kHz down to 1Hz (priorities 3 to 5 are omitted from the figure).
The lowest priority (6) is used for bulk data, such as image data from cameras.

3 ASSUMPTIONS
Any calculation of performance or guarantees needs to be based on assumptions.
We’ll make our assumptions explicit and then describe, in general terms, the way the
numbers in the table have been calculated and what performance can be guaranteed.

1. We assume a worst-case that all the traffic is shared on a single Virtual
SpaceWire Network link. In practice, performance scales with additional links.

2. We assume that the accesses are RMAP (Remote Memory Access Protocol)

Read requests and responses. RMAP has higher overheads than some other
protocols used on SpaceWire, so our use of RMAP here gives conservative
results, and this analysis is in no way confined to use of the RMAP protocol.

3. We assume a very worst case that all the RMAP initiators, with all the different

frequencies, start sending their requests at the same time and so will be queued.

 Frequency Number of requests in period Response Payload, Bytes

5kHz 2 20
1kHz 10 50

100Hz 25 200
10Hz 50 200
1Hz 100 200

Table 1: Set of real-time traffic used as an example

Responses

RequestsVSN 1
Priority 1
(highest)
VSN 2
Priority 2

VSNs 3 to 5, not shown

0 100 200 300 400 500 600 700 800 900 1000 μs

VSN 6, Priority 6 (lowest)

Responses interrupted or delayed by
higher-priority traffic

Requests delayed or interrupted
by higher priority traffic

Large, low-priority, packets, interrupted by higher priority traffic, utilize any spare bandwidth

Figure 1: An example of activity on a Virtual SpaceWire Network link over time

136

4. We assume that a node transmitting an RMAP request has adequate buffer
space to receive the full response that it has requested without stalling. And we
assume that a node transmitting a response is able to send the complete
response without stalling.

5. We assume that all the nodes are current SpaceWire standard nodes, so that a

node can only send requests or responses to one Virtual Network. (There can
be benefits in having nodes that support multiple Virtual Networks, which will
be described later).

6. We assume a link speed of 50Mbits/s. While this amply meets the

requirements, even with the worst case assumptions used here, faster link
speeds could be used to carry more data or to give even faster responses.

With these assumptions, we can now look at an algorithm for calculating whether the
latencies and processing times meet the requirements for completion within the
relevant Period at a particular priority.

4 ALGORITHM FOR CALCULATING REAL-TIME AND THROUGHPUT PERFORMANCE
1. For each VSN, add up the Network delay for requests on this VSN in this

period from the start of the first request being transmitted to the end of the last
request reaching its target. These delays include:

• Delay in the Initiator in transmitting the first packet
• The transmission time for the total number of Bytes, in all the requests for

this VSN, at the link speed of the SpaceWire link
• An overhead on the transmission time, to allow for flow control

characters, an occasional Time Code, and for the possible overhead of
switching between Virtual Networks

• The transmission time for any Nulls that the Initiator inserts into a request
(some designs may be unable to send contiguous packets)

• Total cable delay (although this is probably negligible)
• Total Routing-Switch latency

2. For each VSN, determine the Longest target latency of the various targets on this

Virtual SpaceWire Network. This is the time from the end of the request packet to
the start of the response packet. The latency should be determined from the
manufacturer’s data sheet and confirmed by characterization with test
equipment [4]

3. For each VSN, add up the Network delay for responses on this VSN in this

period between start of the first response being transmitted to the end of the last
response reaching its initiator. These delays are similar to the network delays for
requests and include:

• Delay in the Target transmitting the first packet
• The transmission time for the total number of Bytes, in all the responses,

at the link speed of the SpaceWire link; note that, while most of the
requests are the same length as each other (or very similar) the responses
may vary in length depending on the nodes being accessed.

137

• An overhead on the transmission time, to allow for flow control
characters, an occasional Time Code, and for the possible overhead of
switching between Virtual Networks

• The transmission time for any Nulls that the Target inserts into a
transmitted request (there should not be any but some designs may not be
able to send contiguous packets)

• Total cable delay (although this is probably negligible)
• Total Routing Switch latency

4. For each VSN, determine the Longest processing time of the various

controllers/initiators on this Virtual SpaceWire Network. The processing time is
the time from the end of the response packet arriving at the initiator to the end of
any action it needs to take as a result of the response.

5. For each VSN, add up the following:

• the Network delays for requests on all (higher or equal)-priority VSNs
in this Period. Note that if there is a single VSN at the highest priority,
this sum will be zero. Note also that the Network delays must account for
all the delays at equal or higher priority during the Period of this VSN.

• the Network delay for requests on this VSN in this Period
• the Longest target latency
• the Network delays for responses on all (higher or equal)-priority

VSNs in this Period. Note that if there is a single VSN at the highest
priority, this sum will be zero. Note also that the Network delays must
account for all the delays at equal or higher priority during the Period of
this VSN.

• the Network delay for responses on this VSN in this Period
• the Longest processing time 1

and if this total is less than the Period, then the set of accesses can be guaranteed
to take place within the Period.

1 It may be excessively conservative, on top of the worst case assumptions, to include the
longest target latency and the longest processing time in the calculation. An alternative would
be to sum the {target latency plus processing time} for each separate access, and then add the
longest of these sums to the request and response network delays to ensure that the total is
less than the Period.

138

5 A SPECIFIC EXAMPLE
We’ll consider, as an example, a small subset of the
activity shown in Figure 1, and check the behaviour
for the highest priority Virtual SpaceWire Network. Responses

Requests

0 100 200 μs

VSN 1
Priority 1
(highest)

For this there are two initiators and two targets with
the initiators and targets sharing a single link
between two routing switches. The numbers we use
are arbitrary, but are a reasonable estimate based on products that 4Links have
characterized. Note that the period of 200μs implies 5kHz control loops, and that
these have relaxed constraints on the end-nodes even with a link speed of 50Mbits.

Figure 2: Detail of activity for
an example 5KHz control loop

The Delay in both the Initiators in transmitting the first packet is 1μs.
The transmission time for an RMAP Read Request is around 24 Bytes, making a total
of 48 Bytes for the two Initiators. At 50Mbits/s, allowing for eight bits of data in ten
bits transmitted, and for the Ends of Packet, that takes a total of 9.8μs. We’ll allow a
10% overhead on the transmission time, to cover flow control characters and the
possible overhead of switching between Virtual Networks. This brings the total
transmission time to 10.8μs.
At 50Mbits/s, these Initiators do not insert Nulls into the data stream unless they are
starved of flow-control credit, which should not occur when the Target is waiting for a
Request.
Cable delay, at under 5ns per metre, and a total cable length of less than ten metres, is
sub 50ns and so will be ignored.
Routing Switch latency, for several switches that 4Links has measured, is around 1μs.
With two Routing Switches, the total delay in this direction is 2μs. This makes a total
Network delay for requests of (1+10.8+2) = 13.8μs.

The Longest target latency depends heavily on the devices used and whether the
protocol and response are handled in hardware or software. In this case we take, as an
example, an RMAP target that uses a processor and software dedicated to the one
target and that it responds in 50μs.

The Network delay for responses is a similar calculation to that for requests. In this
case any equivalent of the Initiator delay is included in the target latency. The
response payload is 20Bytes and the RMAP overhead is another 20Bytes. These
40Bytes for each of the two responses at 50Mbits/s, take 16.2μs. We again allow a
10% overhead on this to arrive at a transmission delay of 17.8μs. There should again
be no Nulls inserted because the initiator should not request a response that it can not
handle. Routing Switch Latency is as for Requests, at 2μs. This makes a total
Network delay for responses of (17.8+2) = 19.8μs

The Longest processing time needs to be measured by test equipment or calculated
from simulation of the software or, perhaps preferably, by both. In this example, the
sum of the two network delays, (13.8+19.8) = 34μs plus the target latency of 50μs, is
84μs. With the Period of 200μs, this leaves considerably more than 100μs available
for the processing time.

139

A more complete example of these calculations is given in [5] and is summarized in
Table 2.

Table 2: Calculations of latencies and bandwidth for the traffic shown in Table 1

Virtual
Space-
Wire

Network
(VSN)

Prio-
rity

Period,
μs

Freq-
uency

Number of
requests
in period

(n)

Response
Payload,

Bytes

Worst case
network
delay for
requests

on this VSN
in this

period, μs
(% of

period)

Worst case
network
delay for

responses
on this VSN

in this
period, μs (%

of period)

Shared link
Request
direction
utilization

Shared link
Response
direction
utilization

1 1 200 5kHz 2 20 13.8 (6.9%) 19.8 (9.9%) 5.4% 8.9%
2 2 1000 1kHz 10 50 57 (5.7%) 157 (15.7%) 5.4% 15.5%
3 3 10000 100Hz 25 200 138 (1.4%) 1214 (12.1%) 1.3% 12.1%
4 4 100000 10Hz 50 200 273 (0.3%) 2428 (2.4%) 0.3% 2.4%
5 5 1000000 1Hz 100 200 542 (0.1%) 4853 (0.5%) 0.1% 0.5%
 Real-Time utilization 12.5% 39.5%

6 6 Available bandwidth for (lowest priority) bulk data >80% >50%
 Total network utilization possible >90% >90%

6 MORE COMPLEX SPACEWIRE NETWORKS
The calculations above were done for a single
SpaceWire link, and obviously SpaceWire is used
for more complex topologies, such as the ring
shown at right. A conservative measure (again
worst-case) of both real-time and data throughput
performance could be gained by simply treating
the whole ring as a single SpaceWire link. If that
gives adequate performance, no further work is
necessary. If more performance is needed, each
link between routing switches can be considered
separately — which is still a much simpler
calculation than would be needed for a
conventional time-triggered network.

Figure 3: Ring network using
Virtual SpaceWire Networks

between routing switches

7 REDUCING POWER AND HARNESS MASS
Most current recommendations for SpaceWire are that all the SpaceWire links should
run at the same speed. Otherwise, for a current SpaceWire link multiplexing traffic
between many nodes (as in the main example above), the throughput on the shared
link drops to the throughput of the slowest link. Virtual SpaceWire Networks remove
this dependency, and so permit the peripheral links to nodes or end-points to run at the
appropriate speed for the node rather than for the whole network. Reducing link speed
at the periphery of the network can result in substantial savings of power (and cost).

The major saving in harness mass is from using a single (Virtual) SpaceWire network
instead of one (SpaceWire) network for data and another network/bus for control.
Significant additional savings in harness mass can be gained compared with current
SpaceWire by multiplexing several slow links over one faster link.

140

8 COMPATIBILITY WITH EXISTING NODES
All the examples shown have been with all the nodes being current SpaceWire. No
change to hardware or software is necessary to any well designed node connected to a
Virtual SpaceWire Network routing switch.

9 BENEFITS OF VSN NODES
Nodes that are accessed both for housekeeping and for large volumes of data could
benefit from having access both to high priority traffic for the housekeeping and to
low priority for the data. As described in [3, 4], such nodes could have a separate
SpaceWire link for each priority, or use an extended CODEC that supports two or
more priorities/VSNs. Nodes supporting multiple priorities must separate the two or
more priority levels to prevent priority inversion.

10 FAULT ISOLATION AND RECOVERY
It is possible for a SpaceWire node to block another, by continuously transmitting
(babbling idiot) or by failing to transmit for lack of flow-control credit or other error
such as software stalling. Virtual SpaceWire Networks provide isolation for such
faults:

1. From faults at lower priority: The highest priority Virtual SpaceWire Network
sees an empty network, and is completely isolated from faults in lower-priority
virtual networks. In general any VSN is isolated from faults in any VSN at lower
priority than itself.

2. From faults at the same or higher priority: It might appear from (1.) that faults

on higher priority VSNs are able to block everything at a lower priority. But, as in
our example above, it will be normal for the real-time traffic to take a small
proportion of the overall network bandwidth. VSN routing switches could police
that proportion and discard data from a node that is exceeding the permitted
percentage of bandwidth utilization for that priority level. This would leave up to
80% of the bandwidth available to lower priorities, even in the event of a fault at
the highest priority — bandwidth which could be used to recover from the fault.

3. From faults within a single Virtual SpaceWire Network: Several existing

routing switches perform a gatekeeper function by setting timeouts so that, if a
node is blocked for longer than the timeout, the blocked packet is discarded. It
can be difficult to calculate the appropriate timeout value if the minimum value to
meet one criterion is longer than the maximum value to meet another criterion.
This issue is much simpler to resolve when there is a separate VSN for each
frequency of access, and the timeouts can be set appropriately for each VSN.

11 CONCLUSIONS
We have presented here a simple solution for supporting real-time requirements on a
SpaceWire network. A link speed of 50Mbits/s is amply able to meet the requirements
of 5kHz control loops.

141

The solution can, at the same time and with conservative (worst case) assumptions,
offer well above 50% of the network bandwidth for volume data transfers, that may
use very large packets, while still providing microsecond response times to real-time
traffic.

One of the Virtual SpaceWire Networks could be used for a time triggered protocol.

By replacing only the routing switches in a SpaceWire network, Virtual SpaceWire
Networks provide the following benefits for missions:

• the simplicity in both concept and use of Virtual SpaceWire Networks, with a
corresponding reduction in mission complexity;

• use of a single physical network for both command/control and, separated by a
firewall, for volume data;

• reduction in power consumption, cable/harness mass, and thence cost
• complete compatibility with existing SpaceWire nodes;
• complete compatibility with (and transparency to) higher-level protocols

(including CCSDS, SOIS and PnP) running over SpaceWire;
• consistency with the layering of the SpaceWire standard so that no change is

required to the ECSS SpaceWire standard;
• greatly improved fault-isolation and recovery.

12 REFERENCES
1. ECSS Secretariat, “ECSS-E-ST-50-12C 31 July 2008, SpaceWire - Links, nodes,

routers and networks”, ESA-ESTEC, Requirements & Standards Division,
Noordwijk, The Netherlands

2. B M Cook (4Links) “Virtual Networks”, SpaceWire Working Group Meeting 13,
ESTEC, Noordwijk, The Netherlands, 2009-09-16

3. 4Links, “Virtual SpaceWire Networks”, White Paper, 4Links Limited, UK,
2009-09-03

4. 4Links, “Characterizing SpaceWire Devices and Networks”, White Paper, 4Links
Limited, UK

5. 4Links, “Virtual SpaceWire Networks: Example latency and throughput
calculations”, White Paper, 4Links Limited, UK

142

http://spacewire.esa.int/WG/SpaceWire/SpW%2DSnP%2DWG%2DMtg13%2DProceedings/Presentations%20PDF/4-Links-Virtual-SpaceWire-Networks-presentation-v1.pdf
http://www.4links.co.uk/bibliography/Virtual-SpaceWire-Networks-4Links-WG12-2008-paper.pdf
http://www.4links.co.uk/appnotes/Characterizing-SpaceWire-Devices-and-Networks.html
http://www.4links.co.uk/appnotes/Virtual-SpaceWire-Networks--Example-Latency-and-Throughput-Calculations.html
http://www.4links.co.uk/appnotes/Virtual-SpaceWire-Networks--Example-Latency-and-Throughput-Calculations.html

VIRTUAL CHANNELS, BROADCAST CHANNELS AND SPACEFIBRE

Session: Networks and Protocols

Long Paper

Steve Parkes,

School of Computing, University of Dundee, Dundee, Scotland, DD1 4HN, UK

E-mail: sparkes at computing.dundee.ac.uk

Martin Suess,

ESA, ESTEC, 2200 AG Noordwijk, The Netherlands

Email: martin.suess@esa.int

1 ABSTRACT
SpaceWire is a widely used spacecraft onboard data-handling network, which

operates at up 200 Mbits/s in current radiation tolerant technologies [1]. While ideal

in many respects for onboard data-handling applications it does not have sufficient

data-rate for some applications, does not provide galvanic isolation which is important

for fault detection, isolation and recovery (FDIR), and does not provide quality of

service (QoS) which can make application integration much simpler. Furthermore

SpaceWire networks can suffer from blocking of packet data if they and the data

transfers are not designed carefully. SpaceFibre [2] [3] [4] plans to address these

problems.

This paper first introduces virtual channels and describes how they can be used to

overcome the network blocking problem. SpaceFibre is then introduced, which

provides around 10 times the data rate of SpaceWire. Its virtual channels are then

described, which support several different QoS types, targeted at specific spacecraft

onboard communication needs. A low latency message broadcast mechanism is then

introduced.

2 VIRTUAL CHANNELS
SpaceWire employs a network made up of SpaceWire links and wormhole routing

switches. When a SpaceWire packet arrives at a wormhole routing switch the first

character of the packet determines which port a packet should be routed to. If that

addressed port is available (not currently being used to send another packet) the

incoming packet will be sent out of that port straightaway. This provides very low

latency routing, unless the output port is blocked. When the output port is being used,

the incoming packet has to wait until the output port has finished sending its packet.

The incoming packet is then temporarily stuck, with its tail strung out across the

network blocking other network resources.

The advantage of wormhole routing is that it is very simple and requires very little

buffering in the routing switches. This was a significant consideration when

143

mailto:sparkes@computing.dundee.ac.uk
mailto:martin.suess@esa.int

SpaceWire was being developed because of the limited memory space available on

FPGAs and ASICs at that time.

To overcome the blocking of a wormhole routing switch there are several different

approaches that can be considered, including: packet buffering and virtual channels.

Packet buffering, buffers a complete packet either at the input or the output of a

routing switch. This prevents blocking in the routing switch itself but requires a large

amount of memory for buffering. It also means that one of the advantages of

SpaceWire, completely arbitrary packet length, is lost.

The virtual channel concept is a well know concept for multiplexing multiple sources

of data over a single physical data link, which can be used to solve the packet

blocking problem and to provide QoS support [5] [6]. Data to be transferred over a

single data link from several different data sources is separated into chunks that are

multiplexed over the single data link and then reassembled into the different data

streams at the other end of the link.

One method of multiplexing the SpaceWire packets from several sources over the

data link is to split each packet into small frames each of which contains a channel

identifier. Information for checking for errors (CRC and frame sequence number) can

be added to each frame to support fault detection. The addition of a simple go-back-N

retry mechanism can then be used provide recovery at the link level.

A medium access controller determines which of the virtual channels is to next send

data over the data link. This can be done using fair arbitration, priority arbitration, or

another quality of service mechanism more closely aligned with the onboard data

communication needs. Different quality of service mechanisms can be applied to each

virtual channel.

A virtual channel operates over a single link. There are two ways in which this can be

used at the network level: as an end-to-end virtual channel, or as a virtual network [5]

[6]. The end-to-end virtual channel has one route through a network (with possibly

one or more additional redundant routes) and connects one node to another node, for

example an instrument to a mass-memory unit. A virtual network allows a source

node to send to any node on the network, for example a control processor sending

commands to several different instruments. A SpaceFibre routing switch, routing data

according to its destination address, which uses the same virtual channel number that

the packet arrived on for sending it out, will naturally implement a virtual network.

The end-to-end virtual channel concept can be used to add further FDIR capability

into the SpaceFibre routing switches.

3 SPACEFIBRE
An overview of the SpaceFibre CODEC architecture is provided in Figure 1.

144

SerDes Interface

Link Control Interface

Retry Interface

Serial Interface

Encoding/Decoding Interface

Virtual Channel Layer

Retry Layer

Link Control Layer

Encoding Layer

Serialisation Layer

VC Interface

Frame Interface

Framing Layer

Physical Layer

Lane Control Interface

Lane Control Layer

Broadcast Interface

Broadcast Layer

Figure 1 SpaceFibre CODEC architecture overview

The virtual channel layer and broadcast layer are considered in this paper. A more

detailed block diagram of these layers is presented in Figure 2.

VC,
TX_DATA

VC,
RX_DATA

Frame Interface

32+4

32+4 32+4

32+4

OUTPUT
BUS

32+4 32+4

VC,
RX_FCT

BC,
BR_SEQ#,
RX_BR_DATA

MEDIUM ACCESS
CONTROLLER

VC
 B

U
FF

ER

VC
 B

U
FF

ER

…

DE-MUX

VC
 B

U
FF

ER

VC
 B

U
FF

ER

…

TX FCT
CONTROL

RX FCT
DECODE

…

INPUT
BUS

OUTPUT
VCB

INPUT
VCB

VC Buffering

Flow Control

Quality of Service Control

Virtual Channel Layer

Virtual Channel Interface

Broadcast Interface

VALIDATE
BROADCAST
SEQUENCE #

GENERATE
BROADCAST
SEQUENCE #

VC,
TX_FCT

BC,
BR_SEQ#,
TX_BR_DATA

BC RX_BR
DATA

BR
SEQ#

BC TX_BR
DATA

BR
SEQ#

Broadcast Validation

Virtual Channel Interface

Broadcast
Interface

Broadcast Layer

SEGMENTATION REASSEMBLY Segmentation

Figure 2 SpaceFibre Virtual channel and Broadcast Frame Layers

There are two different types of application interface to the SpaceFibre CODEC: the

virtual channel interface used to send and receive SpaceWire packets, and the

broadcast channel interface used to broadcast short messages across a SpaceFibre

network and to receive those broadcast messages.

The virtual channel interface to the SpaceFibre CODEC comprises a number of

virtual channel buffers (VCBs) for sending SpaceWire packets (output VCBs) and the

same number for receiving SpaceWire packets (input VCBs). The output VCB

145

interface is used to send SpaceWire packets. Conceptually, each output VCB has a

FIFO type interface which can accept SpaceWire data characters and EOP markers.

To send a SpaceWire packet over a SpaceFibre virtual channel, the SpaceWire packet

destination address and cargo are loaded sequentially into the appropriate output

VCB, followed by an EOP. The specific interface to the VCB is application

dependent. Interfaces to the input VCBs are used to read SpaceWire packets that have

been received over the corresponding SpaceFibre virtual channel. Each input VCB

has a FIFO type interface, from which SpaceWire data characters and EOP markers

can be read.

The broadcast channel interface to the SpaceFibre CODEC is used for sending and

receiving broadcast messages. These messages can be used for various functions

including the distribution of time and synchronisation information, network

management, and signalling events that occur in the nodes on the network. The

broadcast interface comprises a set of registers for writing the parameters of a

broadcast message (broadcast channel, broadcast sequence number, and the message)

and a similar set of registers for reading received broadcast messages.

4 VIRTUAL CHANNEL LAYER
The virtual channel layer is responsible for quality of service and flow control over

the SpaceFibre link. It controls the quality of service related to delivery of SpaceWire

packets.

4.1 VIRTUAL CHANNEL BUFFERING

The output virtual channel buffers (VCBs) are used to buffer SpaceWire packet data

before that data is sent over the SpaceFibre link. Data is sent in frames containing up

to 256 SpaceWire N-Chars (data characters, EOPs or EEPs). The output VCBs permit

this amount of data to be buffered before it is offered for transfer over the SpaceFibre

link. Sending the data in frames and buffering data prior to framing, permits efficient

interleaving of many SpaceWire packets travelling through different virtual channels

over the SpaceFibre link.

The input VCBs provide a similar function for the reception of data arriving over the

SpaceFibre interface. An input VCB provides storage for at least one maximum size

data frame to ensure that when it arrives there is room for all the data it contains. The

application using the SpaceFibre CODEC can then read data from the input VCB at

its leisure, without causing loss of data on the SpaceFibre link.

4.2 SEGMENTATION

Data is sent over the SpaceFibre link in a series of data frames which each contain up

to 256 N-Chars. Data in the output virtual channel buffer is segmented for sending

into data frames. Data from received data frames are reassembled to form the original

data stream which is placed in the input virtual channel buffer.

4.3 FLOW CONTROL

To manage the flow of data from all of the virtual channels across the SpaceFibre link

it is necessary to know which output VCBs have data to send at one end of the link,

146

and which input VCBs have space for more data at the other end of the link. Exchange

of this information is performed with credit based flow control: by exchanging flow

control tokens (FCTs) for data frames. The input VCBs are monitored to determine

when they have space for another maximum-sized data frame (up to 256 N-Chars).

An FCT is sent to the other end of the link when a particular input VCB has space for

another data frame. When the FCT is received at the other end of the link it permits

another data frame to be sent over the corresponding virtual channel.

The potential loss of FCTs (along with data frames and broadcast frames) is handled

by a retry layer, which ensures that FCTs cannot be lost unless the link suffers a

permanent failure, in which case it is not possible to use that link any more.

4.4 QUALITY OF SERVICE CONTROL

A medium access controller determines which output VCB is allowed to send data

over the SpaceFibre link. This depends on several things:

 Which output VCBs have data to send;

 Which input VCBs at the other end of the SpaceFibre link have space

available to receive data, indicated by the reception of one or more FCTs for

that virtual channel;

 The arbitration or quality of service (QoS) policy in force for each virtual

channel.

For SpaceFibre several quality of service policies are provided:

 Fair arbitration, where each channel has an equal opportunity to use a link;

 Priority, where the virtual channel with the highest priority goes first;

 Bandwidth reserved, where the virtual channel with allocated bandwidth and

recent low utilisation of the link will go first;

 Scheduled, where time-slots are defined by broadcast messages, and the

virtual channel allocated to the current time-slot is permitted to send data. If

this virtual channel has no data to send then another virtual channel may use

this unused bandwidth opportunistically.

When a virtual channel has data to send in its output VCB and has room for more data

in the input VCB at the other end of the SpaceFibre link, it competes with other

virtual channels in a similar state. The virtual channel permitted to send a frame of

data will be the one with the most urgent need to send data according to the QoS

policies of all the competing virtual channels. The virtual channel layer then passes a

frame of data containing up to 256 N-Chars from the selected output VCB to the

framing layer for sending over the SpaceFibre link.

5 BROADCAST LAYER
The broadcast layer is responsible for broadcasting short messages across a

SpaceFibre network and for receiving and checking those messages.

147

5.1 BROADCAST MESSAGES

A broadcast message is a short message that is sent by a node to all the other nodes on

the SpaceFibre network. Broadcast messages propagate in a similar manner to

SpaceWire time-codes. Each broadcast message contains a broadcast sequence

number which is incremented each time a new broadcast message is sent. When a

broadcast message arrives at a SpaceFibre receiver it is checked for errors and its

broadcast sequence number is validated by comparing it to the broadcast sequence

number of the last broadcast message received with the same broadcast channel

number. The broadcast message is valid if its broadcast sequence number is one more

than that of the previous broadcast message received. Only valid broadcast messages

are passed out of the SpaceFibre CODEC. A SpaceFibre router will forward the

broadcast message out of each of its other SpaceFibre links except the one that the

broadcast message was received on.

5.2 BROADCAST CHANNELS

SpaceWire permits one set of time-codes to be broadcast, although by using the two

flags in the time-code it is possible to have four independent sequences of time-codes

operating concurrently. SpaceFibre broadcast messages permit up to 256 independent

sequences of broadcast messages each of which is referred to as a broadcast channel.

Each broadcast channel has a broadcast channel identifier and its own broadcast

sequence number.

The broadcast channels are split into three types:

 0-31: Network management broadcast channels.

 32-253: Node broadcast channels, with each broadcast channel associated with

a node that has a logical address of the same value as the broadcast channel

number.

 254, 255: Reserved broadcast channels.

The network management broadcast channels are split into two sub-types

 0-3: Time synchronisation, which are used to provide regular and fault tolerant

distribution of system time over the SpaceFibre network.

 4-31: Network control, which are used to support configuration, control, and

FDIR of a SpaceFibre network.

5.3 BROADCAST MESSAGE TYPES

Broadcast messages also carry 8 bytes of data, the first byte of which is a broadcast

type field which determines the meaning of the remaining 7 bytes of data. For

example, when type = TIME, the following seven bytes contain seven bits of time

information. A broadcast message over one of the time synchronisation channels,

would typically be of type TIME and the seven data bytes would contain a system

time value (un-segmented time).

Typically a particular broadcast channel will be used by a specific node to broadcast

information to all other nodes on the SpaceFibre network. This can be used to signal

events that occur in that node to other nodes on the network. Each node can broadcast

over a different broadcast channel.

148

A user application of a SpaceFibre CODEC can subscribe to receive broadcast

messages from specific broadcast channels and of specific broadcast type. In this way

the application will only be notified and receive those broadcast messages that it is

interested in.

6 CONCLUSION
SpaceFibre can provide data rates of 2 to 5 Gbits/s over a single lane, depending on

the SerDes device or technology used, and data rates in excess of 10 Gbits/s or more

over multiple lanes. It can be operated over optical fibre covering distances of more

than 100 m, or over electrical wires using current mode logic (CML) drivers.

SpaceFibre provides galvanic isolation which is very important for fault isolation. It

uses 8B/10B encoding and provides a complete range of quality of service (QoS). It

supports FDIR with data frames, which contain a CRC checksums and frame

sequence number, and a retry mechanism which automatically recovers from

transitory errors without loss of information flowing over the link. SpaceFibre

provides up to 256 virtual channels, and 256 broadcast channels. The broadcast

channel provides low latency signalling capability over a SpaceFibre network,

supporting time-distribution and event indication.

The proposed SpaceFibre standard has a number of benefits compared to SpaceWire:

 Virtual channels to overcome the SpaceWire router blocking problem;

 Broadcast messages to provide low latency messaging, based on an extension

of the SpaceWire time-code mechanism;

 Coherent quality of service mechanisms to support deterministic data delivery

for command and control applications and bandwidth sharing for payload

data-handling applications;

 FDIR support including galvanic isolation, error detection, and error recovery

to prevent fault propagation and to provide rapid recovery from transient

faults;

 Lanes for higher throughput with graceful degradation and hot and cold

redundancy support;

 QoS in the CODEC which provides inherent robustness against a range of

system errors, like babbling idiots.

It achieves these benefits while remaining fully compatible with SpaceWire at the

packet and network level, allowing ready migration of past applications to

SpaceFibre.

7 ACKNOWLEDGEMENTS
The author would like to thank ESA for its support on several projects related to

SpaceFibre: ESA contract number 17938/03/NL/LvH, call-off #2, “SpaceFibre”, ESA

contract number 4000102641 “SpaceFibre Very High Speed Link Demonstrator”,

ESA contract number AO/1-5975/08/NL/LvH “Next Generation Mass Memory

149

Architecture” led by Astrium GmbH, and ESA contract number 4000102660 “High

Processing Power Digital Signal Processor”, led by Astrium Ltd.

8 REFERENCES
[1] ECSS Standard ECSS-E-50-12A, “SpaceWire, Links, Nodes, Routers and

Networks”, Issue 1, European Cooperation for Space Data Standardization,

February 2003.

[2] S.M. Parkes. C. McClements and M. Dunstan, “SpaceFibre Outline

Specification”, University of Dundee, 31st Oct 2007.

[3] S.M. Parkes. C. McClements, M. Dunstan and M. Suess, “SpaceFibre: Gbit/s

Links For Use On board Spacecraft”, International Astronautical Congress,

Daejeon, Korea, 2009, paper IAC-09-B2.5.8.

[4] S.M. Parkes, “ SpaceFibre”, Draft B standard specification, to be published

January 2012.

[5] W.J. Dally and B. Towles, “Principles and Practices of Interconnection

Networks”, ISBN 0-12-200751-4, Morgan Kaufmann Publishers, 2004.

[6] J. Duato, S. Yalmachili, & L. Ni, “Interconnection Networks An Engineering

Approach”, ISBN 1-55860-852-4, Morgan Kaufmann Publishers, 2003.

150

RAPIDIO OVER SPACEWIRE:
BLENDING COMPLEMENTARY PROTOCOLS

Session: Networks and Protocols

Long Paper

Steve Belvin

Honeywell International, Clearwater, Florida, USA

E-mail: stephen.belvin@honeywell.com

ABSTRACT
SpaceWire defines a high-speed interconnect standard for on-board communications

consisting of serial point-to-point links and switches. The protocols used are selected

based on the application. Some protocols have been standardized and others are

under study for standardization. Many of the services desired by users are available

from a single protocol that is part of a full-featured commercial interconnect standard.

RapidIO defines a common transport layer protocol that is independent of the physical

implementation and provides a transport mechanism for several logical layer

protocols. This paper describes the use of RapidIO common transport and logical

layers over SpaceWire packets. After presenting details of the approach and

adaptations, some benefits of using RapidIO over SpaceWire networks are discussed,

along with some observations of fundamental differences between the two protocols.

Work planned to further the definition is also provided.

1 INTRODUCTION
As Space systems increase in complexity and diversity, the communications systems

must be capable of handling more and more capacity while being flexible enough to

carry vastly different payloads. The integration of processing control functions, for

instance, adds additional requirements on communications systems that can only be

met with tighter integration with processing subsystems and flexible payload carrying

capabilities with low processing overhead. Communications systems must provide a

migration path from existing communications architectures to ones that can meet the

demands of new subsystems. To do this, communications systems must offer a range

of services that include, but are not limited to, support for the following.

 Efficient bandwidth utilization. The overhead of the packets should be low.

 Effective bandwidth sharing. Sharing of the network must be enforced

through limited packet size and packet priority.

 Varying payload sizes. The payload requirements of channels may vary from

very small to streaming.

 Low latency. The latency requirements of channels may be uncontrolled,

deterministic or as low as possible.

151

mailto:stephen.belvin@honeywell.com

 Reliable data delivery. Data delivery reliability may vary from best effort to

assured delivery.

 Multiple communications mechanisms. The services of the network should be

available from multiple communications mechanisms, including simple reads

and writes, doorbells, messages and streaming.

SpaceWire [1] offers a versatile interconnect standard for on-board communications

consisting of medium-speed (2 to 400 Mbps), duplex, point-to-point, serial data links

between nodes. Routers are used to interconnect nodes in a network. Nodes are

connected using a simple packet stream service and control characters are used to

manage the flow of data. Restrictions on the packet length and mechanisms for

reliable delivery are not defined. In order to introduce additional services to the

network, users select upper level protocols with the desired services. A protocol

identifier is used to distinguish between the various protocols. One standardized

protocol offers simple reading and writing memory of a remote node, as well as

network configuration and node control. Another protocol encapsulates CCSDS

packets into SpaceWire packets.

An internationally certified interconnect standard called Serial RapidIO [2] offers

high-speed (1.25 Gbps to 6.5 Gbps), duplex, point-to-point, serial data links between

nodes. Similar to SpaceWire and other switch fabric interconnects, it uses switches to

interconnect nodes. The standard is defined in three layers: physical, transport and

logical. A component from each layer must be present to communicate. The physical

layer defines the electrical signalling, 8B/10B coding, packet and flow control

characters, packet transport mechanisms and link-level error management. The

transport layer defines the node addressing and packet priority information. The

logical layer defines the packets formats and how they will be used to transfer

information. The common transport layer supports multiple physical and logical layer

definitions.

With the help of an adaptation layer, the RapidIO common transport and logical

layers may be used over SpaceWire (as a physical layer) to form a RapidIO over

SpaceWire endpoint protocol stack. The RapidIO adaptation layer bridges the two

protocols without requiring alterations to either one. The result is a method of reliably

exchanging information between RapidIO endpoints using SpaceWire networks. This

paper defines an approach to combining the two interconnect standards and identifies

features that would improve the quality and reliability of the result.

2 COMMUNICATIONS LAYERS
In order to understand the services users need, we take a brief look at the common

protocol stacks used by SpaceWire and RapidIO. The services provided by the

SpaceWire protocols are compared with those available from RapidIO. This provides

the foundation for discussing the RapidIO adaptation layer features needed to support

these services. It also leads us into the presentation of a communications architecture

based on the RapidIO over SpaceWire protocol stack. The discussion that follows is

not intended to be a complete introduction to the protocols discussed and references

are provided for more details.

2.1 SPACEWIRE PROTOCOL LAYERS

152

SpaceWire provides an interconnect standard in support of transferring payload data

and control information. The ECSS-E-ST-50-12C [1] standard provides definition of

physical, transport and logical layers in support of a stream service using First-In,

First-Out (FIFO) buffers at the transmitter and receiver as the typical structure for data

buffering. Link level flow control mechanisms are defined to avoid FIFO overflow

errors at the receiver. No negotiation method is provided to reserve data storage or

processing at the receiver. Path routing using router output ports and logical

addressing using unique end point logical addresses are defined. Extended logical

addressing is defined for packets that move between network regions. Error detection

and reporting is defined but reliable delivery of data is not.

Various protocols may be used to form a SpaceWire network. A set of protocol

standards, referred as the ECSS-E-ST-50-5x series, define some these protocols while

others like the General Access Protocol (GAP) are defined and managed by other

organizations. The ECSS-E-ST-50-51C [3] standard defines a protocol identifier

header used to identify the protocol that constructed a packet. Two examples of these

protocols are Remote Memory Access Protocol (RMAP) and Consultive Committee

for Space Data Systems (CCSDS) Packet Transfer Protocol (PTP). A diagram

showing these two protocol layers is provided in Figure 1.

SpaceWire

RMAPCCSDS PTP

User Application

SpaceWireSpaceWire

RMAPCCSDS PTP

User Application

Figure 1. SpaceWire Protocol Stack

The RMAP defined in ECSS-E-ST-50-52C [4] is a protocol that works over

SpaceWire to provide a mechanism for reading and writing memory of a remote node,

as well as network configuration and node control. Memory addresses must be 32-bit

aligned and the length must be a multiple of four bytes. Responses to memory read or

write requests are optional and contain the operation status. Partial implementation of

RMAP operations is permitted. Both SpaceWire and RMAP offer best effort

delivery. Error detection is provided but there is no defined mechanism for

recovering lost or erroneous data. Verification of network operations results in

wasted bandwidth and user application processing.

CCSDS packets may be transferred over SpaceWire networks using the CCSDS

Packet Transfer Protocol. As defined in ECSS-E-ST-50-53C [5], variable length

CCSDS packets are encapsulated in a SpaceWire packet. As with RMAP, both

SpaceWire and CCSDS PTP do not offer specific quality of service. The timing and

reliability of delivery are not part of the services provided.

2.2 RAPIDIO PROTOCOL LAYERS

The RapidIO Common Transport Specification [6] provides logical addressing of the

source and destination endpoints in the form of Source and Destination Identity fields.

These fields may be either 8 or 16 bits in length. Path routing is not supported so

153

network switches maintain routing tables. The logical layer may consist of one or

more protocols defined and managed as part of the overall RapidIO specification.

Payloads range from 1 byte to 256 bytes. Response packets are very similar to

request packets. Lost packets are detected through a packet timeout counter and

retransmitted.

Three examples of RapidIO logical layer protocols as shown in Figure 2 are the

Input/Output (I/O) Logical Layer, the Message Passing Logical Layer and the Data

Streaming Logical Layer. In addition to the logical layer protocols, extensions such

as error management and flow control are provided. Where additional information or

guidance is needed, it is defined in the form of annexes such as system initialization

and session management.

RapidIO Common Transport Layer

I/O Logical ProtocolStreaming Logical Protocol

User Application

Message Passing Protocol

Figure 2. RapidIO Upper Layer Protocols

The RapidIO I/O Logical Layer Specification [7] defines packets used for performing

read, write and read-modify-write operations that are independent of the bandwidth or

latency of the physical layer. Varying data sizes from very small (byte granularity) to

Direct Memory Access (DMA) style operations are supported, with a local address of

34, 50 or 66 bits. Efficiencies greater than 90% are possible using 256 byte payload

writes [8]. Partial implementation of the I/O Logical Layer is permitted.

In multiple processing systems where access to address space is not desired, RapidIO

defines a messaging service in hardware in the Message Passing Logical Layer

Specification [9]. The messaging service defines messages and doorbells (which are

equivalent to Message Signalled Interrupts). Messages are handled by hardware

mailboxes at the destination. Messages up to 4-kByte are supported and, where

payloads exceed 256 Bytes, segmentation and reassembly are supported in hardware.

A message may consist of up to 16 packets. Messaging supports a reliable, efficient

means of communicating between processing systems and is commonly found in

RapidIO networks.

Data streaming supports data plane applications with multiple protocols that are

sensitive to latency and less sensitive to loss. The Data Streaming Logical

Specification [10] supports Protocol Data Units (PDUs) of lengths from 1 byte to 64-

kByte with segmentation and reassembly in hardware. Hundreds of traffic classes and

thousands of data streams are supported, allowing multiple PDUs to be transferred

between a source and destination at one time. Data streaming is a relatively new

logical layer definition and is not supported in legacy systems.

2.3 RAPIDIO ADAPTATION LAYER

154

The RapidIO Adaptation Layer allows the use of RapidIO common transport and

logical protocol layers to be used over the SpaceWire protocol layer defined in ECSS-

E-ST-50-12C [1]. With this added layer, SpaceWire networks and RapidIO networks

may be connected to form a larger, fault-tolerant network that provides a full set of

features and services. In order to connect SpaceWire and RapidIO networks together,

the RapidIO Adaptation Layer must perform the specific functions.

Support SpaceWire Protocol Identifier. The use of RapidIO common transport

layer will be identified in the Protocol Identifier as defined in ECSS-E-ST-50-51C

[3]. Protocol Identifier values are assigned by the SpaceWire Working Group.

Network Address Mapping. The network address must be mapped from the source

protocol to the target protocol. RapidIO supports logical addresses and does not

support path addressing. Path addressing requires every host to know the path to

every other host. The use of path addressing is not desired in large, extensible

networks. While network-unique logical addresses are preferred, path addressing is

also supported. Where 16-bit logical addresses are used, the SpaceWire extended

address will be required. Support for regional logical addressing has not been

defined.

Packet Delivery Handshake. A packet handshake mechanism is used to insert

packets into the fabric and extract them from the fabric.

Packet Integrity Check. A link level error checking feature is used to ensure packet

integrity. This involves adding a CRC at the transmit side and deleting it at the

receive side. Erroneous packets should be retransmitted.

Packet and Transaction Delivery Controller. Packet delivery ordering rules must

be maintained based on priority, especially under exception processing such as

retries.

End-to-end Acknowledgement Counter. An end-to-end level timeout counter is

used to detect the lack of acknowledgement on the link and is treated as an

acknowledgement error.

Control and Status Registers. Registers that control the functions and provide

status are required. These registers should support the features of the RapidIO

physical layer to be compatible with the RapidIO registers.

3 COMMUNICATIONS PROTOCOL STACK
In order to design a communications architecture, multiple views are required. One

view is the protocol stack for a single endpoint including software drivers and the

communications application programming interface. The RapidIO over SpaceWire

endpoint communications architecture is shown in Figure 3. Since most onboard

interconnects consist of multiple processors running both homogeneous and

heterogeneous hardware and operating systems with synchronization mechanisms that

manage control and data traffic, a bias toward a message passing interface is given.

Initial support of streaming in legacy systems is expected to be using message

passing. As time goes on, systems will begin to fully support streaming.

155

RapidIO Common Transport Layer

I/O Logical Protocol

Streaming Logical Protocol

User Application

RapidIO Adaption Layer

Message Passing Protocol

SpaceWire Layers

SpaceWire Network

RapidIO Low Level Driver

Transport Driver

Inter-Proc & Sync Comms API

Figure 3. Complete RapidIO over SpaceWire Protocol Stack

3.1 RAPIDIO OVER SPACEWIRE BENEFITS

Some of the benefits that RapidIO over SpaceWire offers embedded systems are listed

below.

Complementary Protocols. The definition of RapidIO into three protocol layers, the

independence of the common transport layer from the physical layer and the low

protocol overhead make RapidIO a good choice for upper layer protocols. The multi-

gigabit transmission rates, complex physical layer features and extreme environments

of applications combine to make the effective cost of implementation of the RapidIO

physical layer very high. SpaceWire with its lower transmission rates and lightweight

physical layer allow for implementations with significantly lower area. The error

control mechanisms of RapidIO help make up for the lack of low-level error control.

Low protocol overhead. The low protocol overhead of RapidIO keeps network

utilization high.

Future Growth. RapidIO was developed by the RapidIO Trade Association

consisting of over 30 members from industry leaders to small companies. RapidIO

over SpaceWire uses the common transport layer, providing access to all logical

layers defined by the standard.

156

Ease of Implementation. By keeping as many of the protocols compatible with their

respective standards, intellectual property may be used without modification for

nearly all of the RapidIO and SpaceWire functions.

3.2 SUGGESTIONS FOR IMPROVED INTEGRATION

When comparing the services offered by RapidIO and SpaceWire, the following

differences were noted.

 Error recovery mechanisms. Error sources in SpaceWire networks include

header or data errors, loss of packet and erroneous packet detection with EEP

appended. SpaceWire reports errors but does not have reliable delivery at the

link level. RapidIO supports reliable delivery at the link level by sending retry

control symbols back to the sender on erroneous packets. Timeout counters

detect loss of a packet and invoke retransmission. Note that the RapidIO

Adaptation Layer adds the RapidIO error detection and retries for end-to-end

reliable packet delivery. It also provides for reporting these errors.

 Packet Prioritization. Links carry packets of varying priority. RapidIO

supports four priority levels for packet ordering and deadlock prevention.

Switches use the priority filed to make output port arbitration decisions.

SpaceWire does not support packet prioritization at the routers. Packet-based

priority supports making response packets of higher priority than request

packets and some data streams from the same sender higher than others. The

RapidIO Adaptation Layer may support prioritization of packets delivered to

the SpaceWire network for each logical flow.

 Flow control. RapidIO supports high level flow control using XON and

XOFF at the logical layers to manage congestion. Also, receiver buffer status

feedback allows transmitters to control data flow. These services are not

available in SpaceWire.

 Segmentation and reassembly. Segmentation supports many data flows. Out-

of-order reassembly reduces network traffic by allowing selective retries.

RapidIO message passing supports hardware based out-of-order reassembly.

 Error management extension. RapidIO provides an error management

extension to the basic protocol that provides added error condition and devices

status reporting. This extension is useful to many onboard applications.

 Extensions for specific applications. RapidIO provides extensions for specific

types of network users such as synthetic aperture radar applications.

4 FUTURE WORK
The RapidIO over SpaceWire protocol stack presented here focused on data and

control communications. It did not cover some important aspects of defining a

complete communications solution. Areas of further study include the following.

 Refinement of the RapidIO Adaptation Layer functions.

 Improved network addressing definition.

157

 Initialization and maintenance of the network.

 Distribution of time information.

 Communication channel types (asynchronous, connected) for API definition.

 Support for SpaceWire Plug-and-Play.

The current effort is focused on developing a model a SpaceWire network with an

endpoint that includes a RapidIO protocol stack. After refining the SysML models,

simulation in SystemC will be used to further define the functions and incrementally

add features of the RapidIO Adaptation Layer.

5 REFERENCES
1. ECSS, “Space Engineering: SpaceWire - Links, nodes, routers and networks”,

EECS-E50-12C, 31 July 2008.

2. RapidIO Trade Organization, “RapidIO Interconnect Specification Part 6: LP-

Serial Physical Layer Specification”, Revision 2.2, June 2011.

3. ECSS, “Space Engineering: SpaceWire protocol identification”, EECS-E50-51C,

5 Jan 2010.

4. ECSS, “Space Engineering: SpaceWire - Remote memory access protocol”,

EECS-E50-52C, 5 Jan 2010.

5. ECSS, “Space Engineering: SpaceWire - CCSDS packet transfer protocol”,

EECS-E50-53C, 5 Jan 2010.

6. RapidIO Trade Organization, “RapidIO Interconnect Specification Part 3:

Common Transport Layer Specification”, Revision 2.2, June 2011.

7. RapidIO Trade Organization, “RapidIO Interconnect Specification Part 1:

Input/Output Logical Layer Specification”, Revision 2.2, June 2011.

8. RapidIO Trade Association, “RapidIO, PCIExpress and Gigabit Ethernet

Comparison: Pros and Cons of Using Interconnects in Embedded Systems”,

Revision 3, May, 2005.

9. RapidIO Trade Organization, “RapidIO Interconnect Specification Part 2:

Message Passing Logical Layer Specification”, Revision 2.2, June 2011.

10. RapidIO Trade Organization, “RapidIO Interconnect Specification Part 10: Data

Streaming Logical Layer Specification”, Revision 2.2, June 2011.

158

 1

SpaceAGE Bus: Proposed Electro-Mechanical Bus for Avionics Interconnections

Session: Networks and Protocols

Long Paper

Glenn P. Rakow, Eric T. Gorman

NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

Alexander B. Kisin

MEI Technologies / NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

E-mail: Alexander.B.Kisin@nasa.gov Glenn.P.Rakow@nasa.gov Eric.T.Gorman@nasa.gov

ABSTRACT
This paper will describe a proposal for a standard that is being solicited to national space agencies, US

government agencies, international industry and academia for feedback in order to develop consensus

for an intra-box electrical and mechanical Printed Wiring Board (PWB) interface.

This PWB standard will be the building block element to develop avionics boxes and systems for a wide

range of requirements and will show advantages over the current traditional approach. Firstly, the

proposed standard requires no strict connector tolerances typical of backplane designs but rather the

boards are cabled together externally using matched impedance, shielded, blind mating connectors.

Secondly, the standard defines a serial communication physical interface that can support many popular

protocols. Thirdly, the mechanical chassis design is not dependent of the number of PWBs required, as

each PWB(s) integrates a portion of the overall mechanical box chassis design. Fourthly, the PWBs are

inherently EMI and thermally compatible with each other as isolation exists in these realms allowing

random integration of different cards within a box without the need for additional box level

qualification. And lastly, the standard defines a common module (or HUB) that provides all the typical

common functions for a suite of PWB modules in an avionics box to reduce the overhead if each PWB

had to provide their own. These functions include the intra-box communications HUB, inter-box

communications interfaces, primary power isolation and secondary power switching to the cards within

the box; and the computational capabilities.

It is expected that suppliers of hardware built to this specification will allow avionics systems to be more

rapidly architected and constructed to support centralized and distributed Integrated Modular

Architecture (IMA) applications, allowing the leveraging of products across the entire aerospace

community. This architecture will also support the distribution of software tasks across multiple

processors if desired. The proposed standard is applicable to 90% of space missions and is targeted to

habitable, as well to all classes of robotic spacecraft; the only class where this standard may not be

useful are nano-satellite applications where high level of integration for optimization is required.

1 INTRODUCTION
The SpaceAGE Bus is intended to specify a standard method of integrating Printed Wiring Board

(PWB) level building block modules into avionics boxes, i.e. focus on intra-box interfaces only. The

box-to-box or inter-box interfaces for the system level defines the architecture and any architecture can

be supported with the SpaceAGE Bus building blocks, similar to Lego’s building different structures.

159

mailto:Alexander.B.Kisin@nasa.gov
mailto:Glenn.P.Rakow@nasa.gov
mailto:Eric.T.Gorman@nasa.gov

The SpaceAGE Bus was closely designed with spacecraft software architects to provide many unique

benefits, including distribution of software, based upon the NASA/GSFC component based software

design, core Flight Executive (cFE) using a Hypervisor on the HUB (common module) processing

resources to time-space partition NODE related software functions. This approach has been developed

to support the Distributed Integrated Modular Avionics (DIMA) architecture.

The SpaceAGE Bus defines intra-box (backplane) interfaces and not protocols, which allows the

bridging of different protocols at one point (HUB) without significantly affecting the design. Interfaces

are complete for a broad range of intra-box applications and minimized through serial communication

and single voltage distribution.

Great attention was spent upon the mechanical aspects to reduce tolerances and provide flexibility in

module height. Elimination of unique backplane designs and mechanical chassis that drive Non

Recurring Engineering (NRE) through development and integration were met, as well as providing for

isolation between modules both thermally and for EMI.

2 INTRA-BOX ELECTRICAL INTERCONNECTS
Currently a majority of space avionics data buses for CPU based Control and Data Handling systems

(C&DH) are just commercial standards, which utilize parallel half duplex data buses (VME, cPCI, etc.),

and low voltage power distribution. For space systems where Space, Weight and Power (SWaP) and

efficient use of resources are important, better backplane implementations are possible.

Disadvantages of the current backplane implementations include: inability for concurrent bus

operations; power cross talk among loads; high Common Mode Voltage (CMV) for single ended

signals; incompatibility for reuse with other systems because of user defined signals; limited distances

between boards and limitations of board height, which greatly effects connector real estate; difficulty in

fault isolation between modules; and difficulty in EMI shielding.

A classical diagram of parallel bus is shown in Figure 1 below.

Figure 1 – Classical C&DH Bus Architecture Figure 2 – SpaceAGE Bus C&DH Architecture

3 SPACEAGE BUS OVERVIEW
The SpaceAGE Bus will provide a low SWaP alternative to classical intra-box (backplane) buses used in

today Spacecraft (S/C) avionics. It will eliminate shared parallel buses and low voltage distribution, and

instead will provide each load with a dedicated high speed (Gigabit) serial full duplex differential

Isolated
Power

Converters

Load
Card 1

Classical C&DH Architecture

Prime 28V Bus Voltage
Shared secondary voltages bus

CPU
Card

Load
Card 7

Shared parallel multi-drop half-duplex
data bus

160

interconnect, and will distribute a single higher voltage (as compared to digital) to reduce load currents

and system CMV. The ability to isolate power between modules will greatly reduce internal system

crosstalk.

A suggested SpaceAGE Bus diagram is shown in above Figure 2.

3.1 MODULE TYPES
The whole system is designed using a star-like architecture: central part, called HUB, and peripheral

part, called NODE. Each module will contain 1 or 2 of 6U 160mm size cards, dependent upon

application, which through a trade study was found to be generically the optimal size for space

electronics.

Theoretically, the SpaceAGE Bus does not restrict number of PWBs per module, but if more real estate

is necessary, the use of a daughter card is the most straightforward implementation. Also the modules

height (thickness) is not specified to accommodate connector real estate and tall components.

All PWBs are integrated into their module’s card frame, which has direct thermal heat path to base plate.

As an option, the card frame has the ability to be 100% EMI shielded. Only the intra-box interconnects,

HUB-NODE and HUB-HUB are defined by the SpaceAGE Bus, which occupy one side of the modules

card frame and each module has 2 sides for user defined interfaces.

3.2 HUB DESCRIPTION
The HUB contains the common functions for each avionics box, i.e., backplane and the common

external box interfaces. Depending upon the redundancy requirement there may be 1 or 2 HUBs per

avionics box. Specifically, the HUB provides the following functions: primary data processing

capabilities (micro-controller or micro-processor), intra-box (backplane via hub) and external links

(vehicle control bus) communications, power distribution for each NODE’s internal functions, analog

telemetry conversion for itself and all NODEs, and finally, clock synchronization and distribution. In

general, it has 2 PWBs, one digital that resembles a Single Board Computer (SBC), and one analog for

power distribution and analog conversion. It will be packaged in a dual PWB enclosure and consume

between 5 - 20W depending performance.

3.3 NODE DESCRIPTION
The Node contains user specific functions required by the avionics box. The collection of nodes

together with at least one HUB comprises an avionics box. Electrically, the SpaceAGE Bus defines for

the NODE, the quantity and type of intra-box connectors. Mechanically, it defines the NODE’s height

and depth (board area), while width (height) dimension is flexible. All NODE intra-box interfaces are to

the HUB. If NODE-to-NODE communications is required, the communications is switched via the

HUB.

Power for a NODE other than power necessary for conversion to internal voltages is provided as an

external user interface into the NODE, i.e., power switched by the NODE for pyro initiation, heater, or

valves, etc., is provided from external source directly to NODEs user interface.

Although not specified by the SpaceAGE Bus, it is envisioned that the NODE modules will be

partitioned along subsystem boundaries and contain multiple functions for a particular subsystem. For

example if a distributed avionics system is architected, the SpaceAGE Bus may be used to implement a

Remote Interface Unit (RIU). In a distributed avionics system, the RIUs would be placed close to the

161

effectors and sensors to which they interface in order to reduce harness mass. Instead of dedicating one

(1) single subsystem functionality within a avionics box, a more efficient use of resources would be to

allow different subsystem NODE modules to reside in the same avionics box thus reducing the overhead

of HUB modules. This isolation of NODEs on subsystem boundaries is carried over to the software

where a time-space partition (hypervisor) may run on the HUBs micro-controller (or processor) to

protect the different subsystem functions from each other. This will especially be important for

integration of the NODEs within a SpaceAGE Bus, especially if the number and type of NODE modules

is not a priori known. The average power consumption of each NODE will vary greatly depending

upon its function, e.g., memory versus heater driver, but the average power for the digital functions of

the NODE is limited by the current carrying capacity of SpaceAGE power service, which is de-rated to

1.5 Ampere at between 16V to 40V bus voltages.

3.4 REDUNDANCY CONFIGURATIONS
Unlike commonly used commercial busses adapted for space applications, where redundancy is not

inherently designed in, the SpaceAGE Bus is designed with redundancy architecture in mind. Two (2)

types of hardware redundancy can be implemented at the box level: a) complete dual redundancy, where

2 independent strings of HUB/NODEs networks never intersect within each other, i.e., 2 HUBs per box

and each NODE consists of 2 totally isolated identical entities; and b) cross redundant network also

consisting of 2 HUBs and dual entity NODEs, with the addition of both HUBs talking to each other

through crossed communication links and exchange clocks (Figures 2 and 3). A variation of cross

redundant network is where the 2 HUBs are cross strapped to a single NODE where graceful

degradation is acceptable. Both above intra-box redundancy schemes will require dual identical intra-

box connectors per NODE.

Even for dual redundancy mode where HUBs are not cross-strapped to the other side’s NODEs, cross-

strapping between HUBs can be implemented because of the electrical, thermal and EMI isolation

between HUBs: a failure of one side of a NODE will not jeopardize the mission because its mirror

image entity will be able to communicate with its own HUB which will send all required information to

a peer HUB which serves failed NODE. If redundancy is not required, then NODE may contain only 1

connector served by a dedicated HUB, thus reducing total cost, weight and power consumption.

3.5 INTRA-BOX NETWORK ARCHITECTURE

Figure 3 – SpaceAGE Bus HUB-to-HUB and HUB-to-NODE Connections

Complete network architecture will consist of the following signal domains (see Figure 3 and Appendix

A for more details):

162

a) Power: The HUB will distribute 16-40Vdc power to the NODE for digital power regulation.

The connector supports the ability to cross-strap power to redundant NODEs. The voltage was selected

to be higher than digital voltages to reduce the current and provide greater tolerance to ripple.

The distributed voltage to each NODE can be isolated or non-isolated. If isolated, the DC/DC converter

resides at each NODE. If non-isolated voltage is distributed to the NODEs (isolation at HUB) then

switching Point-of-Load (PoL) and linear converters reside at the NODE. Consideration for current

loops and CMV needs to be taken into account for the particular implementation. The initial prototype

for the SpaceAGE Bus will use isolated DC/DC converters on each module.

Power distribution switches will be able to power up or down each NODE independently depending on

operational requirements. The power capability supported is 1.5 A de-rated per NODE at 16-40V, but it

is expected based upon the card frame thermal design that the power should not exceed 30W. If S/C bus

uses higher voltages (e.g., 120V, etc.), there are several ways to handle this scenario. Either provide the

isolating converter in the HUB, or provide a step-down converter external to the HUB.

b) Communication: Each HUB/NODE link consists of full duplex serial interfaces based on

applicable user defined protocols. Only the physical layer is defined, which is 2 unidirectional

differential signals in each direction. This scheme requires clock and data to be line encoded on the

same signal, e.g., 8b/10b or Manchester, etc. However, synchronous clocked protocols are also

allowed, using HUB clock.

The advantage of this approach is that it does not require all NODEs to conform to the highest

conceivable signaling rate for the worst case application, so NODE application may be optimized. For

example, if the NODE is just for driving valve solenoid coils, heaters, or gathering telemetry, etc.

which is a low data rate application, then 1 Mbps Manchester encoding is sufficient. If another NODE

is a memory module for data recorder that is connected to a Gigabit rate instrument then, an 8b/10b line

encoding would probably be used with a protocol such as Gigabit Ethernet, Rapid IO or SpaceWire II

as possible examples. The important point is the bridging between different communication protocols

between NODEs (and to the external interface as well) is done at the HUB switch, which will most

likely be implemented in a reprogrammable FPGA. It is expected that the communication interface will

be capable of supporting Gigabit rates (up to 3.25 Gbps) with a defined number of services for lower

rate interfaces, possible configurable as to the mix. It is expected that 1-2 Gbps LVDS interfaces will

be supported (configurable via jumpers and re-programming).

c) Clock: The clock signals are sourced from the HUB to each NODE. Two (2) types of system

clocks are defined by the SpaceAGE Bus. The first is a NODE non-dedicated clock with a frequency

and function that is defined by the NODE end user. Examples for this clock may include

communication clock between HUB and NODE, which can be used in conjunction with the

communication interface (data signal); events synchronization clock, combination of both, etc. The

clock frequency should not exceed 200 MHz. Because this clock function is user defined, it even can be
used as an additional communication link from HUB to NODE.

The second, clock is a single frequency used to synchronize the NODE switching power converters. To

reduce total EMI noise levels, converters for other NODEs can also be synchronized to this frequency.

This synchronization frequency is common for all NODEs and will be defined by system requirements,

depending on selected power converters. It is expected to vary from 200 to 800 KHz.

d) Analog Telemetry: All existing spaceflight adapted buses do not provide this function as

standard, however it is required on the majority of S/C, thus forcing designers to create special

163

telemetry cards and uniquely customizing non-defined pins of standard commercial buses, while

providing a low protection against environmental digital noise. The SpaceAGE Bus will have a

solution for this by providing a standard differential analog interface. Each HUB will contain a filtered

multichannel data acquisition converter system. It is expected to easily achieve an accuracy of 0.1%

for most telemetry signals. Each NODE will get a single dedicated HUB telemetry channel. In its turn,

each NODE shall contain either simple analog signal conditioner with built-in channel analog

multiplexers, where each channel will be controlled by HUB-to-NODE command; or, if no NODE

analog circuitry is desired, just a single thermistor (e.g. AD590): to report NODE’s temperature.

However, if NODE requires a full featured analog telemetry system with its own A/D and D/A

converters, etc. – the SpaceAGE Bus architecture does not prohibit this either.

It is expected but not required that each HUB will provide a comprehensive range of internal telemetry,

including measurements of each NODE’s input bus voltage and consumption current.

e) Auxiliary: Three (3) types of auxiliary signals are provided by the SpaceAGE Bus, these include

Reset, Sense, and Power Fail.

The Reset signal is sourced by the HUB to each NODE to perform a warm reset. The HUB may reset

each individual NODE either by a certain operational condition (e.g., lack of time based NODE

responses), or by an external command.

The Sense signal is sourced from each NODE to the HUB(s). The functionality of a Sense signal is as

follows: the SpaceAGE Bus is designed to allow hot plugging and unplugging of any HUB or NODE

without jeopardizing adjacent SpaceAGE Bus NODE or HUB module. This is achieved by

implementing sense switches which will be mechanically engaged or disengaged by HUB/NODE

special assembly torque bolt; this will “tell” the HUB’s avionics to apply or cut power and other

electrical links to a NODE module, which is already plugged and secured in its allocated slot, or about

to be unplugged from its slot. This feature will be very desirable for human handling where avionics

interchangeability may require continuous operation of other bus modules, as well as for integration

and test (I&T) phase of avionics assembly process: to eliminate human errors by handling “hot” units.

The Power Fail signal is sourced from the HUB to each NODE and will notify the NODE that the

input power is about to “die” in TBD μS and that NODE has to prepare itself for this situation.

Because HUB may contain a non-volatile memory, each NODE may send HUB its important

information for secure safekeeping.

3.6 HUBS CROSS CONNECTIONS
As previously mentioned, 2 HUBs may be used if a cross redundant architecture is required. Both

HUBs will talk to each other using the HUB’s manufacturer defined full duplex synchronous serial

LVDS based protocol with data rates up to 200Mbps. This is considered to be a backbone

communication link and is not end user re-programmable.

In addition, one of the HUBs, designated as Master, may supply its Sync clocks to a Slave HUB

(defined by an externally placed harness jumper), so a whole C&DH assembly will be synchronized to

one clock frequency and have single clock source for DC/DC converters. Both HUBs will also be able

to reset each other either by functionally defined condition (e.g., lack of communication for a TBD

period of time from an adjacent HUB), or by an external command.

A suggested routing of all interfaces is shown in Appendix B of this document.

164

3.7 CONNECTORS
The SpaceAGE Bus uses external harness for intra-box signal interfaces, instead of the more traditional

PCW based backplane. This approach allows for quick design of avionics boxes from module building

blocks because of the elimination of Non Recurring Engineering (NRE) cost associated with traditional

design of backplanes, mechanical chassis and software to streamline integration. It eliminates additional

volume and weight which is always associated with backplane PWB and take away distance between

cards constraints. By using 100% EMI shielded metal shell connectors with protected pins inserts, thus

creating a true Faraday chamber around harness, the need of an overall EMI box shield is eliminated too.

As a base approach a ruggedized D-sub quadraxial connectors from Sabritec Inc. were selected.

The suggested connectors are quadraxial cable connectors containing two 100

Ohms impedance matched pairs per insert with the shield carried through the

insert, which provides a continuous EMI shield for all signals.

In addition, by using AWG24 wires and having high isolation between pins, these inserts will also

satisfy voltage and current distribution requirements for up to 50Vdc with 1.5A per pin after derating.

Two (2) types of connectors will be used; 4 position quadraxial inserts (shown) for the NODE and 16

quadraxial inserts for the HUB.

3.8 HUB PORTS
a) Intra-box ports: Each HUB will contain 2 intra-box connectors with 16 quadraxial inserts each,

for a total of 32 inserts: 28 of them to create 7 groups for a dedicated interface for up to 7 NODEs. The

remaining 4 will be used for cross connections with a redundant peer HUB if redundancy is required.

Cross HUB connections will be used for HUB high reliability operations. All unused NODE interfaces

will be disabled by HUB.

b) External ports: Each HUB will contain the user defined connectors for the vehicle control bus

used for spacecraft command and control. This interface is not defined by the SpaceAGE Bus. It will

also contain the S/C power interface for module internal power (not pass through power).

c) Debug ports: It is recommended that each HUB contain a single debug connector (located on

top of HUB unit), which will allow on-board FPGA testing and internal memory up/downloads.

 Table 1. Proposed HUB Ports

3.9 NODE PORTS
 Each NODE will contain at least 1 back side connector with 4 quadraxial inserts for single redundancy

scheme; for double redundancy 2 connectors are required. Each connector will provide NODE with all

required links with one of the HUBs. All user specified connectors (of any kind) may occupy empty

area on top or front of a NODE module.

Back (SpaceAGE bus) Front (S/C links) Top (mostly for debug)

Number of ports 8: 7 NODEs + 1 Peer HUB 6: 4 + 2 SpaceWire 2

Physical Interface Buffered LVDS or AC coupled CML SerDes Buffered LVDS

Duplex Full Full Full

Speed range 1Kbps to 3.125Gbps (up to 100Mbps for SpW) 10Kbps to 100Mbps

Additional Sync clock Yes No No

Protocols Any type sync or async Any async + SpW Async + 10M Ethernet

In-flight re-configuration Yes (except Peer HUB) Yes (except SpW) Yes (if used for flight)

State when not used Hi-Z Hi-Z Hi-Z

Multidrop network use No Possible (to 400Mbps) No

165

4 MECHANICAL OVERVIEW

4.1 GENERAL
The SpaceAGE mechanical design is aimed at reducing the Non-Recurring Engineering (NRE) costs of

design through elimination of a unique PWB based backplane and mechanical chassis designs. It

therefore allows modules to be assembled without prior knowledge of number and type. It also provides

thermal isolation between modules and optional EMI isolation between modules.

The SpaceAGE chassis is comprised of individual Aluminum 6061 modules containing PWBs of

Eurocard form factor 6U (160mm x 233mm) that are individually packaged and are fastened to a

backplate assembly and to each other (Figure 4).

Figure 4 – SpaceAGE Assembly & Coordinate System Figure 5 – Module w/2 PCBs Assembly

4.2 MODULE MECHANICAL DESIGN
Based on design and volume requirements the user can select a module that can house either one (1) or

two (2) 6U 160mm PWBs. Each module contains an integrated stiffener design that provides structural

rigidity as well as an additional heat path. The module contains additional space between the PWB

mounting area and the outer wall, which allows additional room for either a flex PWB or floating lead

connectors and the required wire harness. Modules that contain 2 PWBs have an integrated stiffener that

is thicker. This allows PWBs to be bolted to both sides of the stiffener. All PWBs allow double sided

component assembly. PWB assembly of the double module can be seen in above Figure 5.

The PWBs are mechanically fastened to the integrated stiffener using steel fasteners. The mechanical

interface control drawing (MICD) for each PWB will be standardized and will contain the overall PWB

dimensions, fasteners locations, hole sizes, component height restrictions, and p keep out areas. Each

Module has the same form factor and is constrained in the X and Y coordinates. The Z coordinate is

unconstrained. This allows the user to size each module in the Z direction based on PWB requirements

and component height. It is recommended that modules be incremented in ¼ inch step in the Z direction.

Figure 5 shows the integrated stiffener where the PCB is fastened to the module. The open space around

the PWB allows extra room for connectors and when wiring floating I/O connections. In modules that

house 2 PWBs, this extra space can be used to house cross-over cables or connectors that will allow

communication between cards inside of the module so the user doesn’t have to sacrifice external

connector panel space.

The top and the front panel are reserved for user connectors. The user connector selection and their

locations is user defined. The user is responsible for controlling the locations of these connectors and

capturing this information in their own MICD. The intra-box connector locations are standardized and

will be controlled in the module level MICD. Users may not place their connectors on the back side of

the module. This area is reserved for the interface to the intra-box (backplane) assembly. Figure 6 below

shows the location of the intra-box connectors.

166

Figure 6 – Module Connector Location Figure 7 – Backplate Assembly

4.3 BACKPLANE MECHANICAL DESIGN
The backplate mechanical assembly is only necessary if the individual modules require easy removal, as

it holds the mating connectors so the modules can be extracted and inserted without disturbing the intra-

box wiring harness. The backplate Z coordinate length (module height) is not standardized and is to be

designed based on user requirements. The X and Y coordinates are standardized and will be controlled

on the backplate assembly MICD. The backplate connector locations are determined by the users’

requirements. The height or Y coordinate of the connector is constrained. The Z coordinate location is

user defined and is to be placed where needed. The back plate assembly consists of the back plate and

the two end covers of the SpaceAGE assembly. Once the back plate and gussets are assembled the

backplate assembly is populated with the interface connectors and they are wired with the wire harness.

Figure 7 above shows the backplate assembly.

HUB and NODE module assemblies can be inserted into the backplate assembly during box level

integration and testing as needed and or as they become available. NODE or HUB assemblies mate

blindly with the backplate connectors. These connectors have outer shells that are keyed as well as guide

pins to assist with mating. The connectors in the backplane assembly are mounted with floating bushings

that allow the connectors to float and successfully blind mate with the module connectors without spark

“scooping”. Once the module is inserted into the backplate and properly mated, the module is

mechanically fastened to the back plate assembly using captive fasteners that are installed on the

backplane assembly. The modules also attach to each other as they are designed to interlock. This allows

for a stiffer structure as well as an EMI barrier. Figure 8 shows the NODE and HUB modules inserted

into the backplate assembly.

 Figure 8 – SpaceAGE Assembly: Backplate and Modules

4.4 THERMAL AND STRESS ANALYSES
Each module is thermally independent and has a direct heat path to the spacecraft interface. This is an

advantage over standard card locks and wedge locks as the direct heat path offers lower thermal

impedance and where removal of the card breaks the thermal path (wedge locks) requiring

requalification. Each module can be treated as its own thermal structure and can be analyzed and

qualified independently of the other modules.

A preliminary stress analyses shows that SpaceAGE Bus assembly can successfully survive an ascend

on any space launch vehicle.

167

Appendix A: Suggested SpaceAGE Bus Interconnections Between HUB and NODEs, and Between 2 HUBs.

Appendix B: NODE Ports Redundant Cross Connections Diagram.

Group
Sub

Group
Function Pin

Node Bus

Connector

Flow

Direction

Hub Bus

Connector

Flow

Direction
Redundant Hub Notes

1 RX+ ? TX+

2 TX+ ? RX+

3 RX? ? TX?

4 TX? ? RX?

1 Clock_in+ ? Clock_out+

2 Reset_in+ ? Reset_out+

3 Clock_in? ? Clock_out?

4 Reset_in? ? Reset_out?

1 Node Power ? Node Power

2 Power Return ? Power Return

3 DC/DC_Sync_in ? DC/DC_Sync_out

4 Power Fail ? Power Fail

1 Analog_out+ ? Analog_in+

2 Analog_out? ? Analog_in?

3 Sense_out+ ? Sense_in+

4 Sense_out? ? Sense_in?

1 X_TX+ X_TX+

2 X_RX+ X_RX+

3 X_TX? X_TX?

4 X_RX? X_RX?

1 X_Clock_out+ X_Clock_out+

2 X_Clock_in+ X_Clock_in+

3 X_Clock_out- X_Clock_out-

4 X_Clock_in- X_Clock_in-

1 X_Reset_out+ X_Reset_out+

2 X_Reset_in+ X_Reset_in+

3 X_Reset_out? X_Reset_out?

4 X_Reset_in? X_Reset_in?

1 Peer_Hub out Peer_Hub out

2 Peer_Hub in Peer_Hub in

3 Config_out Config_out

4 Digital GND Digital GND

H
u

b
 t

o
 H

u
b

C

ro
ss

o
ve

r
B

u
s

 (
4

 i
n

se
rt

s
fo

r
an

 e
xt

ra
 H

u
b

)

Digital

Cross

Communication

Full Duplex cross link.

Diagonal pins 1-3 and 2-4

provide 100Ω impedance

Cross Clock
Allows both Hubs to share

common clock

Reset

and

Config

Cross Reset

X_Reset allows each Hub to

reset its peer Hub either by

command, or by lack of

communications for the

TBD time period

Mster-Slave

Configuration

and Peer Hub

Plug-in

Tells each Hub that its

Peer Hub is plugged-in

Master HUB (A) - no jumper,

Slave (B) - external jumper

H
u

b
 t

o
 N

o
d

e
 B

u
s

 (
2

8
 i

n
se

rt
s

o
u

t
o

f
3

2
 f

o
r

7
 N

o
d

e
s)

Digital

Serial

Communication

Full Duplex link.

Diagonal pins 1-3 and 2-4

provide 100Ω impedance

Clock and Reset

Distribution

Clock function is defined

by Node end user

Node can be reset

individually by Hub

Power

and

Analog

Power and

Supply Sync

Up to 1.5A@28V of derated

Node current;

DC/DC Sync is 200-800KHZ

free running 5V clock;

Hub generated Power Fail

Analog

Telemetry and

Node Sense

Each Node may have 4-16

analog telemetry slots or

just 1 passive thermsitor;

"Sense" tells Hub if Node is

plugged in and secured

168

Poster Presentations

169

TIME DISTRIBUTION OVER A SPACEWIRE NETWORK

FOR THE ARTEMIS SUBMILLIMETRIC INSTRUMENT

Session: SpaceWire missions and application

Short Paper

Cara Christophe, Eric Doumayrou, Pinsard Frederic

CEA Saclay DSM/IRFU/Service d’Astrophysique,
bât. 709 L’Orme des Merisiers, 91191 Gif-sur-Yvette, France.

E-mail: christophe.cara@cea.fr, eric.doumayrou@cea.fr, frederic.pinsard@cea.fr

ABSTRACT
The ArTeMiS submillimetric camera will observe simultaneously the sky at 450, 350
and 200 µm using 3 different focal planes. The 3 focal planes are made of thousands
of pixels sampling completely the field of view by using the same technology
processes than those used for the Herschel-PACS space-born imager. This camera
will be mounted in the Cassegrain cabin of APEX, a 12 m antenna located on the
Chajnantor plateau, Chile. The control and readout of the camera is achieved by the
warm electronics acquisition system comprising 10 BOLERO (Bolometer electronic
readout box) units and a COYOTTE camera control unit. The BOLERO electronics
being derived from the Herschel-PACS readout electronics various parts of the
existing design have been re-used. In particularly the data and command exchange
between the BOLERO units and the quick-look and archiving workstation is relying
on 10 SpaceWire links.
In this paper we present the implementation of IRIG-B standards in the ArTeMiS
camera. We show this is achievable by adding support of the ESA ‘Time Code
Formats’ as specified in CCSDS 301.0-b-3 Blue book’ to our existing SpaceWire IP.

INTRODUCTION
Early tests performed on a prototype of the camera raised some unexpected
synchronisation problems with the APEX facility software. This is mainly due to data
buffers in the BOLERO electronics, which induce unpredictable delays to occur
between the detector readout and effective frame acquisition by the acquisition
computer. Then it has been decided to implement a GPS dating of the ArTeMiS
images thanks to an IRIG-B signal available on APEX facility. Since the telescope
uses this standard for absolute dating of all its instruments and in particularly the
equipment, which is in charge of its motion during observation, it will be possible to
correct the images of the sky from the drift induced by this movement.

THE TIME TAGGING IN ARTEMIS
Figure 1 depicts the data architecture of the ArTeMiS instrument. The 10 SpaceWire
links are interfacing with the acquisition computer by means either of 3 SpaceWire-

170

PCIe acquisition boards either of
only one SpaceWire-PCIe
acquisition boards and 2x 8 to 1
router boards. A specific board
also hosted by the acquisition
computer receives the IRIG_B
signal. This board decodes the
incoming signal and distributes the
time code format to the SpaceWire
acquisition boards that are in turn
forwarding the dating to the 10
camera units thanks to our
extension.

THE IRIG-B STANDARD
The inter-range instrumentation group time codes, commonly known as IRIG time
codes consist in a family of rate-scaled serial time codes with formats containing up to
four coded expressions or words. All time codes contain control functions that are
reserved for encoding various controls, identification, and other special purpose
functions. The latest version of the Standard is IRIG Standard 200-04. Depending on
the resolution to be achieved various time codes are defined (alphabetic designation
from A, B, D, E, G and H) with time frame ranging from 0.01 s to 1 mm. In turn the
bit rate expressed in pulse per second (pps) is ranging between 1 pps and 100 pps. The
time code is associated to various low-level encoding / transmission options such as
the modulation frequency and mode (pulse width, amplitude modulated sine wave,
Manchester). The ARTEMIS instrument implements only the most commonly used
standard: the IRIG-B. The time frame for the IRIG-B standard is 1 second, meaning
that one data frame of time information is transmitted every second. The 74-bit time

code contains 30 bits of BCD
(binary coded decimal) time-of-year
information in days, hours, minutes
and seconds, 17 bits of SB (straight
binary) seconds-of-day, 9 bits for
year information and 18 bits for
control functions as shown in figure
2. The frame rate is 1.0 second with
resolutions of 10 ms (dc level shift)
and 1 ms (modulated 1 kHz carrier).

THE CCSDS TIME CODE FORMATS
Similarly to the IRIG time codes the CCSDS has defined various time codes in order
to achieve time tagging on-board satellite. This time codes are specified in [1] where
four formats are defined. All the formats are composed of two fields; the P-field,
which specifies options for the time code, and T-field, which contains the time code.
The following table sums-up three of the CCSDS time code formats: the CUC for
CCSDS Unsegmented Time Code, the CDS for CCSDS Day Segmented Time Code
and the CCS for CCSDS Calendar Segmented Time Code. Thanks to the available
options these formats are extremely flexible and depending on the requirements in
term of resolution and dynamic range it is possible to exactly trim the suitable

Figure 1 ArTeMIS data architecture

Figure 2 IRIG-B protocol

171

formats. In particularly the CCS format is identical to IRIG-B when setting the P-field
to 0x3A and therefore the date is composed of the following fields: year - day of year
– hours – minutes – seconds - tenth of milliseconds. For that reason and in order to
extend the possible application of our development we decided to implement full
support to CCSDS time code format rather than limiting our development to the IRIG-
B time code only.

THE SPACEWIRE TIME CODE
The SpaceWire standard specifies the TIME-CODE character to propagate the time
across a network [2]. The TIME-CODE is an 8-bit character whose transmission is
triggered by the assertion of the TICK-IN input of the SpaceWire transmitter. Two
heading bits being reserved to define the type the TIME-CODE can therefore be used
to propagate 6-bit time information across a network. Currently the TIME-CODE
transmission request occurs asynchronously with respect to the transmitted character
stream. However thanks to priority arbitration inside the transmitter the TIME-CODE
is inserted within the data flow with a limited jitter of 13 clock periods [2][3]. When
received the TIME-CODE is extracted from the data flow and made available in a
specific FIFO-less output port of the receiver while a TICK-OUT signal is asserted.
According to the standard specification routers broadcast the TIME-CODE to the next
stages of the SpaceWire network.

TIME OVER SPACEWIRE
Considering the SpaceWire capability
related to TIME-CODE and in order to
meet the requirement of the ArTeMIS
instrument we have designed a small
extension to our SpaceWire codec to
support IRIG-B formatted time
distribution across our instrument. By taking advantage of similarities between this
time code format and the time code format specified by the CCSDS the
implementation we propose is able to accommodate both formats. The next table
defines the TIME-CODE we have defined. The two most significant bits are set to 11
to indicate the specific format, which
will follow. This code is defined
arbitrarily and could be modified
according to SpaceWire standard
constrains. Then bits 5 and 4 are used
to define the significance of the
TimeCode field. This identifier sets to
00 indicates the TimeCode field is
carrying the jitter correction as
proposed in [3]. When set to 01 it
indicates the TimeCode is carrying one
of the time ‘digit’ (one of 26) and a
subTop. When set 11 it indicates the
TimeCode corresponds to the time
synchronisation used to latch the
previously received TimeCode. This is
similar to PPS signal as distributed on

Figure 3 CCSDS implementation

172

board a satellite and used along with time messages to synchronise sub-system local
times with the reference time of the platform. Additionally an identifier set to 01
indicates the TimeCode is a subTop only. This subTop is used to provide the remote
sub-systems with a time base signal. Typically it can be transmitted once every ten
millisecond. Since the transmission of a full time message requires only of few tenth
of TimeCode characters every second the ‘subTop only’ code permits to provide the
remote sub-system with a continuous time base signal. Next the four least significant
bits may be used to carry the CCSDS time code. Since only four bits are available the
incoming time code bytes are split into half byte characters. Then the transmission of
the 1-byte long P-field and 13-byte long time code corresponds to the transfer of 28x
TIME-CODE characters over the SpaceWire links (see table below). Figure 3
represents the functional architecture of the updated SpaceWire interface.

CONCLUSION
This method defines a high-level CCSD time management and allows transmitting
time independently from the user application data traffic. The supports of various
CCSDS format allow fulfilling of mission specific needs. It takes full advantage of
SpaceWire TIME-CODE broadcasting capability. To support this time management,
two VHDL IP cores have been written: ‘Time Frame Generator’ and ‘Time Frame
Decoder’. This IPs can be adapted to any SpaceWire codec as they use only the
standard interface. For very demanding application the time jitter correction will be
added to all Time-Code transmission which solves the problem of latency, jitter and
drift.

Reference documents:
 [1] Time Code Format - 'CCSDS 301.0-b-3 Blue book' – January 2002

[2] Steve Parkes “The Operation and Uses of the SpaceWire Time-Code”, International
SpaceWire Seminar, ESTEC Noordwijk, The Netherlands, November 2003.

[3] F. Pinsard and C. Cara “High resolution time synchronization over SpaceWire
links”, Aerospace Conference 2008, IEEEAC paper#1158,
10.1109/AERO.2008.4526462

173

GR712RC – DUAL-CORE PROCESSOR WITH SIX SPACEWIRE LINKS –
VERIFICATION RESULTS

Session: SpaceWire Components (Poster)

Sandi Habinc, Marko Isomäki, Jiri Gaisler

Aeroflex Gaisler, Kungsgatan 12, SE-411 19 Göteborg, Sweden

E-mail: sandi@gaisler.com, marko@gaisler.com

ABSTRACT
The GR712RC System-on-Chip (SoC) is a dual core LEON3FT system suitable for
advanced high reliability space avionics. Fault tolerance features from Aeroflex
Gaisler’s GRLIB IP library and an implementation using Ramon Chips RadSafe cell
library enables superior radiation hardness.

The GR712RC device has been designed to provide high processing power by
including two LEON3FT 32-bit SPARC V8 processors, each with its own high-
performance IEEE754 compliant floating-point-unit and SPARC reference memory
management unit. This high processing power is combined with a large number of
serial interfaces, ranging from high-speed links for data transfers to low-speed control
buses for commanding and status acquisition

1. ARCHITECTURE

The GR712RC device comprises the following functions [2]:

 2 x LEON3FT processor cores with MMU and GRFPU
 Branch prediction and on-the-fly error correction resulting in 30%

performance increase compared to regular LEON3FT
 4x4 kBytes instruction cache and 4x4 kBytes data cache
 On-chip Debug Unit with instruction and AHB trace buffers

 PROM/SRAM/SDRAM fault tolerant memory controller (using BCH or
Reed-Solomon)

 256 kBytes on chip fault tolerant RAM
 6 x SpaceWire links (2 with RMAP support)
 6 x UARTs
 6 x General Purpose Timers (2 with time latch capability)
 Multi processor Interrupt Controller with support for 31 interrupts
 2 x 32 bits General Purpose I/O
 JTAG debug link
 10/100 Ethernet MAC with RMII interface
 MIL-STD-1553B BC/RT/BM controller
 2 x CAN 2.0 and one SatCAN controller
 CCSDS Telecommand decoder and Telemetry encoder
 SPI controller
 I2C controller
 SLINK controller
 ASCS16 controller

174

 Clock gating unit
 I/O switch matrix

The variation in interfaces allows different systems to be implemented using the same
device type, which simplifies parts qualification and procurement. It also brings cost
reductions to software development since the core functionality can be reused from
application to application, only changing the drivers for the interfaces.

Due to the high amount of peripherals and a limited number of pins there is an I/O
switch matrix that controls which peripheral is connected to each pin.

The clock-gating unit can turn off the clock for each major peripheral, thus lowering
power consumption considerably. The processor clock is automatically turned off
when a processor is in power down mode. The FPU is clock gated when floating point
operation is disabled or when the corresponding processor is powered down.

2. DEVICE CHARACTERISTICS

The device will be manufactured by Tower Semiconductors Ltd. using standard 180
nm CMOS process and packaged in 240-pin 0.5 mm pitch CQFP and PQFP.

The following characteristics are expected [1]:
• Core voltage 1.8V +/- 10%, I/O voltage 3.3V +/- 10%
• 55ºC to +125ºC temperature range
• TID: 300 krad (Si) (RHA Class F according to PRF-38535 Sect. 3.4.3)
• SEL: LET > 106 MeV/cm2/mg
• SEU: Cross section < 20um2
• Maximum clock frequency 125 MHz
• Optional 2x internal frequency multiplication by all-digital DLL

Figure 1: GR712RC die in a 240 pin ceramic quad flat package

175

Figure 2. GR712RC block diagram

3. GR712RC DEVLOPMENT BOARD

In order to provide a platform for customers to begin developments using the
GR712RC device, Aeroflex Gaisler provides a GR712RC development board. The
board comprises a custom designed PCB in Compact PCI 6U format which can be
used either stand-alone or inserted into a CPCI rack.

Figure 3. GR712RC development board

The board has interfaces for all peripherals and 8 MByte of SRAM (with checkbits), 8
MByte of FLASH, and a standard SDRAM SODIMM socket.

Each pin in the I/O switch matrix is configured with a jumper. The various
configurations of interfaces are presented in the next section. All the standard
interfaces are conveniently located on the front side of the board, allowing easy access
to a CPCI front-panel.

176

4. VERIFICATION RESULTS

The measured performance of the GR712RC device at 125 MHz system clock
frequency is 300 Dhrystone MIPS. The measured speed of the SpaceWire links is
above 250 Mbps in room temperature. These values may be adjusted after the full
qualification.

The GR712RC development board has been used during the verification of the
SpaceWire performance of the device. The performance of all SpaceWire links
operating at full speed has been assessed during the verification of the GR712RC
devices, without any degradation in performance for example that could be due to a
potential congestion on the on-chip AMBA bus.

The 192 kByte on-chip memory located on the AMBA bus has proven sufficient in
size for implementing transmit- and receive-buffers handled by the SpaceWire
software drives. This allows the GR712RC to implement in software a SpaceWire
router with six SpaceWire ports. The performance of a single LEON3FT core is
sufficient for this router implementation, not necessitating the use of the second core
which allows it to be used for entirely different tasks, for example implementing the
TCP/IP software stack for communication over the Ethernet 10/100 interface.

Although a SpaceWire / Ethernet software bridge has not been implemented as part of
the current verification of GR712RC, a similar implementation has been done in the
GRESB SpaceWire / Ethernet bridge using a single LEON3 core operating at 40 MHz
which provides approximately 20 Mbit/s sustained throughput through the Ethernet
side. A prediction is that it should be possible to support the maximum 100 Mbit/s
Ethernet throughput using the spare LEON3FT core.

The GR712RC is implemented on the 180 nm Tower technology using the RadSafe
radiation-hard-by-design library from Ramon Chip. The GR712RC has undergone
radiation testing, it is latch-up free, and it is fully protected against single event upsets
in registers and memory, and tolerates a high total ionizing dose.

5. CONCLUSIONS

The GR712RC device brings multi-processing to avionics and payload applications,
increasing the processing performance compared to existing solutions, without
consuming board real estate or demanding complex memory implementations.

The GR712RC development board has been designed to support initially stand alone
operation, but also to fit into the future RASTA (Reference Avionics System Test-
bench Activity) architecture where inter-board communication is realized through
SpaceWire links.

6. REFERENCES

[1] Dual-CoreLEON3-FT SPARC V8 Processor, GR712RC, Preliminary Data
Sheet, Aeroflex Gaisler, www.gaisler.com

[2] Dual-Core LEON3-FT SPARC V8 Processor, GR712RC, User’s Manual,
Aeroflex Gaisler, www.gaisler.com

177

CASCADING THE 10X SPACEWIRE ROUTER FPGA STANDARD PRODUCT
IN A FLIGHT BOARD DESIGN

Session: Missions and Applications (Poster)

Short Paper

Marko Isomäki, Sandi Habinc

Aeroflex Gaisler AB, Kungsgatan 12, SE-411 19 Göteborg, Sweden
E-mail: marko@gaisler.com, sandi@gaisler.com

ABSTRACT
Aeroflex Gaisler has developed several rad-hard SpaceWire router standard products
based on Actel RTAX and RT ProASIC FPGAs. The largest of these components has
eight SpaceWire and two FIFO ports where the number of ports (10x) is restricted by
area limitations in t he F PGA. S everal p lanned m issions r equire more than e ight
SpaceWire ports which the current standard products do not fulfil. There are also no
components available from other manufacturers with a higher number o f SpaceWire
ports. T he s olution de scribed in t his pa per cas cades t wo ten p ort r outers us ing the
FIFO ports resulting in a total of 16 SpaceWire ports. Where previous solutions of this
type have required external glue-logic, this one only needs one configuration pin to be
strapped at reset.

1 INTRODUCTION
While more and more customers require up to 16 ports in SpaceWire routers there are
only up t o e ight ports available in current c omponents o n t he w orld market. The
largest router component ava ilable from Aeroflex Gaisler has eight SpaceWire ports
and two FIFO ports [1]. It is based on the GRSPWROUTER IP Core [2] that supports
up to 31 ports but, due to area limitations in the used Actel RTAX FPGA de vices, is
limited to ten ports in total.

This p aper de scribes t he s olution o f cascading two ten po rt r outers co mpared t o
moving up to a larger FPGA to achieve a 16-port router.

2 SINGLE FPGA SOLUTION
The Aeroflex G aisler 10 -port router i s implemented i n an R TAX2000 de vice. One
solution for achieving a 16-port router in a single FPGA approach would be to move
up to a larger RTAX4000 device. This could easily be done since it would essentially
only require reconfiguration of the GRSPWROUTER IP core which supports up to 31
ports.

The r eason for t his solution usually not being feasible is the lack of an inexpensive
non-rad-hard pr ototyping de vice making s ystem prototyping a nd validation d ifficult
and costly. This in addition to the fact that the RTAX4000 is a lso a more expensive

178

mailto:marko@gaisler.com�
mailto:sandi@gaisler.com�

device compared to the RTAX2000 makes many system designers reluctant to choose
this s olution. The A X2000 i s a n on-rad-hard version of t he RTAX2000 t hat is
comparatively low co st and has been us ed t o v alidate t he s tandard router
configurations. Actel tools provide automated generation of FPGA programming files
for t he pr ototype from t he o riginal file targeting the r ad-hard device. With t he
RTAX4000 t his is not p ossible a nd t he de sign would have t o b e v alidated us ing a
qualified de vice o r r elying o nly o n ga te-level s imulations. N one of t hose t wo
alternatives are feasible in practice which led to the search for other solutions.

3 CASCADING TEN PORT ROUTERS

Figure: Two 10x GR-SPW-ROUTER-RTAX SpaceWire routers cascaded by dual
FIFO interfaces in bridge mode, providing 16 SpaceWire links

An a lternative solution to one large FPGA is to cascade two or more 10x devices to
achieve a larger router using the FIFO ports. Many other devices have similar parallel
data por ts a vailable a nd u se solutions w ith extra F PGAs a s g lue logic t o cas cade
multiple routers. This requires custom design of the extra FPGA and is costly in terms
of po wer, area and development t ime. The r isk is a lso higher s ince a n e xtra cus tom
step is required which needs to be verified and validated compared to using an already
validated component that is already in use in existing systems.

Aeroflex Gaisler router FPGAs have a built-in bridge mode for the FIFO ports which
allows the ports of two routers to be connected without any glue logic. Data and time-
codes will b e transferred in each direction aut omatically. The b ridge mode ca n be
enabled through the configuration port o r via an e xternal s ignal. The external s ignal
sets the reset value o f an internal bit controlling the bridge mode. This way, a bo ard
for a bridge app lication can be manufactured with a s trap signal s o t hat t he t wo
FPGAs enter b ridge mode w ithout any software intervention. T o ke ep the s olution
flexible, it is possible to change this setting through the configuration port in systems
with for ex ample a pr ocessor. This is do ne t hrough R MAP acce sses t o the r outer
configuration port.

To avoid that the setting is accidentally changed by some malfunctioning device there
are several ways to protect the configuration po rt. The whole configuration area can
be w rite pr otected so that a w rite e nable bit must be set before o ther co nfiguration
options c an be a ltered. T his s ignificantly lowers t he r isk of an erroneous
reconfiguration. Configuration accesses can also be disabled for each port individually
making it completely impossible for a connected device to do any harm.

179

There are dedicated paths for both data and time-codes over the FIFO bridges. Data
throughput over t he FIFO bridges is at l east the s ame as for t he S paceWire po rts
provided that the core frequency is at least 1/8 of the SpaceWire maximum bitrate. If
the core frequency is increased, the bandwidth will be improved with the same factor.
It will however never be possible (in any practical cases) to get a throughput over the
bridges t hat matches t he t otal t hroughput of a ll t he S paceWire links o n o ne FPGA.
This m eans that the b ridges m ight become a b ottleneck i f a large pa rt o f t he
SpaceWire traffic is go ing between nodes connected to ports on different FPGAs. In
many s ystems there are a f ew hi gh b andwidth nodes t hat communicate w ith eac h
other and can therefore be connected to ports on the same FPGA. In those cases the
bandwidth problem w ould be e liminated at the expense o f a, pot entially, increased
burden for the system designer.

4 CONCLUSION
To achieve a 16 port router device it is more cost effective to cascade the existing 10-
port ro uter FPGAs compared to moving t o a 16-port device in a s ingle FPGA. T he
cost difference is achieved by providing FIFO ports with a bridge mode that removes
the need for external glue logic. The only downside is that the bandwidth between the
cascaded devices is limited by t he bridge po rts. I t i s however a nticipated that this
problem can be avoided in practice by careful system design.

5 REFERENCES
1. RT -SPW-ROUTER D ata S heet an d U ser’s Manual, Aeroflex Gaisler,
www.gaisler.com

2. GRSPWROUTER User Manual, Aeroflex Gaisler, www.gaisler.com

180

http://www.gaisler.com/�
http://www.gaisler.com/�

TACSAT-4: SPACEWIRE FOR RESPONSIVE INTEGRATION AND LAUNCH

Session: SpaceWire missions and applications

Short Paper

Paul Jaffe, Eric Rossland, Eric Bradley

Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375, USA

Greg Clifford

Silver Engineering Inc., 255 East Drive, Melbourne, FL 32904, USA; GClifford@silvereng.com

Herb Axe

Sierra Nevada Corp., 1722 Boxelder St., Louisville, CO 80027, USA;Herb.Axe@sncorp.com

1 ABSTRACT
Rapid development, integration, and deployment of satellites in response to known and
emerging needs have been ongoing areas of interest. Often collectively referred to as
“Operationally Responsive Space” (ORS), one vision calls for positioning in a depot
interchangeable satellite payloads and spacecraft buses with common interfaces. Upon direction
to deploy a particular mission, the appropriate payload is selected and integrated with a bus, and
the space vehicle is launched. This necessitates standardized hardware and software interfaces
between the payload and bus. For the development of ORS Bus Standards, SpaceWire standard
ECSS-E-50-12A was specified as part of the payload-bus interface for high rate data. With a
2011 launch, the TacSat-4 satellite demonstrates both a prototype Standardized Bus for small
satellite national security missions and an example ORS payload, CommX. This
implementation includes a SpaceWire interface as called out in the ORS Payload Developer’s
Guide. For the bus and payload SpaceWire interfaces, existing SpaceWire logic designs were
used, notably the gate array core developed by the NASA Goddard Space Flight Center. The
SpaceWire link runs between the Payload Data Handler (PDH) on the bus side and Universal
Interface Electronics (UIE) on the payload side. Connector interfaces were adapted to be
suitable for the launch depot environment. TacSat-4 and the ORS Standards Development effort
led by the government, industry, and academia Integrated Systems Engineering Team (ISET)
have demonstrated that use of existing standards blended with tailoring for rapid integration
enables ORS.

2 INTRODUCTION
The motivation to reduce the cost and speed the fielding of space assets has been of interest
since the dawn of the space age. To this end, different countries and organizations have
implemented various approaches. In the 1970s, the Soviet Union kept reconnaissance satellites
ready to launch within 24 hours, and they used them to collect intelligence during international
crises such as the Arab-Israeli war in 1973[1].

More recently, the U.S. Department of Defense has supported a range of approaches to reducing
the time and costs associated with taking advantage of spaceborne assets. At the instigation of
Adm. Cebrowski in 2001, efforts were undertaken to find ways to streamline the deployment
and exploitation of satellite resources[2]. This led to the development of TacSat-1 in 2003 as an
Innovative Naval Prototype, and the christening of such efforts as pertaining to “Operationally
Responsive Space”, or ORS. The TacSat-1 development went from concept to launch-ready
within about a year and for about $10M[3]. The need to identify those national security space

181

missions most subject to a rapid approach was recognized, and the Office of Force
Transformation funded a Massachusetts Institute of Technology (MIT)/Lincoln Labs “Phase 1”
study to investigate mission classes and their needs[4]. At about the same time, the Air Force
Research Laboratory undertook an effort to develop standardized software and hardware
component interfaces, dubbed “Space Plug & play Avionics”, or SPA, to enable rapid custom
mission design and spacecraft implementation through the assembly and self-organization of an
essentially arbitrary number of components[5].

The results of the Phase 1 study by MIT/Lincoln Labs were used by a funded consortium of
representatives from industry, academia, and government organizations to develop standards for
an ORS system. The consortium, know as the Integrated Sytems Engineering Team (ISET),
ultimately produced a set of documents prescribing standards for an ORS system that
encompassed a range of small satellite national security missions. These standards outlined an
approach that split the spacecraft into two major sections: (1) the bus, which provides services
required by a typical satellite such as attitude control, power, propulsion, and command and
telemetry; and (2) the payload, which performs the mission function, such as communications,
imagery, intelligence, etc. One of the main points of this division was to allow the companies
that would be contracted to build parts of the system to take advantage of their existing technical
approaches, while constraining only the bus/payload interface to a standard.

As part of ORS Phase 3, the Naval Research Laboratory (NRL) and the Applied Physics
Laboratory (APL) were selected to develop an ORS spacecraft bus that adhered to the ISET
standards. Separately, a different team at the Naval Research Laboratory was selected to
develop an example ORS payload. This payload performs a communications function and is
designated COMMx. Together, the bus and payload form the TacSat-4 spacecraft.

Much attention was paid during the ISET standards development to the data interface to be used
between the bus and payload. In the final standards, two data interfaces are specified: RS-422
for lower rate data (below 10 Mbps) and SpaceWire for higher rate data (10Mbps or above).
The bus supports both, and the payload may use either or both. The selection of SpaceWire
arose from a high rate data trade study that also considered IEEE-1394 and Ethernet[6].

SpaceWire was a natural choice for part of the data interface because of its simplicity, well-
written standard, ability to be easily implemented in a variety of hardware, and significant
existing user base. By taking advantage of a proven and accepted standard, the lessons learned
and extant infrastructure could be utilized. Additionally, using SpaceWire fostered the
possibility that system implementers might already have the relevant experience when
developing ORS buses, payloads, and supporting equipment. The fact that NASA Goddard
makes available free to U.S. entities VHDL cores for SpaceWire nodes and routers further
enhanced the choice of SpaceWire.

3 TACSAT-4 SPACEWIRE IMPLEMENTATION
One aspect of the SpaceWire standard that was not ideally suited for ORS was the connector
specification. The use of micro-D 9-pin connectors for cable interconnects requires tools,
handling precautions, and attention to detail not necessarily conducive to a rapid-response
launch depot environment staffed with relatively unskilled personnel. Because the bus and
payload need to be mated quickly and reliably at the launch depot shortly before launch,
alternative connectors were investigated. The connectors selected were series 38999-D 13-pin
circular connectors that offer keying and fast, tool-less installation. Bulkhead varieties allow the
SpaceWire link to be brought from the electronics to a convenient place on the bus or payload
for mating during depot operations. Additional details of the cabling construction,
characterization, and lessons learned are discussed extensively by Schierlmann[7,8].

182

On TacSat-4, the SpaceWire link runs between the Payload Data Handler (PDH) board in the
Command and Data Electronics (CDE) on the bus side, across the standardized interface to the
Universal Interface Electronics (UIE) on the payload side. The PDH was developed by one of
us (Clifford) at Silver Engineering using the NASA Goddard SpaceWire VHDL core, and also
incorporates routing and data storage functions. The UIE software development was performed
by another of us (Axe) at Sierra Nevada Corporation (SNC) and can support a range of functions
in addition to acting as a SpaceWire node. It uses a SpaceWire VxWorks driver developed by
SNC. The SpaceWire cabling exists in three segments: from the PDH to the bus bulkhead, from
the bus bulkhead to the payload bulkhead, and from the payload bulkhead to the UIE. At the
PDH and UIE, the standard SpaceWire 9-pin micro-D connectors are used, and they are
integrated with the boxes and attached to the inner side of the bus and payload bulkheads,
respectively, during the manufacturing process. At the launch depot, the bus and payload are
stored separately until mission call up. The mission then specifies which type of payload, from
a variety of payloads, is to be mated to a bus. At this point, the bus and selected payload are
removed from storage and mechanically mated. Then the electrical connections are made by
mating circular connectors for data and power. For TacSat-4, this was tested during the
manufacturing process in preparation for simulated depot operations.

4 RAPID SPACECRAFT INTEGRATION AT THE “LAUNCH DEPOT”
The ORS concept of a launch depot entails a storage and integration facility at a spacecraft
launch range in which standard buses and different types of compatible payloads are stored to
allow integration and launching in short duration in response to a national need. The TacSat-4
spacecraft is the first demonstration of the launch depot concept in which distinct and separate
bus and payload sections are integrated. Since an actual ORS launch depot does not yet exist, the
completed bus and payload were stored instead for a year at a storage facility at NRL in
Washington, DC until national priorities called for the TacSat-4 launch. The two parts are
shown in the leftmost picture in the figure.

After call-up, the ORS bus and COMMx, which were stored separately, were given one month
to be removed from storage, tested independently, readied for shipment, packed along with all
test equipment, and shipped to Kodiak Launch Complex (KLC) in Kodiak, Alaska for launch.
Of particular note is that, in line with the ORS concept, the bus and payload were not electrically
or mechanically mated after the storage period prior to shipment. (Of course the space vehicle
(SV) had been mated earlier as part of the test campaign.) Upon arrival at KLC (the "launch
depot"), the bus and COMMx payload were again tested independently and in parallel to verify
functionality following the cross-country transport. Only after independent functional testing of
the bus and payload were they integrated into the full space vehicle, after which all testing was
repeated in preparation for launch.

One of the challenges of the depot concept is the requirement to expeditiously test a payload (or
a bus) after removing it from storage before SV integration. To meet this end, it is important to
have adequate simulation of all bus electrical interfaces. Among these interfaces on COMMx is
the SpaceWire interface to the UIE box. During COMMx standalone testing, the UIE was tested
with a breadboard of the ORS Bus electronics. Not only was this test configuration high
fidelity, but it was also as flight-like as possible in keeping with the philosophy, “Test it like you
fly it.” This flight-like testing allowed for seamless integration with the flight ORS bus
spacecraft at the launch depot with minimal risk.

Two of us, Bradley and Rossland, performed the actual mating of the SpaceWire and other
interconnects between the payload and bus, respectively. The actual connection of the
SpaceWire link between the bus and payload took less than 30 seconds and required no tools. A
detail of the SpaceWire link between the bus and the payload, without blanketing, can be seen in
the center picture below, and the fully integrated spacecraft can be seen on the right.

183

Figure 1: (left)The bus and payload; (center) blue SpaceWire cable between the bus and
payload; (right) the integrated spacecraft at the launch site

Because of factors beyond the TacSat-4 program’s control, the launch was delayed until
September of 2011. Though the Spacecraft has remained in its integrated configuration, the
shortened timeline demonstrated for mating of the bus and payload could easily have occurred
just in advance of the planned launch. The ISET ORS standards and their instantiation in
TacSat-4 have demonstrated that SpaceWire tailored for depot operations offers a compelling
solution for high rate data links for ORS.

5 REFERENCES

1. W. E. Burroughs, Deep Black, page 258, Random House, New York, NY, (1987).

2. P. Wegner, R. Kiziah, “Pulling the Pieces Together at AFRL,” Proceedings of the 4th
Responsive Space Conference, RS4-2006-4002, (2006).

3. J. Raymond, et al, “TacSat-1 and a Path to Tactical Space,” Proceedings of the 2nd
Responsive Space Conference, RS2-2004-5003, (2004).

4. D. Brenizer, et al, “A Standard Satellite Bus for National Security Space Missions: Phase I
Analysis in Support of OSD/OFT Joint Warfighting Space Satellite Standards Efforts,” MIT
Lincoln Laboratory, Lexington, MA, Air Force Contract No. FA8721-05-C-0002, (2005).

5. T. Morphopoulos, et al, “Plug-and-Play – An Enabling Capability for Responsive Space
Missions,” in Proceedings of the 2nd Responsive Space Conference, Los Angeles, CA, Paper
No. 5002, (2004).

6. P. Jaffe, et al, “SpaceWire for Operationally Responsive Space as Part of TacSat-4,” page 2,
in Proceedings of the 2007 International SpaceWire Conference, Dundee, Scotland, (2007).

7. D. Schierlmann, P. Jaffe, “SpaceWire Cabling in an Operationally Responsive Space
Environment,” in Proceedings of the 2007 International SpaceWire Conference, Dundee,
Scotland, (2007).

8. D. Schierlmann, et al, “Lessons Learned from Implementing Non Standard SpaceWire
Cabling for TacSat-4,” in Proceedings of the 2008 International SpaceWire Conference,
Dundee, Scotland, (2008).

184

SPACEWIRE EVOLUTIONS

Session: Networks and Protocols

Short Paper

David Jameux

European Space Agency / European Space Technology Centre,

Keplerlaan 1, 2201 AZ Noordwijk ZH (The Netherlands)

E-mail: david.jameux@esa.int

ABSTRACT

In this paper, we discuss the need for short term improvements of the current
SpaceWire standard and its extension to new domains such as Gbps communications
and reliability and real-time capabilities. Focussing on short term improvements, we
recall the need for a revision of the current SpaceWire standard as well as the
improvements foreseen to be developed, breadboarded and documented in ECSS
standardisation format through the ESA/TRP R&D activity “SpaceWire Evolutions”
started in September 2011.

1 BACKGROUND
Through several years of standardisation and technology development activities, the
European Space Agency (ESA) has prepared the SpaceWire (SpW) technology that
allows embarking high speed data networks on board spacecraft. This new technology
has become widely adopted not only by ESA missions but also by other agencies and
industries. However, some evolutions of the SpaceWire standard have been proposed
by the SpaceWire Working Group ([5], [6], [7], [8]) over the last five years.

In particular, the SpW Working Group identified shortcomings of the current protocol
for the support of Plug-And-Play (PnP) capabilities ([9], [10], [11], [12]) as defined
jointly by ESA and the National Aeronautics and Space Administration (NASA) and
drafted into [13]. The technical investigations on SpaceWire PnP also rose the
awareness that the behaviour of “nodes” have to be clarified as well as their definition
in the current standard [1], because this definition is not in line with international
telecommunications core definitions of network items, and in fact ambiguous.

Among the discussed additional features to SpaceWire are the sideband signalling for
interrupt distribution and the introduction of SpaceWire operating in half-duplex or
simplex mode over wire-limited harness.

These new techniques, as well as the required clarification of SpaceWire node
definition and behaviour, are highly promising but they need to be breadboarded prior
to their eventual standardisation because they will be adopted by the SpaceWire
community only if they are backwards compatible, i.e. if they can operate with
existing SpaceWire devices.

185

This is currently being done in the frame of the “SpaceWire Evolutions”
Research & Development (R&D) contract kicked off in September 2011. This
contract is funded under the ESA Technology Research Programme (TRP).

2 OBJECTIVES
The objective of this activity is to breadboard a number of modifications and
additional features to the SpaceWire standard, to validate these updates and check that
they are backwards compatible with the current suite of SpaceWire standards ([1], [2],
[3], [4]) by setting up some test bench and running verification procedures. The
features to be modified or added are the following.

2.1 CLARIFICATION OF SPACEWIRE DEFINITIONS

For the modifications to the SpaceWire protocol aiming at clarifying the definition
and behaviour of “SpaceWire nodes” and better supporting Plug-And-Play
capabilities, the first stream of research is on how to align the SpaceWire standard to
international telecommunications core definitions of network items. Namely, the
network should be described as links and nodes, the links carrying digital information
between pairs of nodes, and nodes being either terminal nodes (where information is
either produced or consumed) or switching nodes (that can switch the digital
information from an input link to one or more output links). However, the network
item definitions must be adapted to the specific aspects of SpaceWire on-board
networks, mainly redundancy at processing nodes and at communication path levels.
Another important issue to consider is that redundancy schemes are influenced by the
fact that routers are very likely to be fitted into on-board functional unit boxes (as
opposed to having their own box, physically located in between the boxes of two
functional units), i.e. physically very close to one or more terminal nodes to which
they are linked.

The second stream of research is towards a consistent approach of configuration ports
attached to nodes. Indeed, the Plug-And-Play capabilities – as defined jointly by ESA
and NASA and drafted into [13] – that are also currently subject to standardisation
effort, require registers to be read and written in each and every node, be it a terminal
node or a switching node. These capabilities also require that these registered be
accessed through the SpaceWire network itself (this is done in practice via the Remote
Memory Access Protocol [2]). This implies, on one hand, that switching nodes
contain a terminal node; and, on the other hand, that terminal nodes are able to switch
some types of SpaceWire packets to a register handling process instead of to their
functional host interface.

2.2 INTRODUCTION OF SIDEBAND SIGNALLING

For the broadcast of low-latency signals across a SpaceWire network (for the purpose
of distributing on-board systems level interrupts), the baseline solution is to use the
ESC + N-Char sequence of characters as described in [1]. Overcoming some
ambiguities in the current version of the SpaceWire standard [1], the SpaceWire
Working Group have recently agreed that the “Time-code” [17] shall have its Control
Flags (bits T6 and T7) both set to 0. The SpaceWire Working Group have also agreed
that Control Flag sequence 0b01 may be used for low-latency signalling broadcast,
leaving the sequences 0b10 and 0b11 reserved.

186

A first solution ([14], [15], [16]), based on “Interrupt-codes” (extended Control Flag
C5=0) and “Interrupt_Acknowledge-codes” (extended Control Flag C5=1) has been
extensively discussed within the SpaceWire Working Group.

However, another research stream will start from the basics of information theory and
investigate the possibility of unifying the already defined (and implemented)
Time-codes with some general low-latency signal scheme (using the ESC + N-Char
sequence of characters) that would allow broadcasting system-level interrupts but also
other kinds of low-latency signals such as multiple time-domain clocks.

2.3 INTRODUCTION OF SIMPLEX AND/OR HALF-DUPLEX SPACEWIRE

For the SpaceWire communications which are highly asymmetric in terms of data rate
(e.g. sensor-storage), two research streams of SpaceWire Signal Level optimisation
will be followed with the common target to reduce the SpaceWire logical signalling to
one pair only of Data/Strobe signals (thereby reducing the number of wires required
for the physical layer from 8 to 4).

Simplex operation [18] consists in having only one side of the link (the “sender”)
sending NULL characters and Normal Characters (N-Chars). The other side of the
link (the “receiver”) would only send Flow Control Tokens (FCTs). Sharing of the
single physical channel between “sender” and “receiver” communications must be
handled by some Medium Access Control (MAC) arbitration.

With Half-Duplex operation, the MAC arbitration allows both ends of the single
physical channel to be alternatively “sender” and “receiver”. The robustness of this
approach is still to be verified through proper testing. But the first implementations
([19], [20]) show that the MAC arbitration overhead can be kept within 20%.

Both schemes (Simplex and
Half-Duplex) will be designed and
formally verified. A traded-off between
the two will lead to selection of one of
them for breadboarding. This will allow
for verification of robustness and
integrity, but also of compatibility
between this scheme and Full-Duplex
SpaceWire as defined in [1]: a
SpaceWire packet must be able to pass
through a series of SpaceWire links that
may be full-duplex, half-duplex or simplex, with no other modifications of its
properties than would be introduced by passing trough a series of full-duplex links
with differing link speeds (i.e. timing properties).

3 VALIDATION
For the validation of these new features at breadboard level, a test setup and
verification procedures will allow demonstrating the functionality, the performance,
and the backwards compatibility of the feature with the current SpaceWire standard
[1]. The test setup will be mainly based on existing SpaceWire equipment modified
and upgraded with the new features.

Figure 1 – Example of SpaceWire network mixing
full-duplex, half-duplex and simplex links

187

4 CONCLUSION
Once designed, formally verified, breadboarded, and validated, the three new features
presented in this paper will be handed over to the SpaceWire Working Group for
endorsement. They will then be integrated, together with a list of minor improvements
to the current SpaceWire standard [1] endorsed by the SpaceWire Working Group,
into a “SpaceWire 1.1” updated version of the SpaceWire standard. This version will
then be subject to formal standardisation by the European Cooperation for Space
Standardisation (ECSS).

Following requests from the SpaceWire community, ESA is also preparing for the
medium term extension of SpaceWire to new domains such as Gigabit-per-second
(Gbps) communications and reliability and real-time capabilities (“SpaceWire 2.0”),
in parallel with the short term effort to have the currents SpaceWire standard revised.

5 REFERENCES
1. ECSS-E-ST-50-12C, “SpaceWire – Links, nodes, routers”, 31 July 2008

2. ECSS-E-ST-50-51C, “SpaceWire protocol identification”, 5 February 2010

3. ECSS-E-ST-50-52C, “SpaceWire - Remote memory access protocol”, 5 February 2010

4. ECSS-E-ST-50-53C, “SpaceWire - CCSDS packet transfer protocol”, 5 February 2010

5. Yuriy Sheynin, “Next release of the SpaceWire standard - some requests for change”, 14th SpaceWire Working Group,
ESTEC, February 2010

6. Martin Süß, “SpaceWire Standard Evolution”, International SpaceWire Conference, Nara, November 2008

7. David Jameux, “SpaceWire for Command & Control”, 10th SpaceWire Working Group, ESTEC, February 2008

8. David Jameux, Albert Florit Ferrer, “Towards the definition of Quality of Service classes for SpaceWire-based message
passing”, October 2007

9. Martin Süß, “SpaceWire Nodes”, International SpaceWire Conference, Saint Petersburg, June 2010

10. Barry Cook, Paul Walker, “PnP aspects, 4Links contribution”, 8th SpaceWire Working Group, ESTEC, January 2007

11. Albert Ferrer Florit, “PnP aspects, ESA contribution”, 8th SpaceWire Working Group, ESTEC, January 2007

12. ESA & NASA, “ESA and NASA requirements on SpaceWire PnP”, March 2007,

13. Peter Mendham, SpaceWire-PnP Protocol Definition, Draft A Issue 2.1, 16th September 2009

14. Prof. Yuriy Sheynin, “Distributed Interrupts in SpaceWire Interconnections”, International SpaceWire Conference, Nara,
November 2008

15. Prof. Yuriy Sheynin, “Distributed Interrupts in SpaceWire Networks”, December 2006

16. Liudmila Onishchenko, Artur Eganyan, Irina Lavrovskaya, “Distributed Interrupts Mechanism Verification and
Investigation by Modeling on SDL and SystemC”, International SpaceWire Conference, Nara, November 2008

17. Steve Parkes, “The Operation and Uses of the SpaceWire Time-Code”, International SpaceWire Seminar, ESTEC, 2003

18. Eugenue Yablokov, “Simplex Mode in SpW Technology”, International SpaceWire Conference, Dundee, September 2007

19. Barry Cook, “Half Duplex SpW”, 13th SpaceWire Working Group, ESTEC, September 2009

20. Barry Cook, Paul Walker, “Half-duplex SpaceWire: Reducing harness mass while retaining full compatibility with
SpaceWire’s modularity, configurability and adaptability”, IAC-08, September 2008

188

DETERMINISTIC IMPLEMENTATION OF SPACEWIRE
ON DATA RECORDER AND PAYLOAD INTERFACE UNITS

Session: SpaceWire Onboard Equipment and Software

Short Paper

Satoko Kawakami, Kazuyuki Yamada, and Hiroki Hihara

NEC TOSHIBA Space Systems, Ltd., 10, Nisshin-cho 1-chome, Fuchu, Tokyo, Japan

Kazuyo Mizushima, Takashi Kominato, and Kuniyuki Omagari

NEC Corporation, 10, Nisshin-cho 1-chome, Fuchu, Tokyo, Japan

Masaharu Nomachi

Laboratory of Nuclear Studies, Graduate School of Science, Osaka University,

1-1 Machikaneyama, Toyonaka, Osaka 560-0043

Takahiro Yamada, Motohide Kokubun, and Tadayuki Takahashi

Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration

Agency (JAXA), 3-1-1 Yoshinodai, Sagamihara, Chuo-ku, Kanagawa 229-8510,

Japan

E-mail: s-kawakami@bk.jp.nec.com ,k-yamada@ea.jp.nec.com ,h-

hihara@bc.jp.nec.com, nomachi@lns.sci.osaka-u.ac.jp, tyamada@pub.isas.jaxa.jp,

kokubun@astro.isas.jaxa.jp, takahasi@astro.isas.jaxa.jp

ABSTRACT
Data recorders and payload interface units have been developed for ASTRO-H space

X-ray observatory scheduled to be launched in 2014 using deterministic

implementation of SpaceWire protocol interfaces. Data transmission with RMAP

(Remote Memory Access Protocol) for the data recorder is realised in deterministic

way, as such implementation of SpaceWire applied on the communication interface

enables preventing congestion between prompt recording of scientific data and regular

recording of house keeping data. Payload interface units developed for ASTRO-H in

the same scheme consist of TCIM (Telemetry and Command Interface Module) and

MSE (Mission Support Equipment). The purpose of these equipments is to translate

legacy communication protocols of as-built design into SpaceWire.

1 DATA RECORDER

1.1 OUTLINE

Japanese X-ray astronomy satellite, ASTRO-H, has multiple scientific instruments to

observe variety of X-ray sources in the sky [1]. Data produced from these sources

varies with time and the data rate is often difficult to predict due to the nature of

189

mailto:s-kawakami@bk.jp.nec.com
mailto:k-yamada@ea.jp.nec.com
mailto:h-hihara@bc.jp.nec.com,%20nomachi@lns.sci.osaka-u.ac.jp,%20tyamada@pub.isas.jaxa.jp,%20kokubun@astro.isas.jaxa.jp,%20takahasi@astro.isas.jaxa.jp
mailto:h-hihara@bc.jp.nec.com,%20nomachi@lns.sci.osaka-u.ac.jp,%20tyamada@pub.isas.jaxa.jp,%20kokubun@astro.isas.jaxa.jp,%20takahasi@astro.isas.jaxa.jp
mailto:h-hihara@bc.jp.nec.com,%20nomachi@lns.sci.osaka-u.ac.jp,%20tyamada@pub.isas.jaxa.jp,%20kokubun@astro.isas.jaxa.jp,%20takahasi@astro.isas.jaxa.jp

sources. Therefore a data recorder is required to have flexibility to handle randomly

produced data from these instruments. The requirement of the memory size is

2Gbytes which is sufficient to handle data taken every day. This data recorder has

been developed on these requirements for ASTRO-H based on SpaceWire [2] and

other future spacecrafts. As the feature of the data recorder, it enables recording of

scientific data in RMAP initiator mode as well as recording of house keeping data in

RMAP target mode. The data recorder accepts input data through the SpacePacket

interface with the SpaceWire format. The input data is checked whether it organizes

the right RMAP packet format. Then it is classified by the data mode, and the data

recorder starts to operate the recording

or the real time reproducing or the

both. As the data recorder has RMAP,

the data recorder has achieved to

record the intermittent scientific data

and the regular house keeping data at

the same time.

Since the data recorder employs the

deterministic implementation of

SpaceWire protocol, it is not

necessary to accommodate software.

Therefore, this data recorder realised

as the A6 size (150mm x 140mm)

equipment which consists of all

hardware including 16Gbits SDRAM

memory modules. Figure 1: Data Recorder structure image

1.2 THE PROTOCOL OF THE DATA RECORDER

The data recorder has an original protocol stack which is complied with the

SpaceWire-D draft specification protocol stack [3]. Figure 2 shows the SpaceWire-D

draft protocol stack and the data recorder protocol stack. The figure shows that the

data recorder keeps the structure separated by the protocol layer clearly. That is, the

data recorder is

realised RMAP

in deterministic

way. The data

recorder has no

implementation

for SpaceWire-

D and

SpaceWire-R in

itself as shown

in figure 2.

These two

protocol layers

are

accommodated

in an attached

on board computer. Figure2: The SpaceWire-D and the data recorder protocol stack

Spacecraft Monitor and Control Protocol

PTP PnP
Space Packet Protocol

(CCSDS)

Retry/Redundancy

(Implemented with attached onboard computer)

RMAP Read / RMAP Read reply /

TID management

Scheduling

(Implemented with attached onboard computer)

SpaceWire

The Data recorder protocol stack

SpaceWire

The SpaceWire-D protoco stack

User Application

SpaceWire-R (Retry/Redundancy)

RMAP

SpaceWire-D (Scheduling)

190

1.3 DATA RECORDER OPERATION

The data recorder for ASTRO-H operates recording the scientific data in the RMAP

initiator mode, and the house keeping data in the RMAP target mode. The data

recording operation is shown in figure 3. The input data goes through the SpaceWire

interface at first, and the data is processed by the RMAP codec. Then the data

recorder starts data transfer for recording into main memory and/or transfers the data

for real time reproducing to TCIM through the RMAP codec.

The RMAP initiator mode recording is operated as follows; at first, the Data Recorder

receives the RMAP write command to see a plan for collecting data. Then the data

recorder creates and sends the RMAP read command to target nodes according to the

received RMAP write

command. In the

process of creating the

RMAP read command,

the data recorder gives

the original

transaction ID and

CRC. As the data

recorder receives the

RMAP read reply

from the initiator

nodes, the transaction

ID and RMAP packet

format including the

CRC are checked. If

they have no error, the

data recorder starts

recording that data to

the main memory. Figure3: The data recording operation

2 PAYLOAD INTERFACE UNITS

2.1 TCIM (TELEMETRY AND COMMAND INTERFACE MODULE)

TCIM has two main functions. Both of them are important for spacecraft bus system

because this module is connected to both transponder and onboard computer and all

telemetry and telecommand go through this module.

(1) Translate telecommand into SpaceWire format and telemetry into transponder

format

The transponder receives telecommand from the ground station and transmits it

through its serial communication interface. TCIM receives the signal and translate it

into the SpaceWire format, then sends it out through the SpaceWire network. In the

other direction, TCIM receives telemetry from the SpaceWire and translates it into the

transponder format, then sends it out through serial communication interface.

(2) Translate legacy interface of RF (Radio frequency) communication equipment into

SpaceWire

 Reproducing

Science eauipment Management unit TCIM Management unit

(Target node) (Initiator node)

Data Recorder

Real time

reproducing

 Recording

Main memory

16Gbits

Recording

Reproducing /

Real time

reproducing

Telemetry /

Command

RMAP

initiator

RMAP

target
RMAP target

SpaceWire Interface

191

TCIM also has legacy interfaces for transponders or other RF communication

equipments as pulse command interface to turn the equipments on or off and as bi-

level telemetry interface to monitor the status of the equipments.

In ASTRO-H, three TCIMs are used. Two of them have interfaces with S-band

transponder and are used for the spacecraft telemetry downlink and telecommand

uplink; they consist of redundant system in each other and automatically change over

on detection of error in one TCIM. The other has interface with X-band transponder

and is used for mission telemetry downlink. In case of emergency rescue operation of

the spacecraft, a part of the spacecraft system can be directly manipulated from the

ground throughout TCIM.

2.2 MSE (MISSION SUPPORT EQUIPMENT)

MSE has developed to translate all other mission specific legacy communication

protocol into SpaceWire. In ASTRO-H one MSE unit is installed. MSE gathers

telemetry of legacy interface equipments and stores them in it. The spacecraft

onboard computer; namely “SMU” in ASTRO-H, acquires the telemetry from MSE

using SpaceWire network and its deterministic protocol. Also, when a command is to

be transmitted to a legacy equipment, SMU transmits the command to MSE by

SpaceWire, and MSE translates it into legacy communication protocol and send it.

3 CONCLUSION
Thanks to the deterministic implementation of SpaceWire protocol, the data recorder,

which realises RMAP initiator mode data recording as well as RMAP target mode,

has been achieved the small size equipment without accommodating software.

Deterministic protocol implementation is also useful for employing as-built

equipment such as TCIM and MSE, because those equipments often accommodate

deterministic communication specification for the transmission of command and

telemetry based on legacy protocol. In order to implement deterministic protocol on

to SpaceWire, a protocol layer for time slot control is separated from re-transmission

mechanism and redundancy control, because RMAP packet format, which includes

CRC, can be fully exploited for diagnosis and re-transmission purpose leaving the

time slot control capability within SpaceWire protocol layer. This scheme is

formalised in SpaceWire–D draft specification and adopted for ASTRO-H.

4 REFERENCES
1. T. Takahashi, et al., ”The ASTRO-H Mission”, SPIE, 7732, 77320Z, 30 July 2010

2. ISAS/JAXA, ASTRO-H System Design (ASTH-100)

3. Takahiro Yamada, “Results of Analysis for SpW-D Draft Specification”, Fifteenth

SpaceWire Working Group Meeting, ESTEC, Netherlands, 18 October 2010

4. ESA-ESTEC Requirements & Standard Division, “Space engineering SpaceWire

protocols”, ECSS-E-ST-50-11C Draft 1.3, July 2008.

5. ESA-ESTEC Requirements & Standard Division, “Space engineering SpaceWire

–Remote memory access protocol”, ECSS-E-ST-50-52C, 5 February 2010.

192

THE SPACEWIRE LINK ANALYSER MK2

Session: SpaceWire test and verification

Short paper

Chris McClements, Stephen Mudie, Pete Scott, Stuart Mills, Steve Parkes

STAR-Dundee Ltd, Units 11&12, Dundee University Incubator, James Lindsay Place,

Dundee Technopole, Dundee, DD1 5JJ, UK

E-mail: chris@star-dundee.com, stephen.mudie@star-dundee.com,

pete@star-dundee.com, stuart@star-dundee.com, steve@star-dundee.com

ABSTRACT

The STAR-Dundee SpaceWire Link Analyser Mk2 is a key piece of equipment when

performing test, validation and verification of a SpaceWire [1] system. The analyser

sits between two SpaceWire devices and monitors traffic in both directions of the link

providing the user with the functionality to monitor, record and analyse SpaceWire

traffic. The new features of the SpaceWire Link Analyser Mk2 make it an invaluable

tool when testing, debugging, validating or verifying any type of SpaceWire

equipment.

INTRODUCTION

The SpaceWire Link Analyser Mk2 is the second generation of the STAR-Dundee

link analysis solutions [2] and is designed to specifically support the testing and

debugging of SpaceWire systems by providing a rich set of test functionality. The

analyser benefits from increased traffic storage capacity which is up to 2000 times the

capacity of the original analyser allowing millions of events to be stored in both

directions of the link. RMAP and custom protocol analysis is supported, considerably

reducing the effort required to capture and analyse RMAP traffic. Trigger in and

trigger out ports can be configured to allow interaction with external equipment and

provide a trigger source for an external scope or logic analyser. The analyser also has

a Mictor breakout port which makes decoded SpaceWire traffic available to an

external logic analyser.

The analyser is provided with a comprehensive set of software including an easy to

use graphical user interface with context sensitive help and a new analysis API. This

API exposes the full set of analysis features to automated user test suites where

analysis can be coordinated with other test equipment.

OVERVIEW

The SpaceWire Link Analyser Mk2 hardware unit is depicted in Figure 1 and an

example setup of the analyser is depicted in Figure 2.

193

Figure 1 SpaceWire link analyser hardware unit

On the front panel are two SpaceWire ports, input and output trigger connectors and

status LEDs for the ports and triggers. To use the analyser a SpaceWire cable is

connected from each device to be monitored and to the analyser. The link analyser

buffers the LVDS signals internally and analysis is unobtrusive. A new feature of the

analyser is the inclusion of an input trigger and an output trigger to allow cross

triggering and synchronisation with other external EGSE equipment. Link status, error

and data transfer information is provided by the SpaceWire status LEDs and trigger

activity is provided by the trigger LEDs.

A Mictor connector is provided on the rear panel of the Link Analyser Mk2 to allow

the analyser to be connected directly to a Logic Analyser. The SpaceWire traffic in

each direction of the link is decoded into a set of characters which are provided on the

logic analyser connector. The analyser connects to a host PC through the USB 2.0

interface and is powered by a provided 5V power brick.

Figure 2 SpaceWire Link Analyser Mk2 example configuration

The analysis software which runs on the Application Software PC supports Windows

(7, Vista, XP and 2000) and Linux (2.6 kernel) systems.

FUNCTIONALITY

The link analyser operates using a trigger to capture an event and a storage memory to

capture the data which occurs before and after an event. The analyser software is used

to setup the trigger condition, start and stop the analyser’s trigger, monitor the trigger

status and display the stored data when the trigger occurred. The link analyser also has

a status monitoring function which provides an updating display, updated once per

second, of the traffic on the SpaceWire link.

194

The analyser trigger condition can be set to capture one or more events on the link

including: link errors, NULL, FCT and data characters or data packet comparators. A

sequence of up to eight triggers can be set. Dependent on the debugging level the

analyser can be configured to capture all link characters or can be set-up to filter out

link control characters and only capture data. This greatly increases the amount of

data storage available.

When the trigger condition has been met, and data has been stored in the analyser’s

deep internal memory, the data can be viewed using the analyser’s extensive

SpaceWire traffic displays including: a character level display which displays all link

control, error and data information; a packet level display which can display raw data

or protocol encoded traffic; and a bit level display which displays the raw data-strobe

bits around the trigger condition at a resolution of 1.25 ns per sample. A new search

feature has been added to the software providing the ability to quickly find

information in the large storage memory. The character level and packet level displays

are illustrated in Figure 3.

Figure 3 Character level and Packet level displays

195

Offline analysis is supported using the save and storage functions of the software.

Recorded data can be saved in Link Analyser format for future analysis or saved to a

text format file for display in other software tools. The software is also capable of

saving raw N-Char data values (excluding EOPs and EEPs).

The functionality available in the Link Analyser software is replicated in an easy to

use Application Programming Interface. For EGSE purposes the collection and

analysis of the operation of the SpaceWire links often needs to be automated and

coordinated with the operation of other test equipment. To support this, the Link

Analyser Mk2 is provided with an API for C.

PERFORMANCE AND RESULTS

The SpaceWire link analyser Mk2 is capable of monitoring links running up to 400

Mbit/s and the bit-stream level display is capable of capturing data-strobe bit

transitions at a rate of 1.25 ns (800 MHz).

The storage capacity of the link analyser has been greatly increased and up to 16

Million (16 Mebi) events can be captured using the C API and 1 million (1 Mebi)

events in the software user application.

CONCLUSION

The new features of the SpaceWire Link Analyser Mk2 make it an invaluable tool

when testing, debugging, validating or verifying any type of SpaceWire equipment.

REFERENCES

[1] European Cooperation for Space Standardization, Standard ECSS-E-ST-50-

12C, “SpaceWire – Link, Nodes, Routers and Networks”, European

Cooperation for Space Standardization, July 2008.

[2] S. M. Parkes, C. McClements, S. J. Mills and I. Martin, "SpaceWire: IP,

components, development support and test equipment", DASIA Data Systems

in Aerospace, SP-532, Prague, Czech Republic, June 2003

196

SPACEWIRE THERMAL INTERFACE NODE FOR SATELLITE THERMAL
CONTROL

Session: Onboard Equipment and Software (Poster)

Short Paper

Minoru Nakamura, Tatsuya Ito, Yasutaka Takeda

Advanced Technology R&D Center, Mitsubishi Electric Corp., 8-1-1 Tsukaguchi-
Honmachi, Amagasaki, Hyogo, 661-8661, JAPAN

Isao Odagi, Ichiro Takahashi, Toshihiro Obata

Kamakura Works, Mitsubishi Electric Corp., 325 Kamimachiya Kamakura,
Kanagawa 247-8520 Japan

Ryoichiro Yasumitsu

Space Systems Div., Mitsubishi Electric, Corp., 2-7-3 Marunouchi Chiyoda-ku, Tokyo
100-8310 Japan

E-mail: Minoru.Nakamura@ea.MitsubishiElectric.co.jp,
Ito.Tatsuya@ak.MitsubishiElectric.co.jp,

Takeda.Yasutaka@aj.MitsubishiElectric.co.jp,
Odagi.Isao@cb.MitsubishiElectric.co.jp,

Takahashi.Ichiro@dx.MitsubishiElectric.co.jp,
Obata.Toshihiro@dp.MitsubishiElectric.co.jp,

Yasumitsu.Ryoichiro@aj.MitsubishiElectric.co.jp

ABSTRACT
The SpaceWire thermal interface node is a small piece of equipment that integrates
thermal sensors and heaters into the SpaceWire network. In traditional satellite
architecture, a lot of thermal sensors and heaters are directly connected to a thermal
control unit. We propose a novel concept for a distributed satellite thermal control
architecture in which thermal sensors and heaters are connected via distributed
SpaceWire thermal interface nodes. The SpaceWire thermal interface node has a few
A/D converter channels for a thermal sensor interface and a few solid-state switches
for controlling thermal heater power. It provides a higher level thermal control
interface that automatically converts a sensor value to a temperature value. It also
provides intelligent thermal control functions in that the SpaceWire thermal interface
node automatically controls heater switches to maintain a temperature specified by the
satellite controller. This feature is represented by a small controller implemented in
the SpaceWire thermal interface node. Therefore, the SpaceWire thermal interface
node will improve the flexibility of satellite thermal control and reduce harness mass.
In this paper, we present a distributed thermal control system concept demonstrated
with a prototype of the SpaceWire thermal interface node. We also present an early
implementation of the SpaceWire thermal interface node. Also, we discuss the
topology of the distributed thermal control system and the control methods of the
satellite thermal controls.

197

1 SATELLITE THERMAL CONTROL
One major task of satellite management is thermal control. This control measures the
temperature of the measuring points on the satellite components and the satellite body
panels and controls heaters to maintain a temperature within a specified thermal range.
The number of the measuring points depends on the satellite size and/or the number of
components. Scores of measuring points exist. In traditional satellite design, a lot of
heaters and thermal sensors are connected to the thermal control unit and controlled
by the satellite controller. This thermal control system is distributed through the entire
satellite and requires many harnesses. In recent satellites, bus components are
connected via a local area network like SpaceWire, and this represents the flexibility
of modern satellite design. The satellite thermal control system uses many sensors
and heaters that are distributed through the entire satellite and also requires analogue
signals and power switches. This is because the thermal control system is difficult to
integrate into the satellite bus network.

2 THERMAL CONTROL OVER THE NETWORK
We considered that network architecture that integrates the thermal control system
into the satellite network is classified into two methods:

1. All heaters and thermal sensors are connected to and controlled by the thermal
control unit in a traditional manner, and the thermal control unit is connected to a
satellite network. A thermal control unit controlled via a satellite network is
shown in Fig. 1.

2. One or few heaters and thermal sensors are connected to a satellite network via a
small network adopter, as shown in Fig. 2.

Method 1 requires minimum modification to the traditional design, but its advantage
is limited to the satellite controller being able to control the thermal system via a
network. Method 2 has the disadvantage of requiring a lot of network adopters and the
advantages of reducing the number of harnesses and integrating time in addition to
method 1.

We assumed that a network based on a thermal control system like method 2 could be
realized with a sufficient number of advantages if a small network adopter were used.
We named the small network adopter “SpaceWire thermal interface node” and
developed a functional prototype model.

SpaceWire
NetworkSatellite

Controller

Thermal
Control

Unit

Heater

Thermal
sensor

Heater

Thermal
sensor

Fig. 1: Traditional thermal control system with SpaceWire interface

198

SpaceWire
NetworkSatellite

Controller

Thermal
Interface

Node

Thermal
Interface

Node

Fig. 2: Network based thermal control system

3 SPACEWIRE THERMAL INTERFACE NODE
The functional prototype model of the thermal interface node has one pair of heater
switches, a thermal sensor interface, and two SpaceWire interfaces on two pieces of 5
cm by 6 cm PCBs. Figure 3 shows the architecture of the thermal control node, and
Figure 4 shows the prototype model.

Fig. 3: Internal architecture of thermal
interface node Fig. 4: Prototype module of SpaceWire

thermal interface node

This thermal control node has a programmable control mechanism that controls the
heater switch automatically within a specified temperature. It also has the ability to
convert thermal sensor output into an actual temperature. This functionality is
represented by an abstract thermal interface, so the satellite controller needs no S/W
modification when implemented in a different satellite and/or if the sensor or heater is
changed. Also, the satellite controller only needs to control the high level thermal
control because the low level thermal control is implemented in the thermal control
node.

Figure 5 shows the topology of the thermal control network. We will use ring
topology to reduce cable mass with enough redundancy. To improve reliability, the
thermal control network is divided into multiple rings, and two or more independent
rings control each satellite panel or the thermal sensitive components. Figure 6 shows

199

an example of the thermal network configuration. In Figure 6, the ring topology is
simplified as a single line, but actual wiring requires a return path.

SCU

N

NN

N

N
N

R

SCU: Spacecraft Control Unit
R: Router
N: Thermal Interface Node

R

Fig. 5: Topology of thermal control network

Fig. 6: Example of network configuration

4 SUMMARY
We presented a SpaceWire thermal interface node and a satellite thermal control
system that uses these thermal interface nodes. This thermal control system reduces
harness weight and improves reliability. Also, the thermal interface node enables the
abstraction of the thermal control interface because the thermal interface node can
execute a part of the thermal control process. However, to reduce harness mass, a half
duplex and/or low-mass cable specifications are required. We will evaluate a thermal
control system that uses the thermal interface node.

200

CAMERA SIMULATOR FOR PLATO MISSION

Session: Space Wire Missions and Applications

Short Paper

Vanderlei Cunha Parro, Sergio Ribeiro Augusto, Rafael Corsi Ferrão e Tiago Sanches

da Silva
Mauá Institute of Technology – Praça Mauá, 01 – CEP 09580-900 – São Caetano do

Sul – SP Brazil
Philippe Plasson and Loic Gueguen

LESIA / Paris-Meudon Observatory – 5, Place Jules Janssen – 92195 – Meudon -
France

E-mail: vparro@maua.br, sergioribeiro@maua.br, corsiferrao@gmail.com,
tiago.eem@gmail.com, philippe.plasson@bbspm.fr, loic.gueguen@obspm.fr

ABSTRACT

This work describes the development of an Electrical Ground Support Equipment
(EGSE) to be used by the flight software development team and during the integration
and test activities for the PLATO (PLAnetary Transits and Oscillations of stars)
Mission. The EGSE will be used to feed the Data Processing Units (DPUs) with
dynamic scientific data, representative of expected sky scenarios, using SpaceWire
links. Its functionality is fully compliant with the real camera specification. The main
system is implemented in a Altera Stratix IV FPGA (VHDL language). This work
presents the electrical and software architecture used to implement the EGSE. The
main point is the conversion of USB packets to the RMAP SpaceWire packets, under
the PLATO electrical constraints, putting in evidence hardware and firmware
solutions.

KeyWords: SpaceWire, RMAP, VHDL, FPGA, Embedded System

1 OVERVIEW PLATO SYSTEM

The scientific goal of PLATO [1] is the discovery and study of extrasolar Planetary
System by means of planetary transits detection.

The instrumental concept proposed by the PLATO Payload Consortium is based on a
multicamera approach. There are 32 normal cameras arranged in four sub-groups of 8
cameras, and 2 fast cameras working independently. Each camera is equipped with its
own CCD (Charge Coupled Devices) focal plane array, comprised of 4 CCDs. The
CCDs work in full frame mode for the normal cameras, and in frame transfer mode
for the fast cameras (attitude control). The proposed system simulates only normal
cameras and normal front end devices (N-FEE).

201

There are 16 normal data processing units (N-DPU). Each N-DPU is responsible for
processing the data of 2 normal cameras belonging to 2 separate optical groups. The
processing cadence for N-DPUs is 25 seconds, and each camera has one N-FEE
associated.

2 EGSE DESCRIPTION
The EGSE tests a half N-DPU, sending one complete camera image through two links
SpaceWire [2] with RMAP [3]. The Figure 1 gives an overview of the EGSE. The
frame “Plato Image Subsystem” illustrates the system implemented in the satellite and
that is emulated in this work.

Figure 1: EGSE overview

The EGSE is composed by two subsystems: 1- a workstation running an user interface
and responsible for sending images through USB (Universal Serial Bus) to the N-FEE
simulator, like a normal camera; 2- the N-FEE Simulator, that sends the image
through SpaceWire using RMAP protocol.

2.1 N-FEE SIMULATOR DESCRIPTION
Each N-FEE in the PLATO is responsible for digitize the video signal, send the
digitized image to the N-DPU over a SpaceWire link using the RMAP protocol,
receive and execute commands from N-DPU, receive and propagate synchronization
signal, as well as manage housekeeping (HK). A full CCD image transfer (around 39
MBytes) starts at the time the synchronization (Synch_in) signal is received, needing
to be performed in less than 3.3 sec. The remainder time is used to transfer the image
to a memory zone. The figure 2 illustrates the time constraints involved in the
application and which is emulated in the EGSE. The Synch_out is the synchronization
signal propagated through the internal logic.

202

Figure 2: Time constraints, Sync is synchronization signal

The RMAP protocol write command is used to transfer data from N-FEE to the N-
DPU, one write command per half line, and, in the opposite direction, from N-DPU to
N-FEE, (ie: memory address, operation mode). A RMAP read command is used from
N-DPU to N-FEE to access the housekeeping information.

The two SpaceWire links run at 100 Mbits resulting in a instantaneous data rate (with
25% SpaceWire overhead and RMAP header), for full CCD transfer, of 80 Mbits and
an averaged transfer at 70.5 Mbits. An SpaceWire time code is sent by the N-FEE
simulator to the 2 SpaceWire links at the time a synchronization signal (Synch_in) is
received. This time code serves to synchronize the N-DPU with the external Synch_in
signal (6.25s) and to indicate which CCD is being transferred (0, 1, 2, 3).

The N-FEE Simulator has four types of operation modes which can be set by the N-
DPU: 1- Operational mode: the CCDs are read with the synchronization signals.
Data packet including image and housekeeping are sent; 2- Stand-By mode: Only
housekeeping data are sent on request from the N-DPU; 3- Integration mode: The N-
FEE may function without synchronization signals from the N-AEU; 4- Test Mode:
the N-FEE sends a data pattern to the N-DPU.

2.2 N-FEE SIMULATOR ARCHITECTURE
The architecture proposed to the N-FEE Simulator is given in the Figure 3. All
architecture is embedded in a Stratix IV [4] FPGA. The USB module implements
USB 2.0 interface acting as a device.

Figure 3: N-FEE Simulator hardware architecture

203

The image sent from the computer is stored in a one of the two DDR2 SDRAM
memories in less than 6.25 seconds. When the synchronization signal (synch_in) is
detected the N-FEE Unit Control (FEE UC) swaps the memory, connecting the fresh
loaded memory to the SpaceWire/Rmap handler, and linking the other memory to the
USB handling. So, while the workstation sends the next CCD data to the memory
allocated for the USB handling, the SpaceWire/Rmap handler sends the image
previously loaded in the other memory to the N-DPU.

Sync handling is responsible to detect the Synch_in signal (6.25s and 25s signal that
came in the same line). It has also the ability to generate the synchronization signal in
order to the system work in the integration mode.

The data from the work station is sent to the USB2.0 as a 32 bytes burst transfer, and
then the USB handler interprets and executes a write burst to the memory controller.
The memory controller is implemented using an Altera IP core [5], and deals with the
two DDR2 SDRAM of 1GB each one. There is an internal controller that only gives
write or read access to one memory per time, this prevents reading unread data.

A SpaceWire/Rmap handler which interfaces with the SpaceWire codec is also
implemented. This block is able to create an RMAP write command using the data
from the SDRAM memories, respond to write commands (reply), record the data
received on auxiliary internal memory, as well as respond to read commands using
data from auxiliary internal memory.

The FEE UC control all the previously blocks, swapping the read/write access to the
memories when the synchronization signal is received, configuring the blocks with
the operation mode, as well as loading default values at start-up.

3 PRELIMINARY RESULTS AND CONCLUSION

The system is in the implementation phase using the Altera Quartus II V11
development environment. Gate level simulations have been made and the system is
being able to reach the time constraints proposed. The architecture with two memories
allows future improvement of the EGSE to support more than one N-FEE, simulating
a more complex system.

4 REFERENCES

1 ESA/SRE(2011)13, PLATO Next-generation planet finder, Definition Study
Report , July 2011, 121.

2 ESA-ESTEC, SpaceWire – Links, nodes, routers and network, ECSS-E-ST-50-
12C, 31 July 2008, 129.

3 ESA-ESTEC, ESA Requirements and Standards Division ECSS-E-ST-50-11C -
SpaceWire proto-cols ,18 November 2008, 124.

4 ALTERA corporation,A Design Guide for Stratix II, Stratix III, and Stratix IV
Devices, June 2009, 122

5 ALTERA corporation, External Memory Interface Handbook Volume 5, June
2011, 70

204

SPACEWIRE REMOTE TERMINAL CONTROLLER DEVELOPMENT SYSTEM

Session: Onboard Equipment and Software

Short Paper

David Paterson, Alan Spark, Bruce Guoxia Yu

STAR-Dundee, c/o School of Computing, University of Dundee, Dundee, Scotland, UK

Steve Parkes

University of Dundee, School of Computing, Dundee, Scotland, UK

E-mail: david.paterson@star-dundee.com, alan.spark@star-dundee.com,

bruce@star-dundee.com, sparkes@computing.dundee.ac.uk

ABSTRACT
The STAR-Dundee SpaceWire Remote Terminal Controller (RTC) Development System is

intended to facilitate the development of both hardware and software for spacecraft systems

based on the Atmel AT7913 SpaceWire RTC device.

The development system hardware consists of an AT7913 device, plus an FPGA and

additional on-board resources. The FPGA provides a number of different connection options

between the RTC and a host computer, allowing the downloading and debugging of software,

and the simulation of the RTC device interfaces.

The RTC can be connected to a number of internal, on-board, hardware resources, or to

external equipment via case-mounted connectors. The FPGA allows for flexible control over

these connections, switching among different configurations or working modes, and

providing full control for debugging.

The software for the development system is based on the widely-used Eclipse IDE, and will

be immediately familiar to existing Eclipse users. It also offers a shallow learning curve for

new users, allowing them to quickly start developing or porting software for the RTC. A

wide range of debugging features is available, including breakpoints, single-stepping (source

and assembler), and inspection of memory and registers.

An additional system component provides facilities for the simulation of spacecraft

instruments or other devices, with the generated data being passed to the RTC as if it were

produced by the real instruments or devices.

This paper describes the main features of the RTC Development System, and examines its

possible uses in spacecraft hardware and software development.

205

mailto:david.paterson@star-dundee.com
mailto:alan.spark@star-dundee.com
mailto:bruce@star-dundee.com
mailto:sparkes@computing.dundee.ac.uk

1 STAR-DUNDEE RTC DEVELOPMENT SYSTEM
The STAR-Dundee RTC Development System is designed to provide an all-in-one

environment for developing, testing and debugging on-board hardware and software, and

consists of a development board plus associated host computer software. The development

board provides a number of interfaces which can be connected to the host computer to

support program download, debugging and testing, as well as a range of other connections for

external instruments or other equipment.

Figure 1 - SpaceWire RTC Development System

2 HARDWARE

The STAR-Dundee RTC development board is built around the SpW-RTC SpaceWire

Remote Terminal Controller device, AT7913, from Atmel [1]. This single chip embedded

system centres around a LEON2-FT (SPARC V8) processing unit, plus a double precision

floating point unit. Connected to these via on-chip busses are several other peripheral

modules, including CAN, ADC/DAC, GPIO, FIFO, timers and two SpaceWire interfaces

supporting RMAP.

The RTC device also includes 64KBytes of EDAC protected on-chip memory, into which

software can be copied via a SpaceWire link, allowing it operate as a single-chip system,

forming a very compact solution for remotely controlled applications. Alternatively it can

operate in a fully-featured system, with software being loaded from a local PROM and

executed from a local SRAM. The development board includes 160Mbit of Flash PROM

and 160Mbit of SRAM which can be used while developing this type of system.

The hardware unit is shown below in Figures 2 and 3. Connectors are provided for an

interface to the host computer using high-speed USB, SpaceWire or RS232, as well as CAN,

SpaceWire, GPIO, FIFO and ADC/DAC connectors for external devices.

206

Figure 2 - SpaceWire RTC Development Unit

front view
Figure 3 - SpaceWire RTC Development Unit

 rear view

The hardware unit has been specifically designed to be compact and portable and is only 220

mm wide, 30 mm high and 115mm deep.

3 SOFTWARE

Eclipse is an open-source Integrated Development Environment (IDE) that has been widely

adopted in software development, including development of embedded systems [2]. These

factors made it an ideal choice for the front end environment for the RTC development

system. The Eclipse environment has been extended to operate with a version of GCC that

has been optimised for use on the RTC. Programs written in C or C++ can be compiled and

then run and debugged on the development board.

Both the STAR-Dundee RTC hardware and software have been designed with simplicity in

mind. The steps required to start debugging are minimal. This is essentially a case of

connecting the device to the host PC and starting a debug session in Eclipse (see Figure 4).

Figure 4 - Starting a debug session in Eclipse

When using a fast USB or SpaceWire connection between the host computer and the

development board, Eclipse gives a smooth single stepping experience. While debugging,

Eclipse provides familiar views to allow inspection of variable and register values (Figure 5).

Figure 5 - Single-stepping through code running on the RTC

207

Custom views added to the Eclipse environment also provide access to other aspects of the

hardware, such as the device register view shown in Figure 6.

Figure 6 – Device Register View

Whilst making it easy to get up and running, the development environment also allows

configuration of more advanced options such as the interface to use (e.g. USB or SpaceWire),

the size of available memory, clock frequency, etc. [3]

4 CODE ROCKET

Figure 7 - Code Rocket design views integrated inside Eclipse

Code Rocket from Rapid Quality Systems [4] is a detailed software design tool that provides

abstract pseudocode and flowchart visualisations of algorithms. Plugins are available for the

Visual Studio and Eclipse IDEs that allow the developer to design and visualise methods on

demand (see Figure 7). When changes are made in the code, the design views are

automatically synchronised. Similarly, when changes are made in the pseudocode or

flowchart editors, the method can be re-populated with the associated forward-engineered

code. The synchronisation between code and design ensures that neither gets out of date and

the ad-hoc nature of the tool means that it unobtrusively fits into the developer’s working

process.

208

A new feature in Code Rocket is the ability to see the current statement highlighted in the

design views when stepping through code in the debugger. Whilst Code Rocket is already an

extremely valuable resource for designing and understanding algorithms, this new addition

makes it a powerful debugging tool too. Given that the RTC Development System has been

designed specifically to speed up the development of on-board spacecraft software using

Eclipse, Code Rocket fits naturally into this paradigm. When combined, both products

provide a unique way of designing and executing software on the RTC hardware as well as a

dynamic flowchart that is highlighted as a debug session is running on the RTC hardware

unit. The combined system will be used by developers to ensure that their software meets the

high quality demanded by space applications.

When stepping through code the current statement is highlighted in yellow, with a red outline

if a breakpoint is encountered or with a green outline when stepping over other statements

that don’t have breakpoints (see Figure 8). The flowchart is naturally easy to follow and the

addition of the debugging information makes it very easy to pinpoint exactly which part of

the software is being debugged and the surrounding context.

Figure 8 - Breakpoint highlighted with red outline and non-breaking statement highlighted with green outline

5 POTENTIAL APPLICATIONS

In the early development stages of a spacecraft instrument or payload, the software

development team will not normally have a full hardware platform to work with. As a result,

unexpected issues may be discovered much later during system integration. The STAR-

Dundee RTC Development System aims to address this issue by providing virtual devices

that are interchangeable with the actual devices that may be connected to the physical ports.

This allows software development to progress before the physical hardware becomes

available, and when the hardware does become available the actual devices can easily be

substituted for the virtual ones, and then tested.

For example, the data stream from an onboard instrument which will be connected to the

FIFO can be simulated, with data being provided by the host computer, to allow initial testing

of its data management software before the hardware development is complete. When the

instrument hardware is available it can be connected to the RTC development system via the

external FIFO connector, and further testing carried out – the aim being to ensure that

software and hardware can be thoroughly tested before integration with other flight systems.

The development board is also equipped with ADC and DAC chips which can be used for

hardware prototyping. These chips are commercial counterparts of Space Qualified ASICs, so

a prototype system based on this on-board ADC or DAC could be easily migrated to a flight

qualified design.

209

Some of these possible applications are illustrated in Figure 9, including platform OBC,

controller or data handler to instruments, bridge to low-speed CAN bus, separate data

processor, and mass memory controller.

OBC

Sensor
A

SpW-RTC

Sensor
B

Sensor
C

PROM

SRAMSpW-RTC

CAN Bus

FIFO

Instrument
High Rate

SpW-RTC
FIFO

Instrument
Low Rate

SpW-RTC
ADC/DAC

GPIO
SpW

Network

Bridge

Local Controller

Spacecraft
Control
Bus

CAN

CAN

SpW-RTC

Data Processor

SpW-RTC

Mass Memory
Controller

mem

Local Controller

OBC

Figure 9 - Possible Applications of the SpW-RTC Device

5 CONCLUSIONS

The STAR-Dundee SpaceWire RTC Development System is a combination of test and

development hardware and software tools for developing, testing and debugging onboard

spacecraft systems. This paper has described and discussed both the hardware and the

software tools used with it.

Alongside the compact but capable hardware unit, the software development environment has

been designed with complete simplicity in mind. The ability to connect to the device and

quickly start debugging is an improvement over existing solutions that may be over-complex

for the end user.

When combined with Code Rocket, the RTC Software Development System becomes an all-

in-one spacecraft software design, development, test and debugging toolset that paves the

way for improved developer productivity and software quality.

5 REFERENCES

1. Atmel, “SpaceWire - Remote Terminal Controller DataSheet”, 7833F–AERO–01/10

2. Aurangzeb, “Eclipse and Embedded Software Development”, Proceedings of ICOSST

2007, 17-18 December 2007, Lahore, Pakistan.

3. STAR-Dundee, http://www.star-dundee.com, STAR-Dundee website.

4. Rapid Quality Systems, http://www.rapidqualitysystems.com, Rapid Quality Systems

Website.

210

http://www.star-dundee.com/
http://www.rapidqualitysystems.com/

INCORPORATION OF SPACEWIRE WITHIN THE BEPICOLOMBO RIUS

Session: Poster Session

Short Paper

P. Worsfold, A.Senior.

SEA, Building 660, Bristol Business Park, Coldharbour Lane, Bristol, BS16 1EJ,

United Kingdom

E-mail: peter.worsfold@sea.co.uk, alan.senior@sea.co.uk

1 ABSTRACT
Two Remote Interface Units (RIUs) have been developed by SEA for the upcoming

ESA BepiColombo mission to Mercury. Each RIU will be used as a stand-alone unit

within the BepiColombo Data Management System (DMS) and provide the

connection between the onboard computer and a large range of sensors and actuators.

One RIU provides sub-system interfaces within the Mercury Planetary Orbiter

(MPO), whilst the second provides sub-system interfaces within the Mercury Transfer

Module (MTM). The implementation details of SpaceWire interfaces within the two

RIUs are described and the performances achieved discussed.

2 MPO RIU
The MPO RIU provides two SpaceWire links running at 10Mbps. These interfaces

utilise an EIA‐644 LVDS electrical layer compliant with the ECSS-E-ST-50-12C

(SpaceWire – Links, nodes, routers and networks) standard. The MPO RIU

incorporates the Aeroflex UT54LVDS031-LV LVDS quad transmitter and the

UT54LVDS032-LV LVDS quad receiver for the SpaceWire interfaces. Figure 1

below shows the SpaceWire interface components for the MPO LVDS interface.

Figure 2 below shows the SpaceWire outputs when the link is exchanging “null”

packets.

270R

AEROFLEX
UT54LVDS032LV

100R

SPW_DATA_OUT_PLUS

SPW_DATA_OUT_MINUS

SPW_STRB_OUT_PLUS

SPW_STRB_OUT_MINUS

SPW_DATA_IN_PLUS

SPW_DATA_IN_MINUS

SPW_STRB_IN_PLUS

SPW_STRB_IN_MINUS

AEROFLEX
UT54LVDS031LV

270R

270R

270R

100R

100R

100R

100R

100R

3V3

3V3

Figure 1: MPO RIU SpaceWire

Interface

Figure 2: Waveform of MPO SpaceWire LVDS

link – yellow trace (SPW_DATA_OUT_PLUS),

green trace (SPW_STRB_OUT_PLUS).

211

mailto:peter.worsfold@sea.co.uk

3 MTM RIU
The MTM RIU provides two SpaceWire links running at 4Mbps (initialising at

10Mbps). This unit however utilises an SBDL (Standard Balanced Digital Link)

electrical layer. This requires the use of EIA-422 devices. The MTM RIU

incorporates the Intersil HS-26C31RH RS422 transmitter and the Intersil HS-

26C32RH RS422 receiver for the SpaceWire interface. Figure 3 below shows the

SpaceWire interface components for the MTM SBDL interface. Figure 4 below shows

the SpaceWire outputs when the link is exchanging “null” packets.

4 SIGNALLING PERFORMANCE
The LVDS buffers can operate at a switching rate of 400Mbps (200MHz). Signal

tracks on the PCBs have been routed in accordance with [RD1] to minimise the skew

introduced by signal length mismatch. According to signal timing analysis the total

cumulative skew is approximately 9ns (including external SpaceWire router). The link

could therefore readily run at speeds in excess of 100Mbps, however in practice it is

limited by performance limitations of the FPGA (see section 5).

The SBDL link utilised on the MTM is however far slower. The defined maximum

data rate of an RS-422 link is 10Mbps over a length of 1200m with up to 10 receivers

on the signal line. This electrical layer has been chosen to improve the common mode

voltage / signal levels across the spacecraft separation interface. This improvement is

gained by a much larger difference between the output voltage transition levels VOH

and VOL, however a result of the increased signal swing is much longer signal

transition times. Due to the performance of RS422 transmit/receive components, the

link cannot meet the rise/fall/skew times specified within ECSS-E-ST-50-12C,

however for the low data rate requirement of the MTM this is not an issue.

No channel to channel skew figures are available for the Intersil HS26C32RH and

HS26C31RH RS422 devices, therefore max propagation delay – min propagation

delay is taken as worst case skew. According to signal timing analysis the total

cumulative skew is approximately 65ns (including external SpaceWire router). The

link could theoretically therefore run at speeds in excess of 15Mbps.

56R

Intersil
HS-26C32RH

1K

SPW_DATA_OUT_PLUS

SPW_DATA_OUT_MINUS

SPW_STRB_OUT_PLUS

SPW_STRB_OUT_MINUS

SPW_DATA_IN_PLUS

SPW_DATA_IN_MINUS

SPW_STRB_IN_PLUS

SPW_STRB_IN_MINUS

Intersil
HS-26C31RH

56R

56R

56R

1K

1K

1K

120R NF

47pF NF

47pF NF

120R NF

+5V

+5V

NOTE
NF = Not Fitted

Figure 3: MTM RIU SpaceWire

Interface

Figure 4: Waveform of MTM SpaceWire SBDL

link – yellow trace (SPW_DATA_OUT_PLUS),

green trace (SPW_STRB_OUT_PLUS).

212

5 FPGA PERFORMANCE
The BepiColombo RIU has two SpaceWire Controller modules. Each module

contains an RTAX2000S FPGA containing two ESA RMAP IP cores with embedded

SpaceWire CODECs [RD2]. Both RMAP IP cores are configured as Target only (to

ensure that no messages are initiated by the RIU).

The RTAX FPGAs have limited global clock resources which causes a constraint on

the implementation of the SpaceWire CODEC core when more than one is being

instantiated within the same FPGA. The RTAX FPGAs have four hardwired clocks

HCLKA/B/C/D and four routed clocks CLKE/F/G/H. Hardwired clocks are only

routed to register clock inputs, whereas the routed clocks can be used for any global

signals requiring low skew. It is standard practice for one of the routed clock nets to

be utilised for the internal synchronous reset signal. A routed clock net is also

required for each of the SpaceWire receive clocks (recovered by Exclusive OR of the

incoming data and strobe signals. This is necessary to ensure low skew of the receive

clock and follows the guidance within a Microsemi application note [RD3]. This only

leaves one spare routed clock network left between the two SpaceWire CODEC

transmit clocks.

The SpaceWire CODEC requires to have a transmit clock which runs at 10Mbps (link

initialisation) and then to link running rate (variable by configuration). This can be

achieved by utilising a configuration (known as SYS_DIV or TXCLK_DIV), which

creates a divided version of the clocks however this creates asynchronous clock

signals which require global nets to reduce skew. It can also be achieved by utilising a

configuration (SYS_EN) which allows the default 10Mbits/s transmit rate and the

variable transmission rate to be generated by an internal clock enable generator. This

has the advantage of the transmit clock being the same as the main system clock so a

dedicated global net for the transmit clock is not required.

In order to minimise the number of global clock nets the SpaceWire CODECs have

therefore been configured to SYS_EN within the BepiColombo RIU. The design

meets the required timings at MIL spec operating conditions and with 50kRAD total

dose. Figure 5 shows a screenshot of the Microsemi Libero Designer Smart-Time

software showing the performance achieved on the internal clock nets.

 Figure 5: Libero Designer SmartTime screenshot.

213

The speed of the transmit clock within this configuration is limited by the inherent

speed of the FPGA routed clock network. A speed of 27MHz could be achieved with

the current FPGA design. The maximum SpaceWire rate required for the

BepiColombo RIU is 10Mbps, therefore this performance is acceptable and no further

optimisation has been carried out.

Performance could be improved in a number of ways if required:

 Investigate the worst case delays limiting the clock speed (which may/may not

be related to the SpaceWire CODEC) and then optimise the code.

 Procure a higher speed grade FPGA. The BepiColombo RIU utilises –STD

speed grade devices, however -1 and -2 speed grade devices are available

which have guaranteed higher internal operating performance.

 Move the SpaceWire CODEC into a device with a radiation hard embedded

phase locked loop (PLL). This would almost certainly be an ASIC or a

SpaceWire Router / SpaceWire receiver IC. This has the advantage of

allowing a much higher transmit speed unconstrained by maximum clock

speed of the RTAX routed clock network.

6 SCHEDULE
The FPGA SpaceWire interface has been fully tested using Microsemi Pro-ASIC3E

devices. The next stage of the development will be to migrate the design into

Commercial Axcelerator AX2000 devices following the Microsemi prototype

development approach outlined in [RD4]. The design will then be programmed into

RTAX B-grade devices for EQM qualification testing in Q4 2011.

7 REFERENCES
1. ECSS-E-ST-50-12C, (SpaceWire – Links, nodes, routers and networks, Issue

2, 31
st
 July 2008.

2. SpaceWire Codec VHDL User Manual, University of Dundee, 2005.

3. Microsemi AC305 Application Note Implementation of the SpaceWire Clock

Recovery Logic in Actel RTAX-S Devices.

4. Microsemi AC170 Application Note Prototyping RTAX-S Using Axcelerator

Devices.

214

DEVELOPMENT OF SPACEWIRE HIGHER LAYER PROTOCOLS BASED ON
THE CCSDS SOIS ARCHITECTURE

Session: Standardisation (Poster)

Short Paper

Takahiro Yamada

JAXA/ISAS, 3-1-1 Yoshinodai, Sagamihara, 229-8510, JAPAN
E-mail: tyamada@pub.isas.jaxa.jp

ABSTRACT

The Consultative Committee for Space Data Systems (CCSDS) published a document
called the Spacecraft Onboard Interface Services (SOIS). This document specifies a
set of standard services and traffic classes to be provided by onboard networks for
onboard applications, but not all of the services and traffic classes can be realized with
the existing standards on SpaceWire. This paper proposes developing some protocols
so that SpaceWire can provide all the subnetwork services and traffic classes defined
by SOIS. Specifically, this paper proposes developing two protocols to support the
traffic classes. One of them provides the functionality of managing the traffic on the
network, and the other provides the functionality of performing retransmissions to
ensure reliable delivery.

1 INTRODUCTION
The Consultative Committee for Space Data Systems (CCSDS) published a document
called the Spacecraft Onboard Interface Services (SOIS) in 2007 [1]. This document
proposes a layered architecture of onboard communications services that should be
provided by onboard networks of spacecraft for onboard applications. According to
this architecture, SpaceWire is a type of Data Link. The Data Link should be accessed
by applications or other upper-layer standard services with a set of standard services,
which are called the SOIS subnetwork services. The SOIS document also defines four
traffic classes, each of which corresponds to a set of quality of service (QoS) levels.

There are already some standards related to SpaceWire (for example, [2] and [3]), but
not all of the subnetwork services and traffic classes defined by SOIS can be realized
with the existing standards. Some more protocols that run on top of the existing
SpaceWire protocols are required. This paper proposes developing some more
protocols so that SpaceWire can provide all the subnetwork services and traffic
classes defined by SOIS. Specifically, this paper proposes developing two protocols to
support the traffic classes. One of them provides the functionality of managing the
traffic on the network to ensure guaranteed bandwidth and timely delivery. The other
provides the functionality of performing retransmissions to ensure reliable delivery
without loss, without duplication, and in-sequence. Two of the SOIS subnetwork
services with all the traffic classes can be provided by combining the SpaceWire
specification [2], the Remote Memory Access Protocol (RMAP) [3], and the two

215

protocols mentioned above. The three other services can be provided by adding
simple protocols to these protocols.

2 SOIS SUBNETWORK SERVICES AND TRAFFIC CLASSES
This section briefly introduces the subnetwork services and traffic classes defined by
SOIS.

2.1 SERVICES

SOIS [1] defines the following five subnetwork services.

1) Packet Service – supports the transfer of packets over a subnetwork (that is, a
SpaceWire network).

2) Memory Access Service – provides the capability to read or write data from or to a
memory location in a device.

3) Time Distribution Service – provides the capability to distribute a centrally
maintained reference time to multiple users throughout the spacecraft.

4) Device Discovery Service – provides the capability to detect devices becoming
active following a change in the hardware configuration of the spacecraft.

5) Test Service – used for checking data system functionality and connectivity.

2.2 TRAFFIC CLASSES
SOIS [1] defines the following four traffic classes. For each of the subnetwork
services shown above, these traffic classes can be used.

1) Best Effort – provides for non-reserved (that is, no network bandwidth are
reserved), try once communication.

2) Assured – provides for non-reserved communication with retries.

3) Reserved – provides for best-effort communication over a resource reserved
logical link.

4) Guaranteed – provides for resource reserved communications with retries.

3 PROPOSED PROTOCOLS

In this section, two protocols that augment the capabilities of SpaceWire networks are
presented.

3.1 SPACEWIRE-SCHEDULING
This protocol provides the functionality of managing the traffic on the network to
reserve bandwidths for data flows that require them and guarantee timely delivery of
data to the receiving users. To reserve bandwidths, this protocol uses time slots, which
are defined using the Time-Codes defined in SpaceWire [2]. Time Slots are allocated
to instances of subnetwork services with Reserved and Guaranteed traffic classes.

216

This protocol does not have any more functionality than defining, allocating, and
ensuring the use of time slots. This protocol is used as a building block combined with
other protocols to support traffic classes that require reserved bandwidth and timely
delivery.

3.2 SPACEWIRE-RELIABLE
This protocol provides the functionality of performing retransmissions to ensure
reliable delivery without loss, without duplication, and in-sequence. It also provides
the capabilities for (1) segmenting data units provided by the users if they are longer
than the size allowed by the underlining network, (2) adjusting the rate of data
transmitted from the sender based on the reception capability at the receiver (flow
control), and (3) managing redundant routes (that is, if a route has been found not
functioning, the protocol automatically switches to an alternative route). This protocol
is used as a building block combined with other protocols to support traffic classes
that require reliability.

4 HOW SOIS SUBNETWORK SERVICES AND TRAFFIC CLASSES ARE PROVIDED
This section shows how the SOIS subnetwork services and traffic classes are provided
using the two protocols presented in the previous section.

Figure 4-1 shows how the SOIS traffic classes are provided using SpaceWire-
Scheduling and SpaceWire-Reliable. If traffic classes Best Effort and Assured are to
be used together with traffic classes Reserved and Guaranteed on the same SpaceWire
network, SpaceWire Scheduling will be used to support all these traffic classes,
allocating sufficient bandwidths to the Reserved and Guaranteed traffic classes.

Figure 4-1: How the SOIS Traffic Classes are Provided

Figure 4-2 shows how the SOIS subnetwork services are provided using SpaceWire-
Scheduling and SpaceWire-Reliable. The Packet Service is provided by using the
combination of protocols shown in Figure 4-1. The Memory Access Service is
provided by using RMAP together with the combination of protocols shown in Figure
4-1. To provide each of the Time Distribution, Device Discovery and Test Services, a
simple protocol for defining messages and message sequences is needed together with
the combination of protocols shown in Figure 4-1 (possibly with RMAP for some
Services).

217

Figure 4-2: How the SOIS Subnetwork Services are Provided
(*) Whether to use SpaceWire-Scheduling and SpaceWire-Reliable depends on the

traffic class selected.

5 CONCLUSION
This paper presented some protocols that run on top of SpaceWire and are used to
provide the SOIS subnetwork services and traffic classes. This paper only presented
rough concepts of these protocols, and further investigation is needed to determine the
full specifications of these protocols. Furthermore, a roadmap showing how
SpaceWire should evolve to accommodate the requirements of future spacecraft
should be created and shared by both developers and users of SpaceWire. The
diagrams presented in this paper are examples of such a roadmap.

6 REFERENCES
1. CCSDS, “Spacecraft Onboard Interface Services”, CCSDS-850.0-G-1, June 2007.

2. ECSS, “SpaceWire – Links, nodes, routers and networks”, ECSS-E-ST-50-12C,
July 2008.

3. ECSS, “SpaceWire – Remote memory access protocol”, ECSS-E-ST-50-52C,
February 2010.

218

Test and Verification 1

219

USING TVS TO VERIFY SPACEWIRE DESIGNS

Session: Test and Verification

Long Paper

Damaris L. Guevara, Omar A. Haddad

NASA/Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt MD, 20771

E-mail: Damaris.L.Guevara@nasa.gov , Omar.A.Haddad@nasa.gov

ABSTRACT
Spaceflight designs often contain a mix of standard and custom interfaces. Although

test bench equipment for standard interfaces such as SpaceWire is often available for

testing flight designs in the lab, testing custom interfaces often presents a challenge.

The Total Verification System, TVS, addresses this issue and more.

The TVS provides the user with the ability to modify its functionality at a low level to

allow for verification of non-standard features of the device under test. Furthermore,

interactions between SpaceWire interfaces and other custom interfaces can be

properly verified in the TVS because of the user-programmability.

1 COTS SPACEWIRE GSE
Commercial off-the-shelf (COTS) SpaceWire ground support equipment (GSE) is

readily available. So, the question is: why do they not suffice? Most COTS GSE is

missing some desirable qualities for design verification. Two such qualities are a lack

in simulation models and the ease of customization. Let’s take a closer look at both of

these and why they are important for creating a more efficient and cost effective test

and verification process.

1.1 LACKING IN SIMULATION MODELS

Why do we even need GSE simulation models? Typically, GSE has been designed

for lab use with little or no thought of its use in a simulation environment. Doing this

has kept us blind from the possibility of having a more efficient and cost effective test

and verification process.

FPGA capacities are continuing to grow. As they grow, board designs are becoming

more FPGA-centric. With FPGA-centric designs come FPGA-centric systems. If

FPGAs are tested and verified in a simulation environment then it also makes sense to

test and verify FPGA-centric board designs and FPGA-centric system designs in a

simulation environment as well.

If we want to advance our test and verification process to one with higher efficiency

and cost effectiveness, then we need to shift our simulation applicability from FPGA

level to board level. However, running board level simulations require driving

220

SpaceWire interfaces with something. That something is a simulation model of the
GSE.

Once we have a simulation model of the GSE, we are then able to maximize
portability to the lab. This is because the same set of tests used in simulation can now
be the same set of tests used in the lab. So, where there used to be two totally
different set of tests written by two separate verification engineers, there is now only
one set of tests that works in two environments written by one verification engineer.
This allows for more design issues to be caught in the simulation environment where
it’s less costly to fix than in the lab environment where changes are more costly to fix.

It makes for smarter practice to be able to see how the system as a whole behaves
before hardware is even built. This is done through simulations and saves you
schedule, money, and even manpower. However, in order to simulate the entire
system one needs...you guessed it, GSE simulation models.

1.2 NOT EASILY CUSTOMIZABLE

Why do we need to be able to customize our GSE? GSE can be quite costly and with
that comes the need for their reuse in order to make the purchase worthwhile. When
it comes to space flight designs, it seems that no two designs are ever alike. They
may have very close similarities but they are almost always slight if not major
changes to design requirements from project to project. This brings us the need to be
able to customize our GSE in order to meet the ever-changing needs of our ever-
changing designs. This brings on the ability to reuse our GSE as we move from one
project to the next.

Most GSEs are also interface specific and if an interface changes, this means the
purchasing of a different type of GSE. If the GSE is customizable, this would save
not only money, but space (be it rack or bench space).

In some cases, a design requirement which requires a modification to the SpaceWire
standard can’t be tested at board level if the GSE is not customizable. This means that
the requirement can’t be tested until a later phase of integration where fixing possible
issues becomes more expensive. An example of customizing GSE is the GSFC
implementation of SpaceWire time codes and exercising a built-in Bit Error Rate
(BER) feature.

2 TVS SPACEWIRE GSE

The TVS is a custom-designed, fully FPGA-reprogrammable piece of GSE that is
optimized for verifying digital designs at the board level. It can implement up to 6
SpaceWire ports as well as other custom interfaces that use RS422, TTL, LVTTL, and
I2C. The PLL provides 3 clock sources up to 200MHz each. The TVS can be used
with software applications ranging from directed tests to Labview-like GUI programs.
The functionality of TVS is modeled with high-fidelity simulation models so that it
can be used to fully verify the spaceflight design before hardware is even built. The
simulation test bench is easily ported over to the lab environment allowing reduced
schedule times and cost savings in manpower.

221

The TVS GSE is also scalable which allows the use of multiple units as needed to
cover all DUT interfaces. Its scalability is due to the fact that it connects to a host PC
over USB, allowing more than one TVS to be connected to the host PC and controlled
by the host PC.

3 TVS FPGA

The TVS FPGA is a USB-reprogrammable Xilinx Spartan 3. The gate count, 1500k
or 4000k, depends on which Opal Kelly board the TVS is configured with. The
XEM3010 houses the Spartan 3-1500 while the XEM3050 houses the Spartan 3 -
4000. There is also the option of upgrading to a Xilinx Spartan-6 (XC6SLX45) by
configuring the TVS with the XEM6010 board. If you wanted to upgrade even more,
there are two other XEM6010 boards LX45 and LX150 that are available for the TVS
that also use the USB bus. The XEM6110 uses PCIe which is faster, but requires the
host PC to have a PCI board installed that supports PCIe.

No matter which board the TVS is configured with, the FPGA can be loaded with
GSFC-developed verification IP Cores such as SpaceWire Nodes and can be used to
create complex data patterns in real time. The programmability of the TVS FPGA
allows users to replace costly GSE equipment and provide the user with full control
over its behavior allowing unique mission requirements to be tested and verified, thus
reducing costs.

4 TVS USAGE

The TVS has many uses in test and verification from the simplest of designs to the
more complex. The TVS is applicable to any industry where electronic designs are
developed such as space, medical, automotive, or consumer. In any application, its
function is to test and verify designs and it can do so in both the simulation
environment and lab environment.

Although the TVS is mainly designed for use with digital designs, it also has the
capability to support analog designs with the addition of some external hardware. For
example, an ADC or DAC that supports I2C can be connected to the TVS’s I2C
signals, allowing the TVS to drive and sample analog signals.

4.1 TVS IN SIMULATION

The TVS can be used in the simulation phase, prior to building hardware. Typically,
the simulation phase consists of a suite of self-checking and automated tests written in
C/C++, the TVS simulation model, the device under test (DUT) with its component
simulation models and FPGA RTL, and the C-VHDL gasket interface which bridges
the tests to the simulator.

The tests communicate with a simulation model of the TVS and the verification IP
cores in the TVS FPGA via the C-VHDL gasket interface to exercise specific
functions of the DUT. The TVS thus promotes a board level test bench which
allows netlist problems to be caught in simulation where it is easier and cheaper to
address.

222

The diagram below shows the TVS in a typical simulation environment. The orange
block represents the test suite. The TVS simulation model is shown in blue. It uses a
gasket interface which is provided as part of the C-VHDL gasket. The DUT contains
the FPGA RTL code and component simulation models.

4.2 TVS IN THE LAB

Once we have the design fully simulated with all FPGA RTL code coverage having
reached the desired goal, we can confidently move on to DUT fabrication. When the
DUT is fabricated, the same suite of simulation tests is recompiled for use with a real
TVS to exercise the real DUT. The advantage of using the same suite of test for the
lab as we used in simulation is that if a bug arises during lab testing, it can usually be
recreated in simulation and fixed more easily with full visibility into the entire design.
Please note that although the advantages of running board level simulations are great,
some bugs require real time operation to present themselves.

The diagram below shows the TVS in a typical lab environment. Notice the high
degree of similarity to the simulation environment. The main difference is that the
GSE and DUT models are replaced with real hardware. The tests are the same as in
the simulation environment, and only talk to the GSE. The abstraction layer is also
recompiled to talk to APIs instead of the C-VHDL gasket and the TVS verification IP
cores are targeted to the TVS’s Xilinx Spartan 3 FPGA.

The fun doesn’t have to end at board level testing. The TVS can even be used in the
box level GSE rack to exercise a box’s front panel signals during environmental
testing. This allows for more of the SpaceWire network to be exercised.

223

5 TVS COMMERCIALIZATION

As a tax-funded agency, NASA gives back to the US economy through its technology
transfer program. This section discusses the possibility of commercializing the TVS
concept.

5.1 POTENTIAL MARKET

The TVS has gone from an idea to concept to realization and has been used
successfully on multiple NASA missions. As mentioned earlier, the fact that it is so
customizable allows for the TVS to be applicable for not only Space applications but
for medical, automotive, or consumer industries where electronics designs is
developed. The TVS truly is versatile.

5.1.1 Product Offerings

The TVS hardware can be sold as a stand-alone GSE that comes with a high-fidelity
simulation and a test bench environment that provides the portability from simulation
to lab testing. TVS FPGA verification IP cores can be developed and sold as add-on
modules to the TVS unit. The verification IP cores cater to various industries and
come with software drivers (DLLs) and User’s Manual documentation. With certain
TVS verification IP cores, the TVS could potentially replace far costlier equipment. It
is usually possible to replace multiple COTS GSE units with a single TVS unit.

224

5.1.2 Training Classes

The TVS concept is suggested for advanced designers due to the high level of
sophistication and customization, so training will be necessary. However, there are
quite a few training possibilities for learning that will cater to anyone. Not everyone
learns by the same method as others and it is important to offer diverse training
opportunities such as tutorials, webinars, seminars, on-site training, or a one- on- one
consultation.

5.1.3 Usage For Design Verification Services

Companies that offer design verification services can benefit from making the TVS a
part of their process. Efficient users of the TVS can offer their clients reduced costs,
shorter schedules, and more thorough design verification, an advantage that benefits
the company and makes it more competitive.

5.2 NTR SUBMITTED

A new technology report (NTR) has been submitted for the TVS. New Technologies

are defined as any invention, discovery, improvement, or innovation whether or not

patentable, either conceived or first actually reduced to practice in performance of

NASA work. This includes, but is not limited to, new processes, machines,

manufactures, and compositions of matter, and improvements to, or new applications

of, existing processes, machines, manufactures, and compositions of matter. New

Technologies also include new computer programs, and improvements to, or new

applications of, existing computer programs. (1)

The submitting process for NASA inventions is shown in the diagram below.

5.3 HW/SW AVAILABILITY

The TVS GSE hardware (HW) is not yet an off-the-shelf product, however NASA can
license out the design files necessary for fabrication. The manufacturing expenses are
estimated at $1k (using the XEM3010). A reasonable retail price of $5k would yield
an 80% profit.

The TVS software (SW) can be made available. The test bench software should come
along with the hardware and the FPGA IP cores (VHDL and DLLs) can be
individually licensed for use.

For more information on the TVS HW, SW, or both please contact Omar Haddad at
Omar.A.Haddad@nasa.gov.

1. Orans R. (2009, April 1.) Technology Reporting. Retrieved August 19, 2011, from
NASA Technology Transfer System website: https://ntr.ndc.nasa.gov/

225

SPACEWIRE EGSE

Session: SpaceWire Test and Verification

Long Paper

Stephen Mudie, Paul E. McKechnie

STAR-Dundee, c/o University of Dundee, School of Computing, Dundee, DD1 4HN

Steve Parkes, Martin Dunstan

University of Dundee, School of Computing, Dundee, DD1 4HN

E-mail: stephen.mudie@star-dundee.com, paul.mckechnie@star-dundee.com,

sparkes@computing.dundee.ac.uk, mdunstan@computing.dundee.ac.uk

ABSTRACT
The SpaceWire Electronic Ground Support Equipment (EGSE) is a STAR-Dundee

product [1] designed to simulate and stimulate SpaceWire devices. It provides a

means of generating user defined packets in pre-defined sequences at specific times

and data rates. The SpaceWire EGSE is configured using a script that is compiled and

loaded onto the SpaceWire EGSE unit. Once configured, the EGSE can generate

complex SpaceWire packet sequences without further interaction from host PC

software.

Real-time SpaceWire Electronic Ground Support Equipment can be implemented

easily with the SpaceWire-EGSE unit, avoiding the need for complex and expensive,

real-time software development.

1 INTRODUCTION
SpaceWire Electronic Ground Support Equipment (EGSE) is needed to support the

integration and testing of spacecraft that use SpaceWire. The EGSE has to simulate

instruments and other equipment during integration and test, and has to do this with

similar if not identical timing. Furthermore the SpaceWire EGSE has to integrate with

other test equipment, either responding to events or triggering other pieces of

equipment. Typically SpaceWire EGSE is implemented using a SpaceWire interface

board in a rack with a host computer which controls the SpaceWire interface, often at

the same time as controlling other EGSE interfaces. To provide representative timing

of SpaceWire packets, the software has to operate in real time, which is both costly

and difficult to develop. Last minute changes are very difficult to implement,

especially when the software is controlling multiple interfaces.

What is needed is a unit that will allow arbitrary SpaceWire packets to be transmitted,

in a predefined sequence, at a specified user data rate. It should initiate the sending of

a packet sequence on command from the host software, when a particular SpaceWire

packet is received, or when an external trigger is asserted. It should do this without the

need for any real time software development.

226

mailto:stephen.mudie@star-dundee.com
mailto:paul.mckechnie@star-dundee.com
mailto:sparkes@computing.dundee.ac.uk
mailto:mdunstan@computing.dundee.ac.uk

The new STAR-Dundee SpaceWire-EGSE unit is just such a unit. It is provided with

a special scripting language which allows SpaceWire packets to be defined using easy

to understand terms. This language also specifies the time sequencing of packets and

the event or series of events that cause various packet sequences to be sent. The

information thus provided is compiled and loaded on to the SpaceWire-EGSE

hardware. Thereafter the only interaction with user real-time software controlling the

SpaceWire-EGSE and other equipment is through software events that can be asserted

by the user application or indicated by the SpaceWire-EGSE.

2 HARDWARE
The SpaceWire EGSE is configured via a USB connection to the host PC. It has two

SpaceWire ports from which packets can be generated and received. It has four

external triggers, three input and one output. It also has a large memory for storing

packet definitions.

3 SPACEWIRE EGSE SCRIPTING LANGUAGE
The SpaceWire EGSE is configured using a simple yet powerful scripting language.

The language can be used to define variables, events, packets, packet generation

schedules and state machines.

3.1 PACKET DEFINITION

Packet definitions can consist of data defined in hexadecimal or decimal bytes,

variable references, CRC and checksum calculations and EEP and EOP control

characters.

Example Description

packet myPkt

 hex(0A 0B 0C 0D)

 eop

end packet

Defines a packet named “myPkt”

consisting of data specified in

hexadecimal bytes (0A 0B 0C 0D)

followed by an end of packet marker.

Above is a very basic packet definition. As with much of the SpaceWire EGSE

language, packets are defined using a header, body and footer. The header consists of

the “packet” keyword followed by the packet name and indicates the start of a packet

definition. The packet body defines the packet contents. The packet footer consists of

the keywords “end packet” and indicates the packet definition end.

227

Example Description

packet myPkt

 start(crc8)

 hex(0A 0B 0C 0D)

 dec(01 02 03 04) * 2

 stop(crc8)

 crc8

 eop

end packet

Defines a similar packet to the previous

example but contains additional data

specified in decimal. It also contains a

CRC calculation and reference.

The start and stop statements in the example above can be used to calculate CRC and

checksum values for the data between them. The CRC or checksum value can then be

referenced in the packet definition.

3.2 VARIABLES

The SpaceWire EGSE provides variables that are used to define packets with dynamic

data. Variables have names by which they can be referenced in packet definitions

along with a type and (optionally) an initial value. Each variable performs a function

upon its value when read, based upon its type. The variable types available are

increment (increments variable value by one when read), decrement (decrements

variable value by one when read), rotate left (performs rotate left bit shift to variable

value when read), rotate right (performs rotate right bit shift to variable when read)

and random (assigns a random value to the variable). The example below

demonstrates the use of a variable to dynamically set the ID of each packet sent.

Example Description

variables

 transactionID inc8 = 0

end variables

packet myPkt

 hex(0A 0B 0C 0D)

 transactionID

 eop

end packet

Defines an increment variable named

“transactionID” with an initial value of 0.

A packet definition containing a reference

to the incrementing variable

“transactionID”.

3.3 PACKET GENERATION SCHEDULES

A schedule is used to define a timed sequence of packets for packet generation. The

schedule references packets defined earlier in the script. Packets can be sent relative

to the start of the schedule or relative to the previous packet. We can also specify the

number of times the packet is sent.

228

Example Description

schedule mySchedule1

 5ms send myPkt1 * 2

 10ms send myPkt2

end schedule

schedule mySchedule2

 5ms send myPkt1

 +10ms send myPkt2

end schedule

Schedule named “mySchedule1” sends

packet “myPkt1” twice, 5ms after the

schedule starts, and “myPkt2” once 10ms

after the schedule starts.

Schedule “mySchedule2” sends

“myPkt1” 5ms after the schedule starts

then “myPkt2” 10ms after “myPkt1” is

sent.

3.4 STATE MACHINE

The state machine definition is responsible for control of the EGSE state. The state

machine consists of state definitions. Each state has an associated schedule which is

run when the state is entered at the data rate specified. Along with a schedule each

state contains statements that determine when to change state and when to transition

from one state to another.

statemachine 1

 initial state state1

 do mySchedule1 @ 20Mbps

 transition at end of schedule

 on myTrigIn1 goto state2

 end state

 state state2

 do mySchedule2 @ 50Mbps repeatedly

 transition at end of packet

 on myTimer goto state1

 end state

end statemachine

The above example is a state machine definition for SpaceWire link 1 of the

SpaceWire EGSE. Two states are defined named “state1” and “state2”. On entering

“state1” the schedule named “mySchedule1” is run once at a data rate of 20Mbps. If

the event named “myTrigIn1” is received then at the end of the current schedule the

state will change to “state2”. On entering “state2” the schedule named

“mySchedule2” is run repeatedly at a data rate of 50Mbps. If the event named

“myTimer” is received then once the current packet is sent the state will change to

“state1”.

3.5 EVENTS

As seen in the state machine definition above, events are used to control the current

state and therefore the current packet generation schedule. There are pre-defined

events and user defined events. Predefined events include link started, link errors

(parity, escape, credit, and disconnect), time-code received, and packet generation

events. User defined events are timers, counters, software and external triggers.

229

Example Description

timers

 myTimer 10ms start on mySWEvent1

end timers

counters

 myCounter 10 on myTrigIn1

end counters

software

 mySWEvent1 1

end software

triggers

 myTrigIn1 input 1 rising

 output high on myTimer

end triggers

A 10ms timer that begins when the

event “mySWEvent1” is received.

A counter that generates an event

when the event “myTrigIn1” is

received 10 times.

Declaration of a software event.

Generates “myTrigIn1” event when

rising signal received on external

input trigger pin 1. Generates a high

external output trigger signal when

“myTimer” event is received.

Timers generate an event when a specified time is reached. The timer starts when the

associated event is received. A counter has an initial value that is decremented each

time an associated event is received. When the counter reaches zero it generates an

event.

External trigger-in events specify the event to generate when a trigger-in signal is

received on the associated input pin. The external output trigger generates a signal

when it receives a specific event.

Software events permit host PC software to trigger a change in the state machine in

the SpaceWire-EGSE. They provide a means of interaction with the host PC software.

An API makes available functions the user can call upon to generate a software event.

The host software can also be signalled when a specific event occurs or when a

particular state is entered in the EGSE state machine.

230

The screenshot above is taken from a SpaceWire Link Analyser and shows the EGSE

generating a sequence of small packets on both SpaceWire links, at the maximum rate

possible on the link. Note that the link is running at 350MHz and no NULL characters

are seen in the trace.

4 CONCLUSION
This paper has briefly described the SpaceWire EGSE and the scripting language used

to configure it. The scripting language can quickly be used to configure the

SpaceWire EGSE unit to mimic the behaviour of the SpaceWire device of interest.

The SpaceWire EGSEs ability to generate packets independent of host software

means it can produce very similar if not identical packet generation behaviour to the

simulated instrument. The external input and output triggers on the SpaceWire EGSE

provide a means by which to integrate with other test equipment. Such capabilities

make the SpaceWire EGSE a quick and efficient way of simulating SpaceWire

devices. Using the SpaceWire EGSE it is possible to develop a complete SpaceWire

instrument or other device simulation with real-time behaviour, in little more than one

day.

5 REFERENCES
1. STAR-Dundee, http://star-dundee.com/products.php, STAR-Dundee SpaceWire

Products, STAR-Dundee Website.

231

http://star-dundee.com/products.php

TESTING SPACEWIRE SYSTEMS ACROSS THE FULL RANGE OF PROTOCOL
LEVELS WITH THE SPACEWIRE PHYSICAL LAYER TESTER.

Session: SpaceWire test and Verification

Long Paper

Pete Scott

STAR-Dundee c/o University of Dundee, School of Computing, Dundee DD1 4HN

Scotland, UK

Paul Crawford, Steve Parkes

University of Dundee, School of Computing, Dundee DD1 4HN, Scotland, UK

Jorgen Ilstad

European Space Agency, Postbus 299, NL-2200 AG Noordwijk, The Netherlands

E-mail: pete@star-dundee.com, psc@sat.dundee.ac.uk,

sparkes@computing.dundee.ac.uk, jorgen.ilstad@esa.int

ABSTRACT
STAR-Dundee have previously reported on test equipment which is capable of testing

the Network, Packet, Exchange, Character and parts of the Signal level of the

SpaceWire standard. This paper introduces the SpaceWire Physical Layer Tester

(SPLT), which is a new tool designed to test, validate and verify a SpaceWire system

across all levels covered by the SpaceWire standard.

Two SpaceWire ports on the SPLT employ a special LVDS interface which allows the

transmitted signals to be deliberately and measurably manipulated to test the

capability of a unit under test (UUT) to receive signals of varying quality. The SPLT

SpaceWire drivers offer full, independent control of voltage offset and amplitude for

data and strobe pairs. Skew can be introduced both in-pair and between data-strobe

pairs. Slew rates can be individually configured on each half of the differential pairs.

To facilitate acquisition of an eye-diagram, the signal received on the termination

resistors on these ports is buffered on external connectors to allow easy interfacing to

an oscilloscope. This allows a comprehensive suite of tests to be performed through

the UUT SpaceWire port without the need to open the unit.

In addition to the LVDS interface, the SPLT also implements many of the capabilities

of existing STAR-Dundee devices: Link Analyser Mk2, Conformance Tester and

USB Brick in addition to the packet generator and checker capabilities of the newly

announced SpaceWire EGSE. A pair of Gigabit Ethernet ports and a USB 2.0 port in

addition to an API allow for great flexibility in interfacing the SPLT to existing test

environments. The device is rack mountable in a 1U, half width format.

232

mailto:pete@star-dundee.com
mailto:psc@sat.dundee.ac.uk
mailto:sparkes@computing.dundee.ac.uk
mailto:jorgen.ilstad@esa.int

1 EXISTING TECHNIQUES FOR TESTING THE PHYSICAL AND SIGNAL LAYER

1.1 INTRODUCTION

The SpaceWire Standard is defined across six levels ranging from the Physical level

up to the Network level. A successful SpaceWire system must be implemented in a

way which conforms to the specifications laid out across all of these levels. A range

of existing techniques can be implemented to analyse the performance of such a

system at the physical and signal layer. A more detailed overview of the devices and

test techniques discussed in this section can be found in [1].

1.2 TIME DOMAIN REFLECTOMETRY

Time Domain Reflectometry is used to evaluate the performance of connectors,

differential pair traces on Printed Circuit Boards (PCB), backplanes, cables and any

other media which is used to transmit SpaceWire LVDS electrical signals. A pulse is

transmitted down a SpaceWire differential pair and the analysis of the reflections can

show up impedance discontinuities or incorrect termination of the line. An

appropriate interface to the SpaceWire port is required to inject the test signals and

measure the responses.

1.3 EYE PATTERN MEASUREMENT & SPECTRUM ANALYSIS

Measuring the eye-pattern of a SpaceWire signal using a high speed oscilloscope

gives insight to the transmitter characteristics of the unit under test. The signal’s rise

and fall times and jitter can be observed. A mask can be applied to the opening of the

eye for a sustained test period to verify that the signal remains in a valid region. Eye

pattern measurement can also be employed to measure Data-Strobe skew

characteristics by measuring the Data eye pattern when triggering on the Strobe signal

and vice-versa. A Spectrum Analyser can be used to display the power spectrum of a

SpaceWire signal being transmitted from a UUT and analyse parameters such as drift

and jitter.

One of the biggest difficulties in performing Spectrum Analysis or Eye Pattern

measurements on a SpaceWire system is that it requires probes to be fixed to the

LVDS termination resistors in the receiver. It is often undesirable or not permitted to

remove the case of flight equipment and attach probes onto the relevant components.

A further difficulty is that these tests work best when pseudo-random bit streams

(PRBS) are being analysed. It may be difficult to configure a unit under test to

generate such a condition.

1.4 BIT ERROR RATE TESTING (BERT)

BERT systems will typically use a transmitter to generate a PRBS or pre-programmed

bit sequence for transmission to the UUT. A receiver in the BERT system will

compare the received signal to an expected signal and flag any bit-errors that are

detected. One difficulty with these systems is that an interface from the

transmitter/receiver to a SpaceWire port would have to be implemented. It also

assumes that the unit under test can conveniently output PRBS test data through a

loopback mode.

233

2 THE STAR-DUNDEE SPACEWIRE PHYSICAL LAYER TESTER

2.1 TESTING ACROSS THE SPACEWIRE STANDARD

STAR-Dundee currently supply a range of test equipment which tests across most, but

not all levels of the standard. This is summarised in Figure 1.

Figure 1: Testing, Monitoring and Verifying SpaceWire systems across the SpaceWire standard
with STAR-Dundee test equipment.

2.2 OVERVIEW OF THE SPACEWIRE PHYSICAL LAYER TESTER

The unique feature of the STAR-Dundee SPLT is the capability of manipulating the

analogue characteristics of the output LVDS signals. This facilitates the analysis of

what the UUT is capable of successfully receiving. The severity of skew, slew,

swing, common-mode and jitter can be controlled to mimic a range of physical media,

environments and device output characteristics. The operation and capabilities of

these special LVDS drivers is explained in Section 4. The SPLT also features the

capability to connect a high speed oscilloscope via SMA connectors on the front panel

in order to observe the received SpaceWire signals. High speed analogue buffers are

utilised to buffer the signal close to the termination resistors allowing the SPLT to

receive and decode the SpaceWire signals whilst they may be simultaneously

monitored by an oscilloscope.

The SPLT is a 1U rack mountable ½ width device which interfaces to a host PC

through either USB 2.0 or one of its 2 Gigabit Ethernet ports. A Mictor connector

allows a logic analyser to interface to the device’s inbuilt STAR-Dundee Link

Analyser Mk2 [2]. An enhanced version of the STAR-Dundee Conformance Tester

[3] allows advanced conformance testing of the physical layer to be performed.

Physical Level

Signal Level

Character Level

Exchange Level

Packet Level

Network Level

T
h
e

S
p
ac

eW
ir

e
S

ta
n
d
ar

d

C
o
n
fo

rm
an

ce
T

ester

S
p
W

In

terface*

S
p
W

 L
in

k
 A

n
aly

ser
S

p
W

 L
in

k
 A

n
aly

ser M
k
2

Protocols S
p
aceW

ire P
h
y
sical L

ay
er T

ester

*Includes EGSE, SpW Brick, SpW PCI Mk2, SpW cPCI Mk2, SpW PMC Mk2,

SpW PCI Express and SpW Router Mk2.

234

3 PERFORMING TESTS WITH THE SPACEWIRE PHYSICAL LAYER TESTER

3.1 INTRODUCTION

A range of tests can be performed with the SPLT operating in different modes.

3.2 IN-LINE MARGIN ANALYSIS

The SPLT is connected between two SpaceWire UUTs in the same way a STAR-

Dundee Link Analyser would be connected. This configuration is shown in Figure 2.

Figure 2: Using the SPLT to perform in-line margin analysis between two devices under test.

When operating in in-line analysis mode, the two UUTs will communicate as normal,

sending and receiving data to each other. The SPLT buffers the incoming signals on

one SpaceWire port and then drives them out through the analogue LVDS drivers on

the other SpaceWire port. The SPLT can then manipulate the SpaceWire signals in

one, or both, directions to explore the receive margins of either, or both, UUT devices.

3.3 LOOP-BACK MARGIN ANALYSIS

In loop-back configuration, the SPLT is connected to a single UUT as shown in

Figure 3.

Figure 3: Using the SPLT to perform loop-back margin analysis, conformance testing, pattern
generation & checking on a single UUT. This setup can also be implemented to use the SPLT as
a SpaceWire interface to a Host PC.

UUT SPLT

Logic Analyser

Oscilloscope

USB 2.0

Gigabit
Ethernet

SpW

M
icto

r

S

M
A

 S
M

A

UUT #1 UUT #2 SPLT

Logic Analyser

Oscilloscope

USB 2.0

Gigabit
Ethernet

SpW

SpW

M

icto
r

S

M
A

 S
M

A

235

In loop-back analysis, the SPLT receives data from the UUT and loops the data back

through the same SpaceWire port. The LVDS transmitters can manipulate the data to

test the receive margins of the UUT. The signals received from the UUT are buffered

by the SPLT and made available for analysis on an oscilloscope. Loop back

SpaceWire data is decoded onto the Mictor connector for easy interface to a Logic

Analyser. Loop-back analysis requires the UUT to be able to start a SpaceWire link

and to send and receive SpaceWire commands.

3.4 CONFORMANCE TESTING

The SPLT implements an advanced version of the STAR-Dundee Conformance

Tester with additional tests which take advantage of the analogue LVDS driver

capabilities of the SPLT. The test environment is set up in the same configuration as

Figure 3.

3.5 PATTERN GENERATION AND CHECKING

A series of Packets can be pre-programmed into the SPLT for transmission as well as

a series of expected packets that should be returned by the UUT. The SPLT can be

set up to mimic a SpaceWire device that will be interfaced to the UUT. The test

packets are transmitted from the SPLT at high speed and the UUT response checked

against the pre-defined expected response. Any errors in the received bit-stream will

then be flagged up by the SPLT.

3.6 SPACEWIRE INTERFACE WITH RMAP CAPABILITY

In SpaceWire interface mode, the SPLT is used to send and receive SpaceWire

packets to a UUT from a PC through either USB 2.0 or Gigabit Ethernet connections.

In this way, the SPLT works in a similar fashion to the STAR-Dundee SpaceWire

Brick, but with added capabilities of LVDS margin testing. An RMAP target

provides memory space which can be written to or read from by the UUT.

3.7 DETECTING ERRORS AND DEBUGGING CAPABILITIES OF THE SPLT

As the output LVDS signals are progressively degraded, bit errors on one, or both of

the interfaced UUTs become increasingly likely. SpaceWire bit errors will manifest

themselves as link disconnects due to detection of parity errors. Errors which are not

detected by parity may still be picked up by implemented protocol features such as the

RMAP cyclic redundancy check (CRC). The SPLT inbuilt Link Analyser Mk2 could

then be triggered on detection of an RMAP header which reports a CRC failure.

The analogue signals received at the inputs of each SpaceWire port are buffered by

the SPLT. An oscilloscope can be used to monitor the received data and strobe

signals from both SpaceWire ports simultaneously. The SpaceWire data flowing

through the SPLT SpaceWire ports is decoded by an inbuilt Link Analyser Mk2 and

the characters are output on a Mictor connector suitable for interfacing to a Logic

Analyser. A Host PC can be used to control the inbuilt SPLT Link Analyser Mk2 to

trigger, store and read out captured data.

236

4 OPERATION OF THE LVDS DRIVERS
Figure 4 shows the components of the LVDS driver which are employed to

manipulate the output of the SpaceWire signals.

Figure 4: Operation of the LVDS driver circuitry. Figure 4a gives a simplified overview of the
LVDS driver chain. b shows the operation of the low-pass filter (LPF) component. c and d
respectively show the circuitry responsible for controlling the common-mode and swing of the
LVDS signalling.

4.1 MANIPULATION OF SKEW AND JITTER USING THE DELAY LINES

Delay lines on the positive and negative transmission lines allow the measurable

introduction of in-pair and Data-Strobe skew to a resolution of 10ps. A SpaceWire

device should state what its maximum operating frequency is for a given Data-Strobe

skew. The SPLT allows this test to be performed directly. Cables will typically state

how much skew there is per unit length of cable. This information can be used to

simulate different cables of different lengths.

Jitter can also be introduced into any of the delay lines. This can be used to simulate a

device’s stated jitter characteristics as well as deterioration of signal caused by

electromagnetic interference (EMI).

4.2 MANIPULATION OF SLEW USING THE LOW PASS FILTERS

The low pass filters work by switching a combination of 3 capacitors of differing

capacitance into or out of of the chain. This allows for eight different levels of slew

to be introduced to a signal. Signal slew is typically caused by the capacitive effect of

b: Low-Pass Filters

a: Overview c: Common-Mode

d: Swing

237

the cable down which the signal travels. This allows the SPLT to simulate different

cable characteristics such as length and mutual capacitance.

4.3 CONTROLLING THE SWING AND COMMON-MODE OF THE LVDS SIGNALLING

Digital to Analogue Converters (DACs) are used to set both the swing and the

common-mode voltage by controlling reference voltage levels into operational

amplifiers. Additional calibration voltages are used to ensure that both positive and

negative components of the LVDS pair swing by the same magnitude about an equal

common-mode.

Modification of the swing of the output signal simulates attenuation of the SpaceWire

signal as it propagates through pcb traces and cables from transmitter to receiver.

Attenuation can be simulated for media of differing lengths.

SpaceWire is not DC balanced and requires adequate common grounding between the

communicating systems. Imbalances in ground plane, or power supply voltages

between units could cause the DC level of the LVDS signalling to drift. The LVDS

can test the permitted margins of this drift by manipulating the common-mode voltage

of the output signal.

4.4 NO SINGLE POINT OF FAILURE

The design of the SPLT electronics guarantees that there will be no single point of

failure on the SPLT that could damage SpaceWire equipment to which it is connected.

5 MEASURMENTS FROM THE LVDS DRIVERS
In order to demonstrate the capabilities of the SPLT, the Data and Strobe signals of a

SpaceWire port were driven with a 25MHz square wave before manipulation by the

analogue-electronics. The SpaceWire port was looped back into the analogue

SpaceWire buffers on the SPLT so that an oscilloscope could be used to analyse the

outputs. Screenshots from the oscilloscope measurements are presented in Figure 5 to

show the discrete sources of signal disruption that the SPLT can introduce. Figure 5h

then shows these sources combined to give a typical margin-testing waveform.

6 CONCLUSION
The SpaceWire Physical Layer Tester incorporates and builds upon established

STAR-Dundee test products: the Link Analyser Mk2, the Conformance Tester and

SpaceWire interface devices. Whether used with just a host PC, or in conjunction

with a high speed oscilloscope and logic analyser, the SPLT can be connected in a

variety of configurations to test SpaceWire systems. The ability to measurably

deteriorate the SPLT output LVDS signals and to easily measure the input signals on

an interfaced oscilloscope allows the SPLT to test, validate and verify SpaceWire

systems from the physical and signal layer of the SpaceWire standard, right up to any

protocols which are running on top of the SpaceWire standard.

238

Figure 5: Measuring the different methods of deteriorating the LVDS signals from the SPLT. In
these measurements, the Data (top pair) is manipulated with the strobe (bottom pair) untouched.
Figure 5h omits the Strobe signal and replaces it with the subtraction function Data(+) – Data(-).
Figure 5g uses infinite persistence to show applied jitter. Horizontal axis is 10 ns per division and
vertical axis is 300 mV per division for all measured signals in all figures.

7 REFERENCES
1. Agilent Technologies, “Signal Integrity Solutions. Find Problems Now, Prevent

Problems Next Time”, 30
th

 April 2010, Agilent Reference: 5988-5405EN.

2. Pete Scott, Steve Parkes, “SpaceWire Link Analyser Mk2: A New Analysis

Device for SpaceWire Systems”, International SpaceWire Conference 2010, St

Petersburg, 22
nd

 – 24
th

 June 2010.

3. Steve Parkes, Martin Dunstan, “Debugging SpaceWire Devices using the

Conformance Tester”, International SpaceWire Conference 2007, Dundee, 17
th

 –

19
th

 June 2010.

a: Unmodified output signal b: Introduction of slew

c: Reducing signal swing d: Reducing common mode

e: 10 ns Data-Strobe skew f: 10 ns in-pair Data skew

g: 300 ps Data Jitter (persistence) h: Multiple sources of disruption

239

SYSTEMATIC AND COMPLETE VERIFICATION OF SPACEWIRE BUS WITH

MODEL CHECKING

Session: SpaceWire test and verification

Long Paper

Zhiping SHI1, Zhiquan DAI1,Yong GUAN1, Minhua WU1, Shengzhen JIN1, Jie ZHANG2, Xiaojuan
LI1

1 Beijing Engineering Research Center of High Reliable Embedded System, Captial
Normal University, Beijing, China

2College of Information Science & Technology, Beijing University of Chemical
Technology, Beijing, China

E-mail: shizhiping@gmail.com, woyun_23@163.com, guanyxxxy@263.net

ABSTRACT

The SpaceWire bus is usually used in safety-critical areas like aerospaces and other
harsh environments. Therefore, it is vital to verify the correctness of SpaceWire
designs and implementations. In this paper, the model checking method is employed
to verify the SpaceWire bus system designed by the Beijing Engineering Research
Center of High Reliable Embedded System of China. The eight modules of the
SpaceWire Bus are verified and three errors are found. After corrected the errors
according to the counter examples returned from the result of model checking
verification, all the properties extracted from the protocol specification are proved
valid. The results show that model checking is a simple and effective method with
high level automation for SpaceWire protocol verification.

1 INTRODUCTION

The SpaceWire protocol [1] which was developed by the European Space Agency
(ESA) has been applied to multiple in-orbit space equipments. ESA puts forward the
protocal in natural language description; and there is not standard SpaceWire
communications equipment so far. The designs and implementations of different
developers of the SpaceWire protocol will be different. In the hardware circuit design,
it is vital important to verify the circuit design satisfies the target specification or not.

In the hardware circuit design, finite-state machine is often used to show the circuit's
function and can be well associated with Kripke structure of formal verification model.
Secondly, in functional verification, finite-state machine only needs to verify its
timing sequence correctness, don’t care about the specific concept of time, in this way,

240

high-order temporal logic in model checking method can well represent the functional
properties. Last, there have been relatively mature automated verification tool that can
help people efficiently finish the completeness verification of design and
implementation [2-3]. It is very necessary that we use model checking to achieve the
systematic and complete verification of SpaceWire systems.

2 VERIFY FLOW

In this paper, the verification object is the SpaceWire system circuit design
implemented by the Reliable Embedded Systems Laboratory of the Capital Normal
University China. The system is composed of the following eight modules: the baud
rate selection module, the recovery module, the credit module, the time module, the
faulting module, the control module, the sending module and the receiving module.
Because the eight modules are functionally independent, the combined model
checking is adopted to verify the eight modules respectively. The divide and rule
method avoids the state space explosion problem to which the model checking is
prone.

The verification process is as follows. At first, the system design is modelled using
Kripke structure. Then, we use the branching-temporal logic to describe the properties
of the protocol specification into the CTL formulas. Finally, a model checking tool,
SMV, is employed to verify whether the logic formulas of the properties are valid in
the formal models of the system design. The verification results show whether the
implementation of the SpaceWire system accords with the protocol specification. The
verification process is shown in Figure 1.

requirement

formal

specification

system design

modeling

formalized
model

model
checking

true false+counter
-example

 simulation/
test error locating

Figure 1. Formal Verification Process Graph

The SpaceWire circuit design is described in hardware description language VHDL,
whereas the SMV system can accept Verilog description language [5] or SMV

241

language. Therefore, before verification, we use the third-party software X-HDL to
transform the VHDL code into Verilog code. The state transition relations are
abstracted from the Verilog code, and expressed by Kripke structure. In addition,
through analyzing the protocol specification, we extract the properties that the system
should satisfy and formalize the properties in higher-order temporal logic formulas.
Finally, in order to reduce unnecessary verification cost, some signal variables in the
design code, such as system reset signal, clock signal, are limited in certain range in
accordance with the protocol specification. After the property formulas are merged
into the design code, we use automated model checking tool SMV to carry out the
verification.

3 SYSTEM VERIFICATION

According to protocol specification, we extract a total of fifty-five properties and
describe them in higher-order temporal logic formulas. The verification shows that the
seven formulas out of them are invalid. According to the counterexamples given by
SMV, we check the code and dig out three design errors. Based on the protocol
specification, we revise the design code, and then all the properties pass the new
verification.

As the length is limited, we take a time code register module as an example to
introduce the model checking process.

3.1 MODELLING

According to the SpaceWire protocol specification, the module of the time code
registers will achieve the function as follows: If the module is reseted, the output data
are invalid all-zero data, or if the Tick_In signal, which requests sending the time
code, is valid and the HoldRegister signal, which represents the register pending, is
invalid, this module will output a valid time code. Design code is shown below.

if (Reset == 1'b1)
 begin
 Time_Out <= {6{1'b0}} ;
 TimeControlFlag_Out <= {2{1'b0}} ;
 end
else
 begin
 if (Tick_In == 1'b1 & HoldRegister == 1'b0)
 begin
 Time_Out <= Time_In ;
 TimeControlFlag_Out <= TimeControlFlag_In ;
 end
 end

242

Figure. 2 Time code register module design code

According to the design code and combining the method of formal modelling, this
module is modelled as the state transfer diagram as Figure 3.

S0

S1

S2 Reset=0
Tick_In=1

HoldRegister=0

Reset=0&(Tick_In=0|
HoldRegister=1)

Reset=0
Tick_In=0|HoldRegister=1

Time_Out= Time_In
TimeControlFlag_Out=
TimeControlFlag_In

Time_Out=000000
TimeControlFlag_Out=00

Time_Out=XXXXXX
TimeControlFlag_Out=XX

Reset=1

Tick_In=1
HoldRegister=0

Reset=0&(Tick_In=0|
HoldRegister=1)

Tick_In=1
HoldRegister=0

Reset=1 Reset=1

Figure 3. The state transfer diagram of the time code register module

If the system is reset, the module steps into the reset state. In this state, Time_Out,
which requests the time code been sent out, and TimeControlFlag_Out, which
requests control flag of the time code, are all assigned to zero. In the state S0, if reset
signal is invalid, Tick_In is valid, and HoldRegister is invalid, then the system will in
the state S1. In this state, Time_Out and TimeControlFlag_Out will be valid. If reset
signal and Tick_In are invalid and HoldRegister is valid, the system will in the state
S2. In this state, Time_Out and TimeControlFlag_Out will random. Between the state
S1 and the state S2 can also be interchangeable.

3.2 ANALYSIS OF PROPERTY VERIFIED

There are three properties to be verified in this module. Property1: If the system reset,
the output time code and the control flag of the time code will be set zero. Property2:
If the system is not in reset state, when Tick_In is valid and HoldRegister is invalid,
the value of the time code and the control flag of the time code are equal to a moment
of the corresponding input values. Property3: If the system is not in reset state, when
Tick_In is invalid and HoldRegister is valid, the output time code and the control flag
of the time code will be set zero.

Property1: SPEC AG(Reset -> AF (Time_Out =0 & TimeControlFlag_Out=0));

where, Reset is reset signal in the module; Time_Out is the time code data value that
is need to be send; TimeControlFlag_Out is the time control code to send.

243

Property2: SPEC AG(Tick_In & ! HoldRegister & !Reset-> AF ((AX Time_Out[0] <->

Time_In[0]) & (AX Time_Out[1] <-> Time_In[1]) & (AX Time_Out[2] <-> Time_In[2]) &

(AX Time_Out[3] <-> Time_In[3]) & (AX Time_Out[4] <-> Time_In[4]) & (AX Time_Out[5]

<-> Time_In[5]) & (AX TimeControlFlag_Out[0] <-> TimeControlFlag_In[0]) & (AX

TimeControlFlag_Out[1] <-> TimeControlFlag_In[1])));

Property3: SPEC AG ((!Tick_In | HoldRegister) & !Reset-> AF (Time_Out =0 &

TimeControlFlag_Out=0));

Where Tick_In is the request signal that request to send the time code, and
HoldRegister is the register pending signal, Time_Out is the value of time code to
send out, and TimeControlFlag_Out is the control flag of the time code to send.

3.3 VERIFICATION

The SMV checker gives the result: Property1 and Property2 are true, but Property3 is
false. The SMV gives the counter-example of Property3 (see Figure 4).

Through analyzing the counter-example, we find that the value of
TimeControlFlag_Out is always one and TimeControlFlag_In is always zero from the
third moment. By analyzing the design code, we find the error occurs because the
condition sentence is incomplete. It does not designate the value of the output signal
when the condition is false. So, we add the situation state assignment which is
equivalent to the output signal of the reset, the revamped code is shown in Figure 5.

After modifying the design code, we verified the time code register module again, and
the results show the three properties are true as in Figure6.

244

Figure 4. The counter-example of Property3

Figure 5. Design code modification of the time code register module

Figure 6. Verification results after modifying the design code

3.4 ERRORS FOUND AND SOLUTION

Errors have been found in three modules: the time code register sub-module,the send
register sub-module in the sending module, and the faulting module.

In the time code register sub-module of the sending module, we find a property shown
false. Through analying the design code and the counter-example, the error owes the

if (Reset == 1'b1)
 begin
 Time_Out <= {6{1'b0}} ;
 TimeControlFlag_Out <= {2{1'b0}} ;
 end
else
 begin
 if (Tick_In == 1'b1 & HoldRegister == 1'b0)
 begin
 Time_Out <= Time_In ;
 TimeControlFlag_Out <= TimeControlFlag_In ;
 end

else
begin

 Time_Out <= {6{1'b0}} ;
 TimeControlFlag_Out <= {2{1'b0}} ;
 end

 end

245

incomplete condition sentence. In the above example, we have illustrated the wrong
reason and solution.

In the send register sub-module of the sending module, when it sends time code
packet, we verify whether the data-control flag is consistent the protocol
specification. The verification results of the two property formulas don’t pass. By
analyzing the counterexamples and the design code, we find the data-control flag of
time-code packet is set to zero, inconsistent with the requirements in the protocol
specification. In the original design, we modified the data-control flag setting based
on the protocol specification, then the two property formulas pass verification..

In the faulting module, the generated errors have responding priority.the parity error,
the escape error, the disconnect error, the credit error and the character sequence error,
these five kinds of errors have increasing priorities in order. The 4 out of 7
properties of the faulting module failed to pass verification, because when both the
high priority and the low priority error processing requests occur, the low priority
error processing requests will be shielded by the high priority ones. Thus, it is
possible that the high priority requests continuously come before the low priority
errors got response, then low-priority requests would be starved to death. In order to
prevent the low priority error processing requests from starving to death because the
errors always fail to get response. For instance, we can count response times of
diffident priority errors, if the response times of high priority errors have reached the
configured maximum number of response times, the error priority will lower a level.
So, the low-priority errors will not starve to death.

3.5 VERIFICATION RESULTS

We extract fifty-five properties totally from the eight modules, and most of them pass
verification. There are seven properties failed to verify in the faulting module and two
sub-modules of the sending module. As shown in table 1.

Table1 Verification Results of SpaceWire

Module name CTL formulas True False
Baud rate selection module 3 3 0
Recovery module 3 3 0
Credit module 3 3 0
Time module 4 4 0
Faulting module 7 3 4
Control module 22 22 0
Sending module 5 3 3
Receiving module 8 8 0

For invalid properties, SMV put forwards corresponding counterexamples that cause
properties invalid. Based on the counterexamples for the checked properties, we
found the design errors in the design code after analyze the protocol specification and
design code. Finally, we modify and improve the SpaceWire system design, then the
property which prior failed to verify pass the verification.

246

4 CONCLUSIONS

We use the model checking method to verify the design of SpaceWire bus system
implemented by Capital Normal University China. In order to avoid states explosion
problems, this paper adopts divide and rule methodology to independently verify the
eight modules. We abstract and verify fifty-five properties, out of which seven
properties failed to verification . The design flaw are found and revised according to
the counterexamples that SMV system given. After revised, the seven properties pass
verification. The SpaceWire system has higher reliability after verified and revised.

Model checking is a simple and effective method of formal verification with high
level automation, and is a feasible protocol verification method.

5 REFERENCES

1 ECSS-E-50-12A. “Space engineering. SpaceWire - links, nodes, routers, and
networks”[S]. European Cooperation for Space Standardization.
http://www.ecss.nl/forums/ecss/dispatch.cgi/standards/showFile/100302/d200907
22143301/ No/ECSS-E-50-12A(24January2003).pdf. 2003.

2 E.M.Clarke, E.A.Emerson, and A.P.Sistla. “Automatic verification of finite state
concurrent systems using temporal logic specifications”[J].ACM transactions on
Programming Languages and Systems, 1986,pp. 244-263.

3 M.C.Browne, E.M.Clarke, D.L.Dill. “Automatic verification of sequential circuits
using temporal logic”. IEEE Transactions on Computers,
C-35(12),1986,pp.1035-1044.

4 J.R.Burch, E.M.Clarke, D.Long, K.L.McMillan, D.L.Dill. “Symbolic model
checking for sequential circuit verification”. IEEE Transactions on
CAD,13(4),1994,pp. 401-424.

5 Tomáš Kratochvíla, Vojtěch Řehák and Pavel Šimeček. “Verification of
COMBO6 VHDL Design”[J] CESNET. 2003.

247

Thursday 10 November

248

Test and Verification 2

249

THE DEVELOPMENT OF THE SPACEWIRE COMMUNICATION TESTER
(SPACEWIRE TEST MODULE)

Session: SpaceWire Test and Verification

Short Paper

Shoji Komatsu, Naohisa Anabuki, Hiroshi Tsunemi

Earth and Space Science, Graduate School of Science, Osaka University, 1-1

Machikaneyama, Toyonaka, Osaka 560-0043, Japan

Masaharu Nomachi

Laboratory of Nuclear Physics, Graduate School of Science, Osaka University, 1-1

Machikaneyama, Toyonaka, Osaka 560-0043, Japan

E-mail: s-komatsu@ess.sci.osaka-u.ac.jp, anabuki@ess.sci.osaka-u.ac.jp,

nomachi@lns.sci.osaka-u.ac.jp

ABSTRACT
SpaceWire is going to be adopted to some Japanese satellite missions, and the

development of SpaceWire devices of satellites is increased. And, the support devices

of the development such as a protocol converter to communicate between a general

computer and SpaceWire devices and a debug tool for SpaceWire links also become

important in laboratory experiment. Thus, we are developing the SpaceWire

communication tester named SpaceWire Test Module (STM) as a part of the support

devices. STM is a SpaceWire communication analysis and debug tool which has four

function modules, Statistics Counters, User-defined Function (Analyser), Signalling

Rate Counters, and Self-checking Function. We would like to emphasize that STM

can be introduced to one’s laboratory at low cost and customizable for any one’s

purpose because the FPGA logic and the application software will be opened.

1 INTRODUCTION
In Japan, SpaceWire is adopted to future scientific satellite missions, for example,

BepiColombo/MMO, SPRINT (Small space science Platform for Rapid Investigation

and Test) series, and ASTRO-H. The demonstration of SpaceWire technologies has

already been performed by SDS-I/SWIM launched in 2009, and the opportunity of

developing instruments with SpaceWire interfaces will be increased in small/large

satellite missions and also in balloon-borne experiments. In addition, SpaceWire IP

and RMAP Target IP distributed at Shimafuji site and SpaceWire/RMAP Library

released via SpaceWire Users Group Japan encourage one to use SpaceWire in

laboratory experiments. Therefore, we have developed a low-cost and user-

customizable SpaceWire communication tester named SpaceWire Test Module

(STM) for laboratory use. We have fabricated the board and designed a FPGA logic

using SpaceWire IP described above, and developed the application software. These

products are also open. This paper presents a hardware, FPGA logic, and application

software of STM.

250

2 HARDWARE AND THE SETUP
STM has FPGA, three SpaceWire ports, RS-232C port, and two for input and two

for output LEMO ports (LVTTL level) as shown in Figure 1. FPGA is Altera Cyclone

III. SpaceWire0 is RJ45 connector and SpaceWire1 and 2 are D-sub 9 pin connectors.

The clock of SpaceWire reciever is 175MHz. RS-232C port is to communicate a

computer. The baud rate of RS-232C is 115.2 kbps.

Figure 2 shows the hardware set-up of STM. STM is placed between two pieces of

SpaceWire devices to SpaceWire1 and SpaceWire2 in Figure 1. STM is controlled by

a Linux computer through RS-232C. STM User may use a Serial-USB convertor

because a laptop computer usually has no serial port.

Figure 1: Outside of STM

Figure 2: Hardware Set-up

3 WHAT STM MONITORS
Figure 3 shows a functional block diagram of the STM FPGA. There are four main

function modules, “Signalling Rate Counters”, “Statistics Counters”, “User-defined

Functions”, and “Self-checking Function”. SpaceWire link interfaces in STM are

made by utilizing open SpaceWire IP distributed by SpaceWire User Group Japan.

251

Figure 3: Functional Block Diagram of the FPGA

3.1 SIGNALLING RATE COUNTERS

Signaling Rate Counters measures transmission speeds of bidirectional SpaceWire

links. This module counts the rising-edge of receiver clocks recovered by receivers

connected to each SpaceWire port. The measurements are recorded on FPGA registers

and updated per 0.1 second.

3.2 STATISTICS COUNTERS

As described in ECSS-E-ST-5012C, receivers of the SpaceWire IP recognize

SpaceWire control characters and control codes, and the detection signals such as

gotNull, gotFCT, gotN-Char, GotTime-Code are set. RxErr (disconnect, parity, and

escape error), credit error, and character sequencer error are also detected in the

receiver modules. Statistics Counters counts these flags and records the statistics

(cumulative total value or the rate per a second) on the registers.

3.3 USER-DEFINED FUNCTION (ANALYSER)

 User-defined Function is provided to STM users as an extra room to implement

advanced features for any purpose. Our sample logic will offer advanced features to

capture a series of SpaceWire packets triggered by specified SpaceWire characters,

codes, or errors.

3.4 SELF-CHECKING FUNCTION

 Self-checking Function works as a dummy SpaceWire device to debug Statistics

Counters and Analyser. As shown in figure 3, the arbitrary patterns including invalid

252

SpaceWire packets set by a computer through the RS-232C are sent to both

SpaceWire1 and 2, and then the other modules captures those patterns.

4 STM SOFTWARE
STM software is a multi-platform and user-friendly graphical interface software

designed with C++ and cross-platform application and UI frame work Qt. STM is

controlled by the software. The software reads FPGA registers that store the data from

Signaling Rate Counters, Statistics Counters, and Analyser modules per a second, and

then it shows all data numerically and plots the data from Statistics Counters and

Signalling Rate Counters on the time series graph. The log files for each functional

module and each link are generated automatically. It is also possible to plot the past

data.

Figure 4: GUI window of STM software

5 STATUS OF DEVELOPMENT
The status of the development of STM is under the verification of FPGA logic and

the software together. The verification of Signalling Rate Counters for 24 hours was

conducted using two SpaceWire devices. This verification was repeated enough to say

that Signalling Rate Counters is able to continue working right and long enough. The

verification of Statistics Counters and Analyser that Self-checking Function sends a

large variety of the arbitrary SpaceWire packets as I mentioned in section 3.4 will be

conducted in near future.

6 CONCLUSION
We are developing SpaceWire Test Module (STM) as a low-cost and customizable

SpaceWire communication tester for the development of SpaceWire devices. STM

has four function modules, “Statistics Counters; User-defined Function (Analyser);

Signalling Rate Counters; and Self-checking Function”. These function modules

provide us the information of SpaceWire links. We are in the stage of the verification,

and the verification for Signalling Rate Counters has done. After the verification for

the rest function modules has done, we are going to deliver STM and open the source

codes through SpaceWire User Group Japan. Then, STM users are able to modify the

source codes as the users like.

253

ADVANTAGES OF A SPACEWIRE BACKPLANE DURING SPACECRAFT
UNIT INTEGRATION AND TEST

Session: SpaceWire Test and Verification

Short Paper

A. Senior, P. Worsfold.
SEA, Building 660, Bristol Business Park, Coldharbour Lane, Bristol, BS16 1EJ,

United Kingdom

E-mail:

1 ABSTRACT

alan.senior@sea.co.uk, peter.worsfold@sea.co.uk

Spacecraft uni ts ar e t ypically composed of a s et of P rinted Circuit B oards (PCBs)
which are connected together within the unit via a backplane PCB. Each of the PCBs
incorporates a subset of the unit’s functionality. As the semiconductor technologies
have achieved higher and higher levels of integration the functional complexity of the
PCBs has i ncreased and t his i n t urn has l ead to i ncreasing the performance
requirements on the test environment, including the test software.

From t he A ssembly Integration a nd T est (AIT) vi ew poi nt t his m odular uni t
construction is particularly attractive since the functions can be verified individually
and t hen i ntegrated, so t hat a complex uni t c an be bui lt f rom know n w orking s ub-
functions. H owever t raditionally t he num ber and t ypes of backplane i nterfaces i s
many and varied and this introduces a significant level of additional complexity to the
integration and test activities.

A SpaceWire1 Active Backplane2 is one solution, providing the possibility of module
emulation and packet monitoring to permit functional verification with high visibility
of the data traffic between PCBs.

2 BACKPLANE BASED SPACECRAFT UNITS
Figure 1 shows a t ypical spacecraft uni t, which consists of a set of PCBs (Modules)
that slide into a card frame and mate with a backplane PCB (highlighted in green).

The a dvantage of t his modular uni t de sign i s that an individual Module c an b e
removed or replaced without t he ne ed t o di smantle t he c omplete uni t. From t he
Assembly Integration and Test (AIT) view point this type of modular construction is
also attractive since the Modules can be tested individually and then integrated so that
a unit with a high functional complexity can be built from simpler sub-functions that
are easier to debug individually.

The backplane is a key PCB since it carries the communication signal and power lines
to each M odule. Figure 2 shows an ex ample unit that has be en de signed f or
“Spacecraft A” and uses a s et of Modules that are powered from the backplane and
interconnect with a mix of discrete control and monitoring signals.

254

mailto:peter.worsfold@sea.co.uk

Figure 1: A typical Spacecraft unit consists of a box containing PCBs that mate with a backplane

P
ow

er

P
ro

ce
ss

or

M
as

s
m

em
or

y

S
en

so
r A

in

te
rfa

ce
s

A
ct

ua
to

r A

in
te

rfa
ce

s

Backplane

External interfaces

Spacecraft A unit

Figure 2: In a typical unit the backplane routes
a mix of signal types that use different protocols

P
ow

er

P
ro

ce
ss

or

M
as

s
m

em
or

y

S
en

so
r A

in

te
rfa

ce
s

A
ct

ua
to

r A

in
te

rfa
ce

s

Backplane

External interfaces

Spacecraft A unit

SpaceWire network

Figure 3: An alternative SpW based backplane
approach that simplifies AIT

3 IMPACT ON ASSEMBLY, INTEGRATION AND TEST
The ba ckplane i nterfaces i n c urrent uni t de signs are t ypically chos en to interface
directly between the varieties of di fferent semiconductor device t ypes u sed on each
Module, for example t hese i nterfaces m ay be simple s erial interface bus ses,
multiplexer a ddress li nes, pulses or clocks as w ell as discrete bi-level status and
control s ignals. T hese interfaces are like ly to use di fferent el ectrical l evels and
information e xchange pr otocols. W ithin F igure 2 the di fferent backplane interface
types are represented by different coloured links between the set of modules. During
the AIT activity, the v ariety of electrical i nterfaces m akes testing th e modul es
individually m uch m ore di fficult s ince the te st e quipment mus t r eproduce al l t he

255

required interface types so that the boards are stimulated in an electrical environment
that i s r epresentative of flight. Furthermore t hese i nterfaces a re l ikely t o change for
the next mission dependant on t he mix of device technologies used and the varying
performance r equirements f or the di fferent a pplication, t hus new A IT Electrical
Ground Support Equipment (EGSE) must be designed.

A s olution i s t o c hange all t he ba ckplane communications interfaces t o SpW, as
shown i n F igure 3. T his c hange i n de sign a pproach adds com plexity at t he early
design s tages and at the PCB component level, however there are major advantages
during the later AIT activities since now the module test environment needs only to
support one ba ckplane communication standard and i n m ost c ases t he r equired test
equipment can be bought off the shelf from suppliers3,4,5 complete with configuration,
test a nd m onitoring s oftware t ools. When a uni t i s r equired f or t he ne xt generation
Spacecraft, Figure 4, then the existing unit can be expanded if required by extending
the SpW network to support new Modules without impacting on the inherited module
hardware designs, and a high proportion of the EGSE can be re-used.

Though changing the backplane interfaces to just SpW links and power connections
will c ater f or th e ma jority of the P CB modul e ne eds, it is a nticipated that the
backplane c onnector interface may also need to r oute a limite d number of di screte
signals (Figure 5). These extra signal paths could be, for example, for timing signals,
FDIR status and control signals, backplane slot address codes, power status and reset
signals etc. that cannot be easily carried via the SpW communication channel without
a di sproportionate i ncrease i n system c omplexity. M inimisation of t he num ber,
variety and com plexity of t hese extra i nterface t ypes is c learly an impor tant design
aim6.

Po
w

er

Pr
oc

es
so

r

M
as

s
m

em
or

y

Se
ns

or
 A

in

te
rfa

ce
s

Ac
tu

at
or

 A

in
te

rfa
ce

s

External interfaces

Spacecraft B unit

Se
ns

or
 B

in

te
rfa

ce
s

Ac
tu

at
or

 B

in
te

rfa
ce

s

Backplane

SpaceWire network

Figure 4: Spacecraft B can re-use Spacecraft A modules as well as
their associated AIT equipment, the SpW network can be expanded

to support the additional interface functions

1
2

3

Discrete
signals

SpW port 1

SpW port 2

Power

Figure 5: A SpW backplane
offers a common backplane

interface to modules

4 MODULE EMULATION AND UNIT TEST
A key advantage of the SpW backplane during AIT activities is that any missing PCB
module (or modules) can be emulated by EGSE that is connected to a spare backplane
or specifically provided SpW EGSE port (Figure 6). E ven if a module is present in

256

the uni t, the network addressing can usually be reconfigured to permit emulation of
that m odule t o de bug t he uni t ha rdware a nd s oftware f unctions via a S pW por t
dedicated to AIT EGSE. T his E GSE por t c an a lso permit network pa ckets t o be
observed b y pa ssing t he pa ckets t o t he E GSE a nd ba ck i nto t he s ystem. F or t ime
critical cases where packet l atency i s an issue “packet sniffing” can be achieved b y
using an extender card, with the SpW signals routed to the backplane from the module
as well as to the SpW test equipment.

P
ow

er

P
ro

ce
ss

or

M
as

s
m

em
or

y

A
da

pt
er

A
ct

ua
to

r A

in
te

rfa
ce

s

SpW Active Backplane

Spacecraft A unit

EGSE
interface

Emulation PC

USB


SpaceWire

EGSE

USB

SpW
Router

SpW link for sensor
emulation

SpW
link

Figure 6: Potential unit test setup during Assembly Integration and Test (AIT)

5 REFERENCES
1. ECSS-E-ST-50-12C, (SpaceWire – Links, nodes, routers and networks,

Issue 2, 31st July 2008.

2. A. Senior, P. Worsfold, “A SpaceWire Active Backplane Specification for
Space Systems”, International SpaceWire Conference 2010.

3. 4-Links: www.4links.co.uk

4. Star Dundee: www.star-dundee.com

5. Skylab Industries: www.skylab-corporate.com

6. A. Senior, W. Gasti, O. Emam, T. Jorden, R. Knowelden, S. Fowell, “Modular
Architecture for Robust Computation”, International SpaceWire Conference
2008.

257

http://www.4links.co.uk/�
http://www.star-dundee.com/�
http://www.skylab-corporate.com/�

ETHERNET TO SPACEWIRE BRIDGE - AN EVOLUTION OF SERVICES

Session: Test and Verification

Short Paper

Kristoffer Glembo, Marko Isomäki, Sandi Habinc

Aeroflex Gaisler AB, Kungsgatan 12, SE-411 19 Göteborg, Sweden
E-mail: kristoffer@gaisler.com, marko@gaisler.com, sandi@gaisler.com

ABSTRACT
The Aeroflex Gaisler Ethernet to SpaceWire bridge [1] facilitates rapid development
and testing of SpaceWire equipment by providing bridging between three SpaceWire
links and one 10/100 Mbit/s Ethernet link. In addition to the three physical SpaceWire
links six virtual links are interfaced through TCP/IP sockets over the Ethernet link.

This product has been available since 2006 w ith 100 Mbit/s SpaceWire links and 25
Mbit/s a ggregate e ffective t hroughput on the E thernet link. T o s upport f uture
applications r equiring higher ba ndwidth an d other i nterfaces ne w v ersions o f t he
bridge are under development which will provide up to 500 M bit/s over the Ethernet
link. This paper presents the technical details o f the current device and the road-plan
for future versions.

1 INTRODUCTION
The E thernet to S paceWire b ridge pr ovides b ridging b etween t hree 100 M bit/s
SpaceWire links and one 10/100 Mbit/s Ethernet link. The Ethernet communication is
handled by six virtual links interfaced t hrough T CP/IP. T his a llows a de veloper t o
generate test data on a workstation, send it over TCP/IP and forwarded by the GRESB
to the appropriate SpaceWire or Ethernet destination.

The link speeds on both the SpaceWire and Ethernet links do not support the highest
speeds available on the respective network and the bridge might thus not be suitable
for all applications.

Several other interfaces such as CAN 2.0B, CCSDS/ECSS TM/TC MIL-STD-1553B
and SPI are often used in space applications. The intention is therefore to add one or
more of these interfaces to the bridge making it more versatile.

This paper begins with a detailed presentation o f the current features of the core and
their technical details followed by how speed and functionality will be i mproved in
future versions. Lastly the introduction of additional interfaces will be discussed.

258

mailto:kristoffer@gaisler.com�
mailto:marko@gaisler.com�
mailto:sandi@gaisler.com�

2 CURRENT FEATURES
The three SpaceWire links provided by the bridge support up to 100 M bit/s and are
addressed by a S pW address. In add ition to this there are s ix virtual links interfaced
through TCP/IP sockets over the Ethernet link which are also addressed with a SpW
address.

All ni ne l inks can b e co nfigured in a r outing t able w hich a llows a de veloper t o
generate test data on a workstation, send it over TCP/IP and forwarded by the GRESB
to the appr opriate SpaceWire o r Ethernet destination. The routing table a nd TCP/IP
sockets ar e i mplemented in software us ing uC linux (linux-2.0.x). T his o lder ke rnel
was chosen because it introduces less load on the processor thus allowing for higher
throughput on the TCP/IP links.

The aggregate throughput on the Ethernet link is up to 50 M bit/s (full-duplex) being
one order of magnitude lower than what is (ideally) available full-duplex on the three
SpaceWire links (456 Mbit/s). This is still very useful in a lot of applications but not
in maximum throughput testing.

The hardware is implemented on a X ilinx Spartan 3 FPGA w hich limits area a nd
frequency r equiring s uboptimal c onfigurations o f b oth C PU a nd E thernet c ore b ut
makes it a cost effective solution.

The bridge supports Internet tunneling without the need for a workstation or PC to be
connected t o the uni t (unlike other s olutions on t he market). Tunneling allows
SpaceWire based equipment and satellites to be integrated at multiple remote sites and
be interconnected through SpaceWire networks.

Configuration o f the routing table, SpaceWire links and the Ethernet connection can
be do ne t hrough a w eb interface pr ovided by a webserver r unning o n t he bridge's
Linux ke rnel. I t also shows s tatus such a s pa cket/data counters and SpaceWire link
status. C onfiguration c an a dditionally be do ne t hrough the T CP/IP s ockets us ing a
custom protocol.

The bridge a lso fully supports t he G RMON s oftware de bugger t ool w hich allows
remote upl oad a nd de bugging o f s oftware o n SPARC based pr ocessors s uch a s
LEON2/LEON3/LEON4 through the use of RMAP. Any link on the bridge and any
SpaceWire de stination addr ess ca n be acce ssed by s pecifying command line
parameters. O nce a s ession started it w ill r un t ransparently w ith no further
configuration needed.

Figure: First generation of GRESB

259

3 IMPROVING PERFORMANCE
The current version of the GRESB has a c ompetitive set o f functions w ith t he main
limitation being t hroughput. This w ill be addressed by new ve rsions o f t he de vice
planned for the near future. To achieve higher bandwidth several steps are performed.

For the first new version a new FPGA is chosen enabling higher frequency and larger
caches for the LEON3 processor, faster SpaceWire links and a faster Ethernet device.
The be nefit o f do ing only t hese c hanges is t hat existing IP c ores c an be u sed and
software does not need to be modified. Thus a s ignificant performance improvement
will be a chieved w ith little e ffort. T he intention is t o us e a X ilinx Spartan 6 FPGA
which in addition to a higher frequency will fit a LEON3 with larger caches, a Gigabit
Ethernet device and 200 Mbit/s GRSPW2 SpaceWire links.

The t otal full-duplex S paceWire t hroughput w ill n ow b e 912 M bit/s but t he main
bottleneck will still be the TCP/IP connections. Although the device now contains a
Gigabit E thernet de vice t he T CP/IP co nnections w ill s till be in software an d thus
processor l imited. T he new E thernet co re co ntains pe rformance improving features
such as scatter-gather DMA and checksum offloading but the full-duplex throughput
will pr obably not be more than 80 Mbit/s. T rial r uns s how that the f requency
improvement be tween S partan3 a nd 6 for L eon3 s ystems is 10 -20% a nd t he t otal
processor performance increase (taking into account caches etc.) can be up to 30%.

The second step results in a much bigger leap forward in terms of both functionality
and performance. T he s oftware w ill mostly be kept a s i s w ith t he w ebserver a nd
TCP/IP links. But in addition to this there will be one channel available for Ethernet
communication us ing an UDP based protocol handled completely in hardware. This
will a llow for a t hroughput up to 500 M bit/s which is now in the s ame o rder o f
magnitude as the upgraded SpaceWire links.

The SpaceWire links will also be replaced with a r outer core handling all SpaceWire
routing in hardware further o ffloading software. Forwarding of TCP/IP packets w ill
still b e h andled by s oftware w hich needs t o h old a r outing t able for t he virtual
channels. T here w ill s till be a large ga in in pe rformance s ince a ny S paceWire t o
SpaceWire communication will not be seen by the processor and high bandwidth data
from the host can now be transferred using the UDP based hardware protocol.

4 ADDITION OF NEW INTERFACES
Due to customer requests several custom made bridges have already been deployed to
customers with a C AN 2.0B interface. There has been a de mand for other interfaces
as well such as CCSDS/ECSS TM/TC, MIL-STD-1553B and SPI.

Due to area limitations the versions previously shipped needed removal of other cores
in the configuration to fit the CAN 2.0B core. With the change to the larger Spartan6
device it w ill now be po ssible t o f it al l t he interfaces w ithout the r emoval o f an y
present ones. The new interfaces will be accessed from the TCP/IP links in the same
way a s for Ethernet t o SpaceWire co mmunication. E ach interface w ill have its
dedicated TCP/IP connection thus leaving the routing table unmodified.

260

A possibility is also to increase the number of SpaceWire ports. There has not been a
specific demand but probably even up to 8 ports could be useful. This combined with
the other new interfaces requires a new box to be used as well.

Figure: Second generation GRESB block diagram

5 CONCLUSION
The E thernet t o S paceWire Bridge provides a versatile a nd easy t o us e uni t for
SpaceWire t estdata ge neration on t ypical host c omputers. W ith t he upgr ade t o ne xt
generation it w ill a lso be a high performance de vice w ith t he po ssibility t o achieve
maximum S paceWire t hroughput as w ell as e xtending the co ncept w ith add itional
interface types.

6 REFERENCES
1. GRESB User's manual, Aeroflex Gaisler, www.gaisler.com

261

OFF THE SHELF WIRELESS BRIDGES INTERFACING TO SPACEWIRE:
POSSIBILITIES, PRACTICALITIES AND OPPORTUNITIES

Session: SpaceWire Test and Verification

Short Paper

Eric Pritchard, Dick Durrant and Alan Fromberg

Systems Engineering & Assessment Ltd (SEA),

SEA House, Building 660, Bristol Business Park,

 Coldharbour Lane, Bristol BS16 1EJ. United Kingdom

Jean Francois Dufour

D/TEC-EDD Computer and Data Handling Engineer

European Space Agency, ESTEC,

Keplerlaan 1, 2201AZ, Noordwijk, The Netherlands.

E-mail: ewp@sea.co.uk, rjd@sea.co.uk, aff@sea.co.uk,

Jean-Francois.Dufour@esa.int

ABSTRACT
SEA has performed two activities to assess the practicality of providing a wireless

bridge to interface to SpaceWire. The first conducted experiments interfaced

IEEE.802.11 based protocols with SpaceWire via Ethernet, then a practical test of

Ultra Wideband USB. The second assessed the feasibility of combining wireless data

and power transmission to minimise physical interaction during system Assembly

Integration and Verification (AIV), for example when Planetary Protection (PP)

requires aseptic assembly.

A number of cases can be considered for making use of Commercial Off The Shelf

wireless communications to a SpaceWire network, e.g. to reduce harnessing and

connector make/break during AIV, for communication with the passenger satellite

during launch and immediately post-separation and even to provide communications

links for localised formation flying. The potential merits of these use cases and the

maturity of the technology to address these markets is considered.

Implications for how a SpaceWire architecture can best interface to a wireless bridge

and the measured performance data rates are reported. In particular the data rates

achieved are much lower than those claimed by manufacturers and mitigating steps

must be taken if acceptable data rates are to be achieved.

The feasibility study for the development of contactless telemetry exchange & power

supply between a spacecraft under test and its Electrical Ground Support Equipment

is also reported. The particular case for which PP and cleanliness requirements will

require aseptic assembly is considered.

262

mailto:ewp@sea.co.uk
mailto:rjd@sea.co.uk
mailto:aff@sea.co.uk

STOCHASTIC PETRI NETS MODELING AND ANALYSIS OF FAULT

TOLERANCE FOR SPACEWIRE BUS

Session: Test and Verification
Short Paper

Xie Weihua, Jing Xiaochuan, Lin Xiaofeng, Chen Xianglong

China Aerospace Engineering Consultation Center
E-mail: myhello@126.com , jingxch@gmail.com

ABSTRACT

As the factual standard for the Intelligent Space Bus of new generation, SpaceWire exhibits
enormous advantage in transmission speed, structural expansibility, systematic fault-tolerance, etc,
which make SpaceWire outperform traditional bus techniques, eg. the CAN Bus. Therefore,
SpaceWire has been widely applied to onboard spacecrafts. The fault-tolerance of SpaceWire is
the key factor to implement the high-reliability design for the control and load system of
spacecrafts. However, there are many limitations to verify the effectiveness of fault-tolerance
using traditional test methods. In this paper, the fault-tolerance of SpaceWire is firstly studied, and
then the stochastic Petri nets is used to model SpaceWire in formal way, finally a generalized
stochastic Petri nets model is established. According to the computational analysis on the tool kits,
meanwhile based on the verification on the utility of the fault-tolerance of SpaceWire under the
failure modes of spacecrafts, this paper can provide technical support for the design of the control
and load system of typical spacecrafts.

Key Words: SpaceWire bus; Fault tolerance; Stochastic Petri net;

1. Introduction
As the satellite and deep space exploration technology is developing gradually, the

requirements of the data bus is becoming more and more stringent. A general-purpose space data
bus which is high-speed, scalable, low-power, low-cost is needed urgently to meet the data
processing requirements. SpaceWire is proposed by ESA in order to solve the on-board data
processing issues. SpaceWire which can build modularization and reconfigurable adaptive
systems has been applied in the Mars Express, Smart-1 and other space missions successfully.

In-depth analysis of the protocol is an important application of SpaceWire bus. The protocol
analysis by the formal technologies has become an important technical means, which attaches
great attentions to research in this area in many countries, such as the UK's National Physical
Council (NPL), the French National Communications Research Centre, German National
Communications (GMD) and U.S. National Research Council standardization Bureau.

Finite state machine is the most commonly used protocol formal description techniques,
usually using State Transition Graphs to represent. Petri Nets (PN) has been widely used in the
communications field. Petri Nets can clearly express the communication between two processes.
By adding some special models, Petri Nets have a variety of extensions, including Stochastic Petri
Net (SPN), Colored Petri Net (CPN) and Time Petri Net (TPN), etc.

263

mailto:myhello@126.com

2. The Stochastic Petri net Model of SpaceWire
The working process of SpaceWire is as follows: when the system electrification is reset, the

system enters the ErrorReset state, simultaneously the sender and receiver enter the reset state.
And then, the receiver is enabled, and is started to check data flow. After waiting for a sufficient
preparing time, the system enters the Started state. And then, the sender sends a NULL byte, and
the receiver continuously checks the NULL byte. When the receiver receives the NULL byte, it
enters the Connecting state, where the SpaceWire controller starts to send the FCT and NULL
byte. When the receiver receives the FCT, it transfers to the Run state. If the receiver fails to
receive the FCT within a given period, it enters the ErrorReset state immediately. In the Run state,
the receiver starts and the sender sends the data such as Time-Code, FCT, N-Chars, and NULL,
etc. During the working process, if any mistake occurs in the connection, the system enters the
ErrorReset state immediately.

SpaceWire uses a peer-to-peer full-duplex protocol, therefore both the sender and receiver
have the sending and receiving functionality. The Petri net model for the working flow is shown
as fig.1. The initiation of the Petri net is marked as M0 that is placed at P1 (the sender is in
ErrorReset state) and P6 (the receiver is in ErrorReset state).The definition of the symbols in Fig.1
is shown in Tab.1 and Tab.2.

Fig.1 The Petri net model for SpaceWire

Table.1 The definition of Place

Place Definition

P1 sender ErrorReset

P2 sender ErrorWait

P3 sender Ready

P4 sender Started

P5 sender Connecting

264

P6 receiver ErrorReset

P7 receiver ErrorWait

P8 receiver Ready

P9 receiver Started

P10 receiver Connecting

Table.2 The definition of transition

Transition Definition

T1 sender 6.4us delay

T2 sender 12.8us delay

T3 sender LinkEnabled signal valid
T4 sender sends NULL signal

T5 sender creates GotNull signal

T6 sender sends data

T7 link problem in sender Waiting state

T8 link problem in sender Preparing state

T9 link problem in sender Starting state

T10 sender overtime or link problem

T11 receiver 6.4us delay
T12 receiver 12.8us delay

T13 receiver LinkEnabled signal valid

T14 signal receiver creates GotNull signal

T15 receiver sends NULL

T16 receiver sends data

T17 link problem in receiver Waiting state
T18 link problem in receiver Preparing state

T19 link problem in receiver Starting state

T20 receiver overtime or link problem

3. Verification of the Stochastic Petri net Model of SpaceWire
The verification on the SpaceWire protocol is based on the analysis on the Petri net model.

From the perspective of Network theory, a network mainly contains the key properties such as
boundedness, activity, reachability, and invariability.

Reachability means all the states in the Petri net model are reachable. The reachability
analysis is used to check if all the states and their expected behavior meet the requirement of the
protocol. Usually, the behavior includes deadlock, unexpected sending/receiving, transition ability
and the boundedness of the number of token. The SpaceWire fault mechanism can verify through
the Petri network state equation which can analyze state under specific transition.

3.1 The Analysis Based on Reachability Graph
The reachability graph is an important Petri net based analysis technology. The reachability

analysis starts from an initial global marker, and creates the branches based on every transition.

265

By this analysis, we obtain the reachability graph and state space analysis on Petri net shown in
Fig.2 and Fig.3.

Fig.2 The reachability graph of Petri net model.

Fig.3 The state space analysis on Petri net model.

(1) Boundedness. The number of token in reachability tree is limited within two, therefore the
protocol is bounded.

(2)Activity. Every transition is activated at least once, and therefore there is not the transition
that is not active. In the reachability tree, every marker owns its predecessor that can be activated.

For a reachable set ，every marker)(0MR 'M has a transition rout from root to 0M 'M ,

namely ββ [: 0M∃ > 'M . Based on the definition of activity, we know the network is active,

and the deadlock never occurs.
(3) Reachability and Integrity: There is not redundant cycle in the reachable tree, and

therefore the overall initialized protocol of communication is reachable.

3.2 The Specified State Analysis on SpaceWire
Based on Fig.1 and the Petri net theory, we can obtain the correlation matrix C of the Petri

net. The matrix element is

),(),(),(jiijji TPWPTWTPC −=

266

 5

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−
−−

−
−−

−−−
−−

−−
−

=

10001010000000100000
01000101000000000000
00100000100000000000
00010000110000001000
11110000001000000000
00001000001000110000
00000100000100011100
00000000000010000110
00000000000001000011
00000000001111000001

C

Based on the system state formula CUMM k += 0 of Petri net (M0is initial state, and U is

corresponding transition series), we obtain the conclusion:
(1) All marked state reached by the dynamic execution of the model has activated transition

and their predecessors. This means starting from the initial state M0（1，0，0，0，0，1，0，0，
0，0）, role in the activation sequence δ, the model can return its initial state. Therefore, the
protocol is reachable.

(2)If there occurs problem at any working state, such as link problem and overtime problem,
the model can always return initial state. Therefore, the protocol has fault tolerance ability. For
instance, in state M4（0，1，0，0，0，0，1，0，0，0）, there is link problem, namely the transition
T9 occurs, based on state formula we can get the predecessor of M4 is M0（1，0，0，0，0，1，
0，0，0，0）, which shows the system returns to initial state.

4. Conclusion
In this paper, the key properties of SpaceWire Bus protocol and stochastic Petri net are

primarily studied. Aiming at the drawback of the traditional analysis on SpaceWire Bus protocol,
we build a formal model for the running process of this protocol using stochastic Petri net. The
model is then simulated with the Petri net analysis tool ‘Pipe’, and a reachability tree is obtained.
Finally, by analyzing the reachability tree, the properties of the model are verified so that the fault
tolerance mechanism of SpaceWire Bus protocol is confirmed correctly.

Stochastic Petri net shows a big advantage on analyzing SpaceWire Bus protocol, but it can’t
describe the protocol sufficiently and consequently is lack of stable simulation accuracy.
Therefore, we will focus on these two problems in the future study.

5. References
[1] Zhao Jianli, Shang Ruiqiang, Zhao Linliang. Petri Net Model of Multiplex Network

Management Protocol and Its Verification [J]. Journal of System Simulation. 2005,
[2] Lars Miehael Kristensen. Application of Coloured Petri Net System Development

ACPN 2003.LNCS30.pp.626 一 685，
[3] Kurt Jensen. An Introduction to the Practical Use of Coloured Petri Nets[M] .Department

of Computer Science，University of Aarhus，2000
[4] Peter Shanmes. CCSDS and NASA Standards for Satellite Control Network

Interoperability
[5] ECSS, SpaceWire - Links, nodes, routers and networks (ECSS-E-50-12A)
[6] ESA. ECSS-E-ST-50-52C, 2010

267

Standardisation

268

DC-BALANCED CHARACTER ENCODING FOR SPACEWIRE

Session: Standardisation

Long Paper

Clifford E. Kimmery

Honeywell International, Clearwater, FL

E-mail: clifford.kimmery@honeywell.com

ABSTRACT
Standard SpaceWire has limited support for applications requiring galvanic isolation
between link endpoints. The limitation is derived from the combination of the low
common-mode tolerance of ANSI/TIA/EIA‐644 LVDS devices and the unbalanced
character-level encoding method established by ECSS‐E‐ST‐50‐12C, Clause 7 [1].

This paper describes the search for a practical alternative character-level encoding
method capable of supporting galvanic isolation using ANSI/TIA/EIA‐644 LVDS
devices and conventional Alternating Current (AC)-coupling circuits. Other goals of
the research were to maintain the clock recovery benefits of Data-Strobe encoding,
provide error detection comparable to the standard SpaceWire parity check and
minimize the impact to link bandwidth efficiency.

The result is a class of codes that simultaneously Direct Current (DC)-balance both
the Data and Strobe bit streams while maintaining the clock recovery behavior of
Data-Strobe encoding. Class members are differentiated by the code size and the
effort needed to minimize low-frequency content. Members of the class with a larger
code size have a direct impact on encoding overhead (decrease in link bandwidth
efficiency) while members with a smaller code size have an inverse impact on
algorithm complexity (running disparity tracking, etc.). Several examples of the class
are described: some have large code size (12-bits to 16-bits) that reduces bandwidth
efficiency significantly relative to standard SpaceWire, some have simple encoding
methods (12-bits and 16-bits) and others have smaller code size (10-bits and 11-bits)
or complex encoding methods (10-bits to 15-bits, excluding 12-bits) and bandwidth
efficiency closer to that of standard SpaceWire (the 10-bit example is within 5%).

In this paper, the term character is used as defined by the SpaceWire standard and
includes data characters and control characters. The term code is defined as a binary
value used to represent a character when transmitted on the SpaceWire link. In
standard SpaceWire, a character and the corresponding code are identical.

269

mailto:clifford.kimmery@honeywell.com

1 SPACEWIRE CHARACTER ENCODING BACKGROUND
SpaceWire character-level encoding starts with Non-Return-to-Zero (NRZ) encoded
ten-bit characters serialized as the Data signal. The Strobe signal is generated from the
Data signal by Exclusive OR (XOR) with an alternating binary one-zero pattern of
identical length (see Figure 1). The alternating one-zero pattern represents a one-half-
rate clock with transitions corresponding to the bit intervals of the Data signal
(commonly known as a Double-Data Rate (DDR) clock).

Clock

Strobe

Data

Figure 1 – Data-Strobe Encoding Waveforms

Because standard SpaceWire encoding uses raw binary values to form NRZ-encoded
characters for the Data signal, the degree of DC balancing achieved is determined by
the character sequence transmitted. As can be observed from Figure 1, introducing a
balanced bit stream for the Data signal doesn’t automatically create a balanced bit
stream for the corresponding Strobe signal.

2 DESIRED PROPERTIES OF DC-BALANCED CHARACTER ENCODING
The search for DC-Balanced character encoding originated from concerns about the
limited common-mode tolerance of standard LVDS signaling technology. Many
applications migrating to SpaceWire from alternate communications protocols (e.g.
MIL-STD-1553) provide much greater tolerance for long-term and transient
differences between ground references.

Several goals were established (see Table 1). The primary goals were considered
mandatory while the secondary goals were a factor in ranking alternatives.

Category Goal Note

Primary

Allow galvanic isolation of a SpaceWire link
using typical AC-coupling methods

Requires intensive
validation effort

Maintain the standard SpaceWire electrical
interface and clock recovery mechanism

Contain changes within the character encoding
level of the SpaceWire standard

Secondary
Provide comparable error-detection capability
Maximize the bandwidth efficiency
Minimize the encoding/decoding complexity Lowest priority

Table 1 – Goals

2.1 FACTORS CONSIDERED IN ESTABLISHING GOALS

The use of typical capacitive or inductive AC-coupling methods for galvanic isolation
depends on a transmitted bit stream with an average value of 0V (assume binary 1

270

corresponds to +1V and binary 0 corresponds to -1V electrical levels). The average
must be maintained over a sliding time window with a length dependent on the
characteristics of the communications channel and the sensitivity of the receiver.

The DC-balanced encoding must be applied to both the Data and Strobe signals so
that each can be AC-coupled in the same manner. The encoding method attempts to
maintain the same average DC-balance on both signals simultaneously to maximize
the clock recovery opportunity of the standard SpaceWire Data-Strobe receiver.

By limiting changes to the SpaceWire character encoding level, all other aspects of
the standard are unaffected. The well-proven SpaceWire physical and signal levels,
the link protocol (exchange level), and the packet and network levels continue to
function as with standard SpaceWire.

2.2 SPACEWIRE FACTORS IMPACTING GOAL ACHIEVEMENT

Because SpaceWire link traffic primarily consists of data characters and flow-control-
token (FCT) characters, the size of encoded characters dominates when evaluating
link bandwidth efficiency. Any change to the encoded size of a character has a
corresponding impact on link overhead. Because the FCT traffic associated with one
link direction is overhead to the other link direction, any increase in FCT character
code size has a greater impact than increases in the other control character code sizes.

The standard SpaceWire error detection mechanism using a parity bit for each
encoded character consumes approximately 10% of available link bandwidth. Because
the SpaceWire standard establishes a lagging-parity mechanism (the parity bit
associated with one character is transmitted as the first bit of the following character),
the encoded value of each standard SpaceWire character is dependent on the parity of
the preceding character, essentially defining two representations of each character.
These factors make replacing the parity-based error detection mechanism highly
desirable. Because transmission error detection is required by the SpaceWire
exchange level, any replacement error detection mechanism must provide an
comparable capability.

The standard SpaceWire NRZ-based encoding is very simple to implement. Any
alternate encoding method is likely to be more complex.

3 DC-BALANCED CHARACTER ENCODING BACKGROUND
The transmitted bit stream created by DC-balancing must have an average value of 0V
over a limited time interval to minimize undesirable biases in the galvanic isolation
circuits. The average value over small time intervals is a function of the transition
density and run-length of the encoded values composing the bit stream.

The transition density capability of 8b10b encoding was used to establish the initial
transition density and run-length benchmarks. The 8b10b encoding scheme guarantees
a transition-rich data stream so that the receiving device can perform clock recovery
on the incoming serial data. Transition rich means that for every 20 successive bits
transferred, the difference in the number of ones and the number of zeros cannot be
more than two, and there cannot be more than five ones or five zeros in a row [2].
Note that the difference in the number of ones and zeroes is termed the disparity.

271

Note that the 8b10b encoding scheme cannot be used directly because of the need to
DC-balance both the Data and Strobe signals simultaneously. The Strobe bit stream
generated from an 8b10b encoded Data bit stream does not have adequate DC-
balancing characteristics.

The DC-Balanced Data character encoding must be chosen so that the resulting Strobe
bit stream has characteristics comparable to the Data bit stream. By selecting Data
character encodings based on the transition density and run-length of both resulting
bit streams, the desired average signaling value can be achieved for both.

4 DEVELOPMENT OF DC-BALANCED CHARACTER ENCODING
Evaluating the feasibility of a DC-balanced character encoding mechanism begins by
determining the number of binary values with the appropriate properties for each
potential code size. The first step is to create a list of the binary value pairs for
additional evaluation by exclusive-ORing each binary value with an alternating one-
zero pattern (clock) to produce the other binary value of the pair.

Because high quality DC-balancing is a function of the transition density and run-
length of the encoded values, a number of characteristics must be determined for each
candidate binary value. The benchmark criteria established from 8b10b encoding
require that any twenty-bit sequence have a disparity of two or less and that the
number of consecutive same-value bits be five or less.

The run-length benchmark criterion can be translated in a straightforward manner by
establishing that the number of consecutive same-value bits within any two successive
encoded characters should be five or less (including the boundary between the two
characters). The character boundary run-length can be constrained using one of three
methods:

1. By establishing that the leading and trailing run-length must be two or less
(corresponding to a boundary-crossing run-length limit of four or less),

2. By establishing that the leading run-length must be three or less and the
trailing run-length must be two or less,

3. By establishing that the leading run-length must be two or less and the trailing
run-length must be three or less.

Since method 1 is stricter than the 8b10b benchmark, allowing either method 2 or
method 3 is preferred. Evaluating each set of candidate binary values using both
method 2 and method 3 and choosing based on the best result is desirable.

Translating the disparity benchmark criterion is nontrivial, but a somewhat weaker
approximation can be achieved by establishing that two successive codes should have
a combined disparity of two or less. Since any character can occur in combination
with any other character (including itself), a number of distinct disparity combinations
must be considered as shown in Table 2. Note that a binary value with an even
number of bits has even disparity 0, 2, 4, etc. while a binary value with an odd number
of bits has odd disparity 1, 3, 5, etc.

272

Sequence Description Combination
Even length values

Zero-Zero Each code has zero disparity Zero disparity

Zero-Two The first code has zero disparity and the second
code has two disparity Two disparity

Two-Zero The first code has two disparity and the second
code has zero disparity Two disparity

Two-Two Each code has two disparity Zero disparity
Odd length values

One-One Each code has one disparity Zero disparity

One-Three The first code has one disparity and the second
code has three disparity Two disparity

Three-One The first code has three disparity and the second
code has one disparity Two disparity

Three-Three Each code has three disparity Zero disparity
Note that to achieve the combined result for nonzero disparity sequences, each
code that has nonzero disparity must have at least one alternate code with the
opposite (negative) disparity.

Table 2 – Disparity Combinations

4.1 EVALUATION OF CODE VALUE CANDIDATES

The evaluation was performed for the code lengths identified in Table 4 to determine
the feasibility of each length. For each code length, a table was generated containing
2length values. For each value, the table included the corresponding code formed by
exclusive-OR with the alternating one-zero pattern and a variety of metrics for both
codes of the pair.

The metrics computed for each code were:

1. The total number of one bits
2. The maximum number of consecutive one bits
3. The number of consecutive leading one bits
4. The number of consecutive trailing one bits
5. The total number of zero bits
6. The maximum number of consecutive zero bits
7. The number of consecutive leading zero bits
8. The number of consecutive trailing zero bits
9. The disparity (the total number of one bits minus the total number of zero bits)

The metrics for each code pair were used to determine whether that pair should be
selected for membership in a candidate DC-Balanced code set. The parameters used to
determine the members of the code set were:

1. Maximum disparity (the disparity of each code in the code set must be no
greater than the maximum disparity parameter)

2. Maximum run-length (the number of consecutive one bits or zero bits must be
no greater than the maximum run-length parameter)

273

3. Maximum leading run-length (the number of consecutive leading one bits or
zero bits must be no greater than the maximum leading run-length parameter)

4. Maximum trailing run-length (the number of consecutive trailing one bits or
zero bits must be no greater than the maximum trailing run-length parameter)

Note that the maximum leading and maximum trailing run-length parameters provide
fine-grained selection within the set of codes that are selected by the maximum run-
length parameter. This was done to address the code boundary run-length issue
discussed previously.

Based on the 8b10b benchmark criteria, the initial evaluation of each code length was
performed using the parameter values in Table 3. Note that the 8b10b criterion that
any twenty-bit sequence must have a disparity of two or less has been simplified to
require that any two successive codes must have a disparity of two or less.

Maximum
Disparity

Maximum Run-
Length

Maximum Leading
Run-Length

Maximum Trailing
Run-Length

Even length values
2 5 2 3

Odd length values
1 5 2 3

Table 3 – Initial Evaluation Parameter Values

4.2 CODE SET SIZE

The SpaceWire character set consists of 256 data characters and 4 control characters,
so at least 260 distinct code pairs are needed to encode the complete character set. A
set of code pairs with a nonzero maximum disparity characteristic must include
sufficient pairs to allow multiple encodings per character.

If a set of code pairs has a non-zero maximum disparity, each pair in the set must be
matched with another pair in the set with the opposite disparity to allow representation
of the same SpaceWire character with either pair. Note that any code pairs in the set
that have zero maximum disparity can represent a SpaceWire character uniquely. If
none of the code pairs in the set have zero maximum disparity, a minimum of 520
distinct code pairs is needed to encode the complete SpaceWire character set.

Since odd-length codes inherently have non-zero disparity, the minimum of 520
distinct code pairs always applies. As an additional complication, the nature of Data-
Strobe encoding causes two identical odd-length Data codes in succession to produce
different Strobe codes. This makes selection of an appropriate set of odd-length codes
more difficult, so it is convenient to require that successive identical SpaceWire
characters be encoded to different odd-length codes. This increases the minimum
number of distinct odd-length code pairs needed to encode the complete SpaceWire
character set to 1,040.

To summarize the set size criteria:

1. If each code pair in a set has zero disparity, a minimum of 260 pairs are
needed to encode the complete SpaceWire character set.

274

2. If each code pair in a set of even-length code pairs has a nonzero maximum
disparity, a minimum of 520 pairs are needed to encode the complete
SpaceWire character set.

3. Each code pair in set of odd-length code pairs must contain a minimum of
1,040 pairs to encode the complete SpaceWire character set.

4.3 CODE SET SELECTION RESULTS

Based on the initial evaluation, the code lengths of 14-bits, 15-bits and 16-bits easily
produced code sets of sufficient size that met the benchmark criteria. Of the remaining
code lengths evaluated, the code sets of sufficient size produced for 12-bits and 13-
bits met the disparity criteria, but failed the maximum run-length criteria. The 10-bit
and 11-bit code sets of sufficient size failed both the disparity criteria and the
maximum run-length criteria. Table 4 shows the smallest set of sufficient size to
encode the complete SpaceWire character set and the corresponding set metrics for
each code length evaluated.

Bits Maximum Disparity Maximum Run-Length Set Size
Even length codes require a set size of 260 (disparity 0) or 520

10 4 7 552
12 0 6 284
14 2 4 1144
16 0 4 260

Odd length codes require a set size of 1,040
11 3 8 1048
13 1 7 1040
15 1 4 1188

Note: the Maximum Run-Length is the greater of the Run-Length and the sum of
the Leading Run-Length and the Trailing Run-Length
Note: the Set Size is the number of codes that met the corresponding evaluation
criteria. The codes to be used are chosen from the full set as desired.

Table 4 – Code Result by Length

4.4 EFFECTS OF CODE LENGTH ON BANDWIDTH EFFICIENCY

Because standard SpaceWire characters are encoded as values with differing lengths
depending upon function, any code length greater than the standard length can have a
significant impact on link bandwidth efficiency. Table 5 shows the efficiency of each
candidate code length for the various SpaceWire character types. Note that each
character type is assumed to use codes of the full candidate length rather than the
variable lengths defined for standard SpaceWire.

275

SpaceWire
Character

Type

Standard
SpaceWire

Candidate Length

10-bit 11-bit 12-bit 13-bit 14-bit 15-bit 16-bit

Data 10
Bits 100.0% 100.0% 90.9% 83.3% 76.9% 71.4% 66.7% 62.5%

FCT 4
Bits 100.0% 40.0% 36.4% 33.3% 30.8% 28.6% 26.7% 25.0%

EOP/
EEP

4
Bits 100.0% 40.0% 36.4% 33.3% 30.8% 28.6% 26.7% 25.0%

Time
Code

14
Bits 100.0% 70.0% 63.6% 58.3% 53.8% 50.0% 46.7% 43.8%

Null 8
Bits 100.0% 80.0% 72.7% 66.7% 61.5% 57.1% 53.3% 50.0%

Note that the SpaceWire Time Code consists of a control character followed by a data
character.

Table 5 – Code Length Efficiency by Character Type

Overall SpaceWire link efficiency is dynamically determined by the mix of
SpaceWire characters transmitted. Fortunately, data characters and FCT characters
dominate link traffic; the end-of-packet characters are relatively rare, time code
characters are rarer still and null characters are only used when necessary to keep the
link active. Table 6 shows the link efficiency of each candidate length relative to
standard SpaceWire for three representative cases of SpaceWire traffic where the link
is fully utilized in both directions with packets of the same size. The table clearly
shows that the overall link efficiency is significantly impacted by code length when
the majority of link traffic is small packets. Since standard SpaceWire data characters
have 10-bit length, the 10-bit code length case shows the impact of the increased FCT
code size on link efficiency.

SpaceWire Character Mix
Data/Flow/EOP

Candidate Length
10-bit 11-bit 12-bit 13-bit 14-bit 15-bit 16-bit

10 byte packets
89.3%/7.1%/3.6% 86% 78% 72% 66% 62% 57% 54%

100 byte packets
94.7%/4.9%/0.4% 93% 84% 77% 71% 66% 62% 58%

1000 byte packets
95.2%/4.8%/0.0% 93% 85% 78% 72% 67% 62% 58%

The left column contains the percentages of transmitted bits for data characters, flow-
control-token characters and end-of-packet characters respectively.

Table 6 – Code Length Effects on Bandwidth Efficiency

4.5 MIXING CODE LENGTHS TO IMPROVE BANDWIDTH EFFICIENCY

Standard SpaceWire minimizes link overhead very effectively by using different code
lengths. For small packets, the 4-bit code length used for FCT characters improves
bandwidth utilization by 14% over the utilization when using a 10-bit FCT code. DC-
Balanced character encoding can reduce the impact of increased code length by
selectively using a shorter code length for control characters.

276

Standard SpaceWire character encoding distinguishes between the various code
lengths by making all codes unique in the first bits transmitted/received. The four
standard SpaceWire control characters are each defined as a 4-bit code that does not
match the first four bits of any other SpaceWire code. The same technique may be
used to choose a small number of members of a DC-Balanced code set as candidates
for use as control characters.

4.6 ERROR-DETECTION CAPABILITY

The DC-Balanced codes described have intrinsic characteristics that make
transmission error detection straightforward. The error response defined by standard
SpaceWire is unchanged.

Standard SpaceWire adds a parity bit to each encoded character to detect transmission
bit errors. The error response is to disconnect the link, report the error and attempt to
reconnect the link (the same approach is used to recover from all link errors).

The decoding mechanism that translates DC-Balanced codes to the equivalent
SpaceWire character has inherent error detection capability since an unrecognized
code is considered an error. A transmission error occurring in a DC-Balanced code
must convert that code to a different valid code for the error to be undetectable. The
members of a DC-Balanced code set can be selected to have sufficient Hamming
distance to prevent many transmission errors from being undetectable.

In addition, either the Data code or the Strobe code (or both) can be decoded to the
equivalent SpaceWire character. In cases where an adequate Hamming distance is not
achievable, the Data code and the Strobe code can be independently decoded and then
compared to detect most transmission errors. The two mechanisms can clearly be
combined to provide very robust transmission error detection.

5 RESULTS AND CONCLUSIONS
Of the DC-Balanced code sets that fully met the 8b10b benchmark criteria, the 14-bit
length code set is the most bandwidth efficient. Unfortunately, the bandwidth
efficiency is at best 66% that of standard SpaceWire. All of the other fully qualified
code sets are less efficient than the 14-bit code set.

5.1 RELAXING THE BENCHMARK CRITERIA

Relaxing the benchmark criteria allows use of DC-Balanced code sets with greater
bandwidth efficiency. The effects of relaxing the benchmark criteria on link
performance must be determined by signal integrity analysis and experimentation.

Although the 12-bit length DC-Balanced code set misses the run-length benchmark
criterion by 20%, it has the advantage of zero-disparity implementation simplicity.
The approximately 75% bandwidth efficiency relative to standard SpaceWire can be
improved to approximately 80% by choosing an FCT code with at most 6-bit length.

5.2 MOST EFFICIENT, COMPLEX IMPLEMENTATION

The much better bandwidth efficiency of the 10-bit DC-Balanced code set makes
further relaxation of the benchmark criteria worth consideration. Taking advantage of

277

a 6-bit FCT code length allows the 10-bit DC-Balanced code set to achieve bandwidth
efficiency within 5% of standard SpaceWire.

The 10-bit DC-Balanced code set misses the disparity criterion significantly (the
running disparity achievable by the 10-bit code set varies based on the tracking
method used). As with 8b10b encoding, DC-Balanced encoding must manage the
running disparity to limit the difference in the number of ones and zeroes in the
transmitted bit stream. Unlike 8b10b encoding, DC-Balanced encoding must track the
running disparity for both SpaceWire signals (Data and Strobe) simultaneously. The
goal is to minimize the running disparity of each signal without minimizing one at the
expense of the other. Modeling has shown that the 10-bit code set running disparity
can be limited to eight or less for a bit stream composed of a random code sequence.

The 10-bit DC-Balanced code set misses the run-length criterion by 40% with no
mitigation method available. Clearly, the ability to take advantage of the bandwidth
efficiency of the 10-bit code set depends on further analysis regarding the link
performance.

5.3 SUMMARY

This paper has shown that an alternative character-level encoding method that is
capable of supporting galvanic isolation of SpaceWire links using conventional AC-
coupling circuits is possible. The alternative method limits changes to the character-
level and provides transmission error detection comparable to the standard SpaceWire
parity check. The major tradeoffs to be considered are the impacts to SpaceWire link
bandwidth efficiency, encoding/decoding implementation complexity and frequency
performance over AC-coupled circuits.

6 REFERENCES

1. ECSS, “Space engineering ‐ SpaceWire ‐ Links, nodes, routers and networks”,
ECSS-E-ST-50-12C, 31 July 2008, pages 52-56,
http://spacewire.esa.int/content/Standard/ECSS-E50-12A.php.

2. Alex Goldhammer and John Ayer Jr., “Understanding Performance of PCI
Express Systems”, September 4, 2008, page 2,
http://www.xilinx.com/support/documentation/white_papers/wp350.pdf.

278

http://spacewire.esa.int/content/Standard/ECSS-E50-12A.php
http://www.xilinx.com/support/documentation/white_papers/wp350.pdf

STANDARDISATION OF SPACEWIRE SOFTWARE APIS

Session: SpaceWire Standardisation

Short Paper

Stuart Mills, Alex Mason

STAR-Dundee, Dundee University Incubator, James Lindsay Place, Dundee

Technopole, Dundee, Scotland, UK

Steve Parkes

University of Dundee, School of Computing, Park Wynd, Dundee, Scotland, UK

Takayuki Yuasa

JAXA/ISAS 3-1-1, Yoshinodai, Sagamihara, Kanagawa, Japan

E-mail: stuart@star-dundee.com, alex@star-dundee.com,

sparkes@computing.dundee.ac.uk, yuasa@astro.isas.jaxa.jp

ABSTRACT
As SpaceWire has gained a greater market share in recent years, the number of

software products available for SpaceWire-related activities has also grown. Software

APIs are provided by test and development equipment manufacturers, flight board

manufacturers, chip manufacturers, etc. to control and configure their devices. Each

company provides their own API, often with different APIs required for each device

from the same company.

The purposes of the SpaceWire standard include reducing system integration costs,

promoting compatibility between data‐handling equipment and subsystems, and

encouraging reuse of data‐handling equipment across several different missions. This

paper argues that standardisation of software APIs would further these aims, greatly

improving compatibility between equipment and encouraging software reuse across

missions, thereby reducing development and integration costs.

1 INTRODUCTION
An API, or Application Programming Interface, is the interface provided by a module

so that software can interact with that module. In SpaceWire terms, it may be the

programming interface used to transmit and receive packets on a SpaceWire device.

STAR-Dundee has considerable experience developing APIs for SpaceWire

equipment, beginning with the API for a SpaceWire PCI device before the SpaceWire

standard was released, through to our new API system, STAR-System which supports

multiple device types and operating systems in a consistent manner [1]. We have also

worked with NEC TOSHIBA Space Systems to port our SpaceWire USB API to the

Shimafuji Space Cube [2], in order to provide a consistent platform to run our

SpaceWire CUBA Software.

279

mailto:stuart@star-dundee.com
mailto:alex@star-dundee.com
mailto:sparkes@computing.dundee.ac.uk
mailto:yuasa@astro.isas.jaxa.jp

Despite the great international collaboration taking place in SpaceWire-related

activities, currently there are no standard APIs for interacting with SpaceWire

devices. As a result, hardware and software manufactures can provide completely

different APIs for each of their products. This is clearly not beneficial to anyone;

flight and test software developers must learn a new API for each device or module

they work with, while manufacturers may need to develop a new API for each device

they release.

It can be argued that there is no alternative to this situation. API implementations

may differ depending on their target uses. For example, an API which is to be used

on a flight system is unlikely to require the same functionality as an API used to test

devices on a network.

Regardless of this, there are a great number of implementations being created to do

very similar tasks. This paper looks at the various APIs which may be used in a

SpaceWire system, and considers whether standardisation of these APIs would be of

benefit to the SpaceWire community.

2 USE OF EXISTING APIS
A number of users who are new to SpaceWire expect to use existing, known APIs to

access SpaceWire devices. Many assume that they can use the POSIX Sockets API,

based on the Berkeley Sockets API and part of the POSIX standard [3], with STAR-

Dundee devices. While we do provide a network interface for our USB devices which

enables the use of the Sockets API, we strongly discourage anyone from using this to

write their own code.

The reason for this is that the Sockets API cannot directly take advantage of the full

benefits of SpaceWire, or provide access to the many test, development and debug

features provided in STAR-Dundee devices and APIs. For example, it is not possible

to transmit or receive time-codes using the Sockets API directly, or to terminate a

packet with an EEP. Even if the Sockets API is used, additional APIs must also be

used to configure devices. A further limitation is that the Sockets API is normally

used to carry streams of data over TCP, with no regard for end of packet markers.

This is normally not what is required by SpaceWire users, who wish to carry raw data

over a SpaceWire network, with packet start and end points clearly marked. Note also

that there is currently no standard for carrying TCP/IP over SpaceWire, so different

implementations may be unable to communicate.

Despite this, there may be an argument for using the POSIX functions in some

situations, simply because many developers are familiar with the interface, and this

may therefore shorten development and test times. On a flight system, where the

software is concerned primarily with transmitting and receiving packets over a device

which does not need any configuration (e.g. starting the link, setting the link speed,

etc.) the Sockets API may be a suitable solution. The Sockets API could be modified

to transmit a single packet in response to a send() function call, and to pass up a

single packet in response to a recv() call.

This would not provide a particularly high performance interface, however. An API

designed specifically for transmitting and receiving packets to/from a SpaceWire

device is likely to result in better performance and better quality code. Note that this

280

API may be built on top of the Sockets API, for example when communicating with a

device over Ethernet.

3 TYPICAL SPACEWIRE APIS
The APIs required to access a SpaceWire device are not simply limited to transmitting

and receiving packets. Support for protocols such as RMAP [4] and the CCSDS

Packet Transfer Protocol [5] requires additional APIs, while SpaceWire devices

typically provide a number of configuration options which are made available through

software. These may include setting the device and/or link speed, configuring routing

tables, and starting and stopping links.

Some of the APIs which may be used both in test, development and debug

environments and in flight systems are described below.

3.1 PACKET TRANSFER API

The Packet Transfer API is the most important API, and the one that STAR-Dundee

users generally have the most exposure to. This is the API that is used to transmit and

receive packets, and is also used to open and close connections to the device.

Although it might be assumed that this is quite a simple API, STAR-Dundee’s Packet

Transfer API, STAR-API, includes a great deal of functionality. For example, a

function to transmit a single packet is unlikely to provide very high performance.

Instead, the transmit function must allow multiple packets to be submitted, these may

be interleaved with time-codes, and some may be terminated with an EEP. Similar

functionality is required for receiving traffic items in order.

Although not all of this functionality will be required in a flight system, performance

may be of even greater importance. The number of interrupts which are generated

when packets are transmitted and/or received will have a huge influence on the overall

performance of a system. An API which can cope with multiple packet transmit or

receive operations generating a single interrupt will provide better performance and

use less resources than one that interrupts on each and every packet.

3.2 REMOTE MEMORY ACCESS PROTOCOL APIS

STAR-Dundee has developed three different RMAP APIs, in order to separate out the

diverse functionality that may be required by users developing RMAP applications.

At the lowest level is the RMAP Packet API. This provides functions for building

each of the RMAP packet types (read commands and replies, write commands and

replies, etc.), for interpreting and validating the contents of RMAP packets and

extracting the values of fields in the packets.

The functionality provided by the RMAP Packet API was then used to implement the

RMAP Initiator and Target modules, each with their own API. These modules

provide software implementations of RMAP initiators and targets. Both modules

make use of STAR-Dundee’s Packet Transfer API to transmit and receive commands

and replies.

281

An API providing functions to configure RMAP targets or initiators implemented in

hardware may require a different API, although there are likely to be some functions

which are required for both the physical and software implementations.

3.3 OTHER PROTOCOL APIS

As with the RMAP APIs, other higher layer protocol APIs, such as the CCSDS Packet

Transfer Protocol, GOES-R RDDP [6] and SpaceWire-PnP APIs [7], may be split up

in to a packet building/validating API, an initiator API, and a target API. The initiator

and target APIs may be combined, depending on the nature of the protocol.

Unlike the other protocols discussed above, the CCSDS Packet Transfer Protocol can

be used over other networks and buses, and not just over SpaceWire. This means that

it may be possible to use existing APIs, modified to support SpaceWire addressing.

Similarly, if TCP/IP packets are to be carried over SpaceWire, the Sockets API can be

used, as discussed earlier.

3.4 DEVICE CONFIGURATION API

One API that may initially appear to be impossible to standardise is the Device

Configuration API. This provides the functions that allow the features of a device to

be configured, and are likely to be very specific to that device. However, there are a

number of features which are common between devices, and the SpaceWire-PnP draft

protocol definition has identified some of these features.

STAR-Dundee’s Device Configuration API contains a number of functions which are

common to all STAR-Dundee devices, such as setting the speed of a link, starting a

link, etc. There are then additional functions to provide functionality specific to

individual devices. A standardised Device Configuration API could be produced in a

similar manner, using the features identified in the PnP definition as a basis.

4 SUMMARY AND CONCLUSIONS
One of the many advantages of SpaceWire is that it has allowed organisations to reuse

equipment and software. But without standardisation of APIs, the benefits of reuse

cannot be fully realised. With standard APIs, developers can create software using

development equipment like the STAR-Dundee SpaceWire-USB Brick [8] running on

consumer operating systems such as Windows or Linux, then migrate their code to

flight hardware running real-time operating systems such as RTEMS or VxWorks.

Developers can also write code that will work on multiple devices, without providing

a “shim” layer which handles the differences between devices. On long term projects,

supporting new devices and replacing devices with alternatives, may require no

additional code to be written at all.

The disadvantages of standardised APIs are few. One concern may be that a system

may not require all the functions provided by the standardised API, and these

additional functions might take up precious resources. If the standardised API allows

some or all functions to be optional, then this problem is eliminated. This would also

allow test and development systems to include additional functions not required in a

flight system.

282

This paper has identified a number of APIs which are typically used in SpaceWire

systems. It is clear that standardisation of these APIs would be of great benefit to the

SpaceWire community, and we urge the community to work towards this. The effort

required to reach a consensus would be minor when compared to the potential savings

that could be achieved.

5 REFERENCES
1. STAR-Dundee, http://star-dundee.com/products.php, STAR-Dundee SpaceWire

Products, STAR-Dundee Website.

2. Shimafuji, http://www.shimafuji.co.jp/product/spacecube01.html, Space Cube,

Shimafuji Website.

3. IEEE, “Single UNIX Specification”, IEEE Std 1003.1-2008, Version 4, Institute

of Electrical and Electronics Engineers, September 2008.

4. ECSS, “SpaceWire – Remote Memory Access Protocol”, Standard ECSS-E-ST-

50-52C, Issue 1, European Cooperation for Space Standardization, February 2010.

5. CCSDS, “Space Packet Protocol”, CCSDS 133.0-B-1, Blue Book, Issue 1,

Consultative Committee for Space Data Systems, September 2003.

6. GSFC, “Geostationary Operational Environmental Satellite (GOES), GOES-R

Series, GOES-R Reliable Data Delivery Protocol (GRDDP)”, 417-R-RPT-0050,

Baseline Version 2.1, NASA Goddard Space Flight Center, July 2005.

7. P. Mendham, A. Ferrer Florit, S.M. Parkes, “SpaceWire-PnP Protocol Definition”,

Issue 2.1, University of Dundee, September 2009.

8. STAR-Dundee, http://star-dundee.com/products/SpaceWire-USB%20Brick.php,

SpaceWire-USB Brick, STAR-Dundee Website.

283

http://star-dundee.com/products.php
http://www.shimafuji.co.jp/product/spacecube01.html
http://star-dundee.com/products/SpaceWire-USB%20Brick.php

Components 2

284

NGMP – QUAD-CORE NEXT GENERATION MICROPROCESSOR WITH
ON-CHIP SPACEWIRE ROUTER

Session: SpaceWire Components

Long Paper

Jan Andersson, Marko Isomäki, Sandi Habinc, Jiri Gaisler

Aeroflex Gaisler AB, Kungsgatan 12, SE-411 19 Göteborg, Sweden
Luca Fossati, Roland Weigand

European Space Agency, Keplerlaan 1 - PO Box 299, 2220AG Noordwjik ZH,
The Netherlands

E-mail: jan@gaisler.com, marko@gaisler.com, sandi@gaisler.com,
jiri@gaisler.com, luca.fossati@esa.int, roland.weigand@esa.int

ABSTRACT
The N ext G eneration Microprocessor (NGMP) i s a qua d-processor s ystem-on-chip
currently being developed by Aeroflex G aisler i n a n a ctivity c ommissioned and
funded by the European Space Agency. Compared to earlier generations of European
space processors, the NGMP design provides higher performance and places greater
emphasis o n s upport f or b oth s ymmetric a nd a symmetric multiprocessing. A nother
significant d ifference is t he introduction o f a S paceWire r outer i nstead of multiple
node co res w hich have t ypically been u sed in other S ystem-on-Chip de vices. I n
addition to this the system contains a dedicated RMAP core used for debug access.

1 BACKGROUND
The LEON project was started by the European Space Agency in late 1997 t o study
and develop a high-performance processor to be used in European space projects.

The LEON family includes the first LEON1 VHSIC Hardware Description Language
(VHDL) design t hat was used in the LEONExpress t est chip de veloped in 0.25 µ m
technology t o prove t he f ault t olerance co ncept. T he s econd LEON2 VHDL de sign
was used in the processor device AT697 from Atmel (F) and various system-on-chip
devices. T hese t wo L EON i mplementations w ere de veloped by E SA. G aisler
Research, now Aeroflex Gaisler, developed the third LEON3 design that is used in a
number of avionics systems and also in the commercial sector. Following the LEON3
processor A eroflex G aisler de veloped the L EON4 processor that h as improved
performance thanks to wider internal buses and a modified pipeline.

Following t he de velopment o f t he TSC695 (ERC32) and AT697 components in 0.5
and 0.18 µm technologies respectively, ESA has initiated the NGMP activity targeting
a E uropean D eep S ub-Micron (DSM) t echnology in order t o m eet increasing
requirements on performance and to ensure the supply of European space processors.
Aeroflex G aisler w as s elected to de velop the N GMP s ystem t hat w ill be centered
around the LEON4FT processor.

285

mailto:jan@gaisler.com�
mailto:marko@gaisler.com�
mailto:sandi@gaisler.com�
mailto:jiri@gaisler.com�
mailto:luca.fossati@esa.int�
mailto:roland.weigand@esa.int�

2 SYSTEM OVERVIEW

Figure 1 shows an overview of the architecture.

The system co nsists o f five Advanced High-performance Buses (AHB); o ne 128-bit
Processor bus, one 128-bit Memory bus, two 32-bit I /O buses and one 32-bit Debug
bus. T he P rocessor b us h ouses t he four L EON4FT pr ocessor c ores co nnected to a
shared Level-2 (L2) cache. The Memory bus is located between the L2 cache and the
main external memory interfaces, DDR2 SDRAM and PC100 SDRAM, and it is also
connected to a h ardware memory scrubber. Only one of the main memory interfaces
(DDR2-4800 or PC100 SDRAM) can be used at a t ime and can provide up t o 2 G iB
of external memory. As an alternative to a large on-chip memory, part of the L2 cache
can be turned into on-chip memory by cache-way disabling.

The t wo separate I /O buses house a ll t he peripheral co res. All s lave interfaces have
been placed o n o ne bus (Slave I /O bus) and all master/DMA interfaces ha ve be en
placed o n t he o ther b us (Master I /O bus). T he M aster I /O b us co nnects t o the
Processor bus, or alternatively to the memory bus, thus bypassing the L2 cache, via an
AHB b ridge t hat pr ovides acce ss r estriction a nd address t ranslation (IOMMU)
functionality. The two I/O buses include all peripheral units such as t imers, interrupt
controllers, U ARTs, ge neral pur pose I /O po rt, P ROM/IO co ntroller, P CI
master/target, H igh-speed S erial L inks, E thernet M ACs, 1553, S PI a nd S paceWire
interfaces. All I/O master units in the system contain dedicated DMA engines and are
controlled by descriptors located in main memory t hat ar e set up by t he processors.
Reception o f, for i nstance, E thernet an d SpaceWire pa ckets w ill not i ncrease C PU
load. The cores will buffer incoming packets and write them to main memory without
processor intervention.

The fifth bus, a d edicated 32-bit D ebug bus, c onnects a LEON4FT D ebug S upport
Unit (DSU), PCI and AHB trace buffers, and several debug communication links. The
Debug bus w ith the de bug communication links allows for non-intrusive de bugging
through t he D SU a nd, a s t he D ebug bus is not pl aced behind an AHB bridge w ith
access restriction functionality, has direct access to the complete system.

The target frequency of the NGMP is 400 MHz, but depends ultimately on the ASIC
technology.

286

2.1 LEON4FT MICROPROCESSOR AND L2 CACHE
The LEON4FT processor is the latest processor in the LEON series. LEON4FT is a
32-bit pr ocessor cor e co nforming to the I EEE-1754 (SPARC V8) a rchitecture. I t i s
designed for em bedded applications, co mbining high pe rformance w ith low
complexity and l ow po wer c onsumption. LEON4 i mprovements ov er t he L EON3
processor include: Branch prediction, 64-bit pipeline with single cycle load/store and
128-bit wide L1 cache.

The LEON4FT processor connects to an AMBA AHB bus with a 128-bit data width.
This leads t o a 4x pe rformance increase, co mpared to LEON3, w hen pe rforming
cache line fills. Single cycle load and store instructions increase performance and also
take advantage of the wider AHB bus.

Static (“always t aken”) br anch pr ediction ha s s hown t o give a n o verall pe rformance
increase o f 10% . T he LEON4FT a lso has support for the S PARC V 9 c ompare a nd
swap (CAS) instruction that improves lock handling and performance.

The L2 cache acts as a high-speed buffer between external memory and the AHB bus.
An important f actor to hi gh pr ocessor pe rformance and goo d S MP s caling is high
memory bandwidth coupled with low latency. A 128-bit wide bus is therefore used to
connect the L2 cache with the external memory controller. This will allow 32 bytes to
be read in two clocks, not counting initial memory latency. The L2 cache features a
configurable r eplacement a lgorithm w ith least-recently-used (LRU) r eplacement as
the de fault. I t i s a 256 K iB (baseline size, act ual s ize limited by t arget technology)
copy-back cache with BCH Error Correcting Code (ECC). One or more cache ways
can be locked to be used as fault-tolerant on-chip (“scratchpad”) memory.

2.2 MAIN MEMORY INTERFACE

The baseline decision for the main memory interface is to support 96-bit (64 data bits
and up to 32 check bits) DDR2-800 and PC100 SDRAM on shared pins. However the
selection between DDR2 and DDR(1) SDRAM should be regarded as open. The flight
models o f t he NGMP are scheduled several years into the future. At that t ime there
may be a dditional information ava ilable r egarding memory d evice av ailability.
Availability o f I /O standards o n t he t arget t echnology may also impact t he final
decision.

The data width of the main memory interface is dynamically configurable between 32
and 64 data bits (plus check bits), allowing for NGMP systems with a reduced width
of t he memory interface t o s upport pa ckages w ith low pi n c ount, a nd a lso us e in
systems with fewer components. The PC100 SDRAM interface will be able to run at
the same or one fourth of the system frequency. The DDR2 interface will be run at the
same o r twice t he s ystem frequency. T he c lock scaling factor between t he memory
interfaces and the rest of the system, and also the data width of the memory interface,
is selectable via external signals.

External dynamic memory is in the normal case protected with a Reed-Solomon code
that uses 32 c heck bits to protect the 64 da ta bits (or 16 check bits to protect 32 data
bits). T o f urther improve resilience ag ainst pe rmanent memory er rors, the s ystem
supports an on-line ECC code switch where the number of check bits is halved and a

287

faulty memory is removed from system use. The scheme allows any byte, in the check
bit or data vectors, to be switched away while the system keeps operating.

2.3 I/O INTERFACES
A s et of s tandard peripherals required for operating s ystem s upport i s i ncluded on-
chip. T hese include support f or s imple memory mapped I /O de vices, t wo b asic
console UARTs and one 16-bit I/O port for external interrupts and simple control.

The hi gh-speed interfaces t hat ar e intended to b e us ed in flight ar e a t welve po rt
SpaceWire router, two 10/100/1000 Mbit Ethernet links, four 6.25 Gbit/s High-Speed
Serial Links, 1553 and SPI interfaces and one 32-bit PCI 2.3 master/target interface.

2.4 PCI INTERFACE

The currently used AT697 processor and several LEON3FT designs have a 32-bit PCI
interface. This makes a 32 -bit PCI bus a suitable candidate for the local backplane,
since it w ill make t he N GMP backward compatible w ith existing backplanes. T he
downside w ith t he P CI interface is t hat it r equires many I /O p ins a nd is r elatively
slow. H owever, s electing a more modern interface, s uch a s P CI e xpress w ould
increase demands on companion chips. This could prevent the use o f many t ypes o f
currently available programmable logic devices as companion devices.

2.5 SPACEWIRE ROUTER

The SpaceWire router is based on the GRSPWROUTER IP core which is the common
building block for all Aeroflex Gaisler router designs. In NGMP it is configured with
eight ex ternal S paceWire po rts an d four internal AMBA po rts co nnecting to the
internal Master I/O bus.

The S paceWire r outer al lows t he N GMP t o act b oth pa ssively and actively in a
SpaceWire network. The router in the NGMP can act separately from t he rest of t he
system-on-chip-design or the NGMP system ca n connect to the SpaceWire network
through t he four A MBA po rts a vailable o n the r outer. T he interface o f t he AMBA
ports i s identical t o the interface o f Aeroflex G aisler's G RSPW2 SpaceWire core,
allowing re-use of dr iver software. This also allows the router to be used by the host
system as a n ormal node the only d ifference being that a l eading physical address is
required s pecifying t he o utput p ort (at the s ame t ime a dding flexibility). An AHB
slave interface is a lso av ailable co nnected to the s lave I /O b using providing direct
access to the configuration port.

Preliminary r esults for t he 400 MHz target frequency s how t hat, us ing only internal
routing (data no t go ing out on e xternal S paceWire ports), the ar chitecture is a ble t o
sustain a da ta t hroughput of 1. 5 Gbit/s pe r S paceWire AMBA po rt. I n a s cenario
where the two full-duplex Ethernet links and all SpaceWire AMBA ports are run flat
out, the sustainable throughput is roughly 1.5 Gbit/s per Ethernet link and 1 Gbit/s per
SpaceWire AMBA port. In addition to this, the SpaceWire router will also be able to
simultaneously route packets at maximum speed.

288

2.6 10/100/1000 MBIT ETHERNET
The E thernet c ontrollers support 10/ 100/1000 M bit/s o peration and have i nternal
RAM that allows buffering a complete packet. Support for multicast will be included
to allow r eception o f multicast pa ckets w ithout setting the interface in pr omiscuous
mode.

2.7 HIGH-SPEED SERIAL LINKS

The a vailability a nd specification o f t he H igh-Speed Serial Link (HSSL) IP cores to
be integrated within the European DSM ASIC platform is at the t ime of writing very
limited. Aeroflex Gaisler is working with ESA to be able to provide, at the minimum,
a descriptor based DMA controller to control the SerDes macros that are expected to
provide 6.25 Gbit/s o f bandwidth per link. The support of SpaceFibre is a goal, it is
however subject to maturity of the standard amd availability of a SpaceFibre IP core.

2.8 DEBUG COMMUNICATION LINKS
The N GMP has a w ide r ange o f de bug links; J TAG, S paceWire R MAP, U SB a nd
Ethernet. The controllers for the first three links are located on the Debug bus and will
be c lock gated off in flight. T he co ntrollers for t he t wo E thernet de bug links are
embedded in the system's Ethernet cores.

The two Ethernet debug links use Aeroflex Gaisler's Ethernet Debug Communication
Link (EDCL) pr otocol, w hich is c ompletely supported i n hardware and do es not
require processor intervention. T he E thernet co ntrollers a llow users t o connect eac h
debug link either to the Debug bus or the Master I/O bus. The Ethernet cores' normal
function is preserved even if t he debug links are active. The selected buffer s ize for
the debug traffic in the NGMP gives an Ethernet debug link bandwidth of 100 Mbit/s.

A U SB de bug c ommunication link c ontroller provides a de bug c onnection w ith
relatively high bandwidth (20 Mbit/s). T he w ide a doption o f U SB w ill allow t he
NGMP system to be debugged from nearly any modern workstation without the need
for co nfiguration t hat is t ypically r equired when u sing an E thernet D ebug
Communication Link.

The J TAG de bug c ommunication link pr ovides a link w ith modest b andwidth o f
around 500 kbi t/s, typically limited by t he JTAG adapter. With modern USB JTAG
adapters it is possible to run the JTAG link at 6 Mbit/s.

A dedicated SpaceWire RMAP target is included on the Debug bus in order to use the
NGMP in SpaceWire networks. With a d edicated SpaceWire de bug link it becomes
easy t o us e exi sting infrastructure to c ontrol t he N GMP s ystem. T he S paceWire
RMAP target will typically provide a debug link bandwidth of 20 M bit/s. This is the
rate seen in practice w ith t he G RMON de bug software t hrough bridge de vices. The
hardware core itself runs at 200 Mbit/s nominally and is able to provide the ideal 152
Mbit/s in throughput.

3 FAULT-TOLERANCE
The f ault-tolerance in t he N GMP s ystem is a imed at de tecting and correcting SEU
errors i n o n-chip a nd o ff-chip RAM. T he L 1 cache in t he L EON4FT co res ar e

289

protected using byte parity and the r egister f ile in ea ch processor is protected using
TMR. As previously mentioned, t he L2 cache is protected using BCH ECC a nd t he
external SDRAM memory is protected with Reed-Solomon. The boot PROM will use
BCH. All RAM blocks in on-chip IP cores are protected with parity, TMR or parity
DMR. F lip-flops w ill be protected with SEU-hardened library ce lls, if a vailable a nd
adequate, or TMR otherwise.

4 IMPROVED SUPPORT FOR TIME-SPACE PARTITIONING AND MULTI-PROCESSOR
OPERATION

Beyond s upport f or s ymmetric multiprocessing (SMP) c onfigurations, e.g. w ith a
central multiprocessor interrupt controller, NGMP also features extended support for
asymmetric multiprocessing (ASMP) c onfigurations: dup licated interrupt c ontroller
functionality a nd several t imer u nits a llow r unning separate o perating systems o n
separate processor cores.

Each processor core has a dedicated memory management unit (MMU) that provides
separation between pr ocesses an d operating systems. T he s ystem a lso i ncludes a n
IOMMU that provides access restriction and address translation for accesses made by
the DMA units located on the Master I/O bus. The MMU and IOMMU provide access
restriction and address translation to blocks of memory divided into 4 KiB pages. In
order to grant selective access to the registers of one and only one peripheral core, all
peripheral register base addresses are aligned on 4 KiB address boundaries.

In add ition t o the MMUs in eac h o f t he pr ocessor cores and the I OMMU, memory
read/write access protection (fence r egisters) ar e implemented in t he L2 cache. This
functionality is primarily intended to protect backup software but can also be used to
add another layer of protection with regard to space partitioning.

5 IMPROVED SUPPORT FOR DEBUGGING AND PROFILING
The NGMP includes new and improved debug and profiling capabilities compared to
existing LEON2FT and LEON3FT devices. The selection of available debug links has
previously been described. Additional debug support features of the NGMP include:
AHB trace buffer with filtering and statistics, processor instruction trace buffers with
filtering, pe rformance co unters for t aking measurements in each pr ocessor co re;
hardware b reak- and w atchpoints, interrupt time s tamping in o rder to m easure
interrupt latency and a PCI trace buffer with filtering.

All performance counters and trace buffers can be accessed via the Debug AHB bus
without caus ing traffic o n the s ystem buses. T he pr ocessors ca n also acces s t he
performance counters via the Slave I/O bus.

6 EXPECTED PERFORMANCE
Several F PGA down s ized configurations of the N GMP i n the f orm of F ield
Programmable G ate A rray (FPGA) pr ototypes h ave been de veloped dur ing t he
architectural de sign p hase. T o co mpare t he p erformance o f t he N GMP t o pr evious
LEON2 and LEON3 systems, a small collection of benchmarks have been assembled.
While n ot pr oviding a n e xhaustive pe rformance pr ofile, t hese benchmarks still

290

provide interesting compare po ints in t he de velopment o f t he LEON processor. The
benchmarks have been run on the following systems:

• AT697: LEON2FT, 32 + 16 KiB cache, 5-clock multiplier, Meiko FPU
• UT699: LEON3FT V1, 8 + 8 KiB cache, 5-clock multiplier, GRFPU
• GR712RC: Dual core LEON3FT V2, 16 + 16 KiB cache, 5-clock multiplier,

GRFPU, branch prediction
• NGMP: Q uad core L EON4FT, 16 + 16 KiB cac he, 2 -clock multiplier,

GRFPU, 256 KiB L2 cache
The benchmark collection consisted of the following benchmarks: 164.gzip, 176.gcc,
256.bzip2, AOCS benchmark, B asicmath_large, C oremark-1.0, D hrystone-2.0,
Linpack-DP, Whetstone. T he t hree first be nchmarks ar e from t he S PEC C PU2000
suite. A ll benchmarks were co mpiled with G CC-4.3.2 tuned f or S PARC V 8. All
systems were c locked at 50 M Hz dur ing the tests, us ing 32-bit SDRAM (LEON2/3)
or 64-bit DDR2 (NGMP). Table 1 shows the performance figures relative to AT697.

Benchmark AT697 UT699 GR712RC NGMP
164.gzip 1

0.94

1.1

1.31

176.gcc 1 0.79 0.97 1.3
256.bzip2 1 0.93 1.06 1.33
AOCS 1 1.2 1.52 1.79
Basicmath 1 1.3 1.46 1.62
Coremark, 1 thread 1 0.89 1.09 1.21
Coremark, 4 threads

1 0.89 2.05 4.59
Dhrystone 1 0.94 1.05 1.39
Dhrystone, 4 instances

1 0.94 1.05 1.39
Linpack 1 1.2 1.26 1.71
Whetstone 1 1.94 2 2.22
Whetstone, 4 instances 1 1.94 3.7 8.68

Table 1: Relative benchmark scores
Table 1 s hows t hat t he L EON4/NGMP has ap proximately 30% better C PI than
AT697 o n integer benchmarks, a nd up t o 10 0% b etter CPI o n floating-point
benchmarks. The Coremark benchmark can a lso be run multi-threaded, which shows
on the high 4-thread results for GR712RC and NGMP. The benchmark will fit in the
L1 cache, and therefore scales almost linearly with the number of cores. It should also
be noted that these figures are for systems running on the same system frequency and
that the t arget f requency for N GMP is significantly higher t han t he maximum
frequency of the other devices.

All benchmarks were run using the BCC runtime. Using the Linux SMP OS, multiple
instances o f D hrystone a nd Whetstone w as r un. These t ests s how t hat pe rformance
scales better on NGMP than GR712RC, mostly due to wider buses and the L2 cache.

291

7 TARGET TECHNOLOGY
The baseline t arget technology is t he E uropean S T Microelectronics 65 nm s pace
technology. Possible backup options for target technology include UMC 90 nm with
the DARE library and Tower (130 nm) with a library from Ramon Chips.

Power c onsumption o f t he N GMP ASIC c ore (w ithout IO s) un der w orst c ase
operating conditions a nd maximum software load is r equired to n ot ex ceed 6W.
Maximum power consumption in idle mode (no software activity, but conservation of
status and SEE protection) is required to not exceed 100 mW.

8 SOFTWARE SUPPORT
The GRMON debug monitor from Aeroflex Gaisler has been extended to support all
new functionality included in t he N GMP. T he h ardware p latform pr ovides full
instruction s et c ompatibility w ith e xisting LEON3FT s oftware a nd a ll s tandard
compilers that can produce correct SPARC V8 code can be used. Aeroflex Gaisler's
bootloader c reation t ool M KPROM2 has been extended with support f or bo oting
ASMP configurations.

Board s upport pa ckages for t he N GMP w ill be delivered for R TEMS 4. 10, e Cos,
VxWorks 6.7, Linux 2.6. Other operating systems that are already ported to LEON3/4
include: LynxOs, ThreadX and Nucleus.

9 PROTOTYPE
A functional pr ototype (FP) t o b e manufactured on e ASIC N extreme2 s tructured
ASIC technology is currently being developed at Aeroflex Gaisler. Validation boards
with FP devices are scheduled to be available in Q2 2012.

Aeroflex G aisler c an c urrently pr ovide do wnsized F PGA pr ototypes o f t he N GMP
system. The prototypes are described in the NGMP preliminary data sheet available at
the NGMP website (http://microelectronics.esa.int/ngmp/ngmp.htm).

10 CONCLUSION
The N GMP is a S PARC V 8(E) b ased multi-processor ar chitecture that p rovides a
significant pe rformance increase co mpared to ear lier ge nerations o f European space
processors, with hi gh spe ed-interfaces s uch as S paceWire a nd gigabit E thernet on-
chip. The versatile on-chip SpaceWire router broadens the possible app lications o f a
space pr ocessor c hip. T he p latform w ill have improved s upport f or pr ofiling a nd
debugging and w ill have a r ich set o f s oftware immediately a vailable. T he N GMP
also includes extended support for ASMP configurations and time-space partitioning.

The NGMP is part of the ESA roadmap for standard microprocessor components and
it w ill be c ommercialised under fair a nd equal conditions t o al l u sers in the E SA
member states. The NGMP is fully developed with manpower located in Europe, and
it only relies on European IP sources. It will therefore not be a ffected by US export
regulations.

The N GMP pr eliminary da ta s heet an d other r elated documents ar e po sted at the
NGMP website following link: http://microelectronics.esa.int/ngmp/ngmp.htm

292

http://microelectronics.esa.int/ngmp/ngmp.htm�

DEVELOPMENT OF A NOVEL 18X SPACEWIRE ROUTER

Session: SpaceWire components

Long Paper

Marko Isomäki, Sandi Habinc

Aeroflex Gaisler AB, Kungsgatan 12, SE-411 19 Göteborg, Sweden
E-mail: marko@gaisler.com, sandi@gaisler.com

ABSTRACT
The 18 x SpaceWire router is a new 18 port s tand-alone r outer c omponent c urrently
being specified by Aeroflex Gaisler. Today t here is no component available o n t he
world market e xhibiting more t han e ight SpaceWire po rts. T he go al w ith t his new
development is to provide this missing key component to the ever increasing number
of customers requiring manifold ports.

The 18x r outer i s based on t he G RSPWROUTER co nfigurable S paceWire I P co re
developed by A eroflex G aisler. T wo configurations ar e foreseen a s t echnically a nd
commercially viable. One with 16 SpaceWire LVDS ports and either two SpaceWire
LVTTL ports o r t wo FIFO po rts a nd t he ot her w ith 16 SpaceWire po rts an d two
internal AMBA po rts bridging t o e xternal p ins via a P CI interface. Which o f t hese
solutions will be selected is still open.

It is also an open item whether the device will include support for SpaceWire revision
D (ECSS-E-ST-50-12D) and the new SpaceWire-D protocol.

1 INTRODUCTION
Currently there is no S paceWire r outer component o n the market w ith more t han 8
SpaceWire po rts. B oth E SA a nd several c ompanies in t he s pace industry have
indicated 16 ports as the most viable for routers in the near future. Aeroflex Gaisler
intends t o provide t his key component w ith a new 18 po rt SpaceWire router ASIC.
The design will be based on the GRSPWROUTER configurable SpaceWire router IP
core [1]. This core supports three different port types: SpaceWire ports, AMBA ports
and FIFO ports. These will be further explained later in the IP core section.

Two configurations of the IP core have been identified as potential candidates for the
final ASIC: One with 16 SpaceWire LVDS ports and two LVTTL SpaceWire ports or
two FIFO ports (Configuration 1) and the other with 16 LVDS SpaceWire ports and
two AMBA ports (internal) connected to a PCI interface (Configuration 2). Both will
be evaluated to determine which one will eventually be used for manufacturing.

Other considerations m ade f or the A SIC i s w hether to include s upport f or t he
upcoming revision D o f t he SpaceWire standard (ECSS-E-ST-50-12D) a nd the new

293

mailto:marko@gaisler.com�
mailto:sandi@gaisler.com�

SpaceWire-D protocol. The problem is the lack of a schedule for finalization of these
two standards which might then not be mature enough to fit the schedule of the ASIC.

This paper begins with briefly presenting key properties of the GRSPWROUTER IP
core which is the major core in the designs. Then the two configurations are presented
and compared. T he ne w pr otocols w ill t hen be br iefly introduced followed by a
motivation for the desired inclusion in the router ASIC. The next section shows some
platforms a lready a vailable for t he r outer I P w hich c an be us ed for pr ototyping a nd
evaluating the A SIC c onfigurations. L astly the pr eliminary information about the
ASIC technology is given.

2 ROUTER IP CORE PROPERTIES
The GRSPWROUTER IP core [1] is the central component in both of the suggested
configurations. I t s upports from 2 t o 31 por ts of t hree d ifferent t ypes: S paceWire,
AMBA and FIFO. The SpaceWire ports are normal SpaceWire links and will support
at least 200 Mbit/s. FIFO ports provide 9-bit parallel interfaces with control signals in
each direction (read/write) which can be used to interface external units or to cascade
two or more 18 x r outers w ithout a ny glue logic. T he AMBA po rts i nterface t o an
AMBA AHB bus us ing DMA o n the bus. All three po rt types connect t o the cor e
router s witch matrix us ing identical FIFO based interfaces. T here is no w ay t o
distinguish the three ports on the SpaceWire packet level and upwards.

The c onfigurability pr ovided by t he I P c ore makes it us able in many d ifferent
applications. I t h as a lready been us ed in s everal s tandard rad-hard components o n
Actel R TAX2000SL and R T P roASIC3 FPGAs [2] a nd is also us ed in the N ext
Generation MicroProcessor (NGMP) [3] system-on-chip a ctivity f unded by the
European Space Agency.

All mandatory features cur rently in the ECSS SpaceWire s tandard are supported by
the c ore a s w ell as s ome a dditional ke y functions not b eing available in other
implementations e.g. packet distribution.

3 FEATURES COMMMON TO BOTH CONFIGURATIONS
This section lists the key features co mmon to both configurations o f the router. The
list co nsists o f f eatures av ailable in t he r outer IP cor e as w ell a s ex ternal au xiliary
interfaces.

The base of both routers consists of the 16 SpaceWire LVDS ports. Each router port,
regardless of type, is equipped with a t imer which can be enabled/disabled. It is used
to prevent deadlocks resulting from stalling source or destination nodes which could
lock a port indefinitely. This feature might be introduced in the upcoming revision-D
of the SpaceWire standard but is already available in this design.

All a ddressing m odes m entioned i n the s tandard are f ully s upported. Physical and
logical addresses can be individually enabled to use group adaptive routing or packet
distribution to any number of physical ports available in the router. The addressing is
setup using a routing and port setup table.

294

The addressing tables and port FIFOs in the router consist of a considerable amount of
RAM blocks which can experience SEUs and the contents can thus be corrupted. All
RAMs ar e pr otected by pa rity D MR w hich means s ingle er rors ar e de tected and
corrected automatically. FIFO memories do not need any additional mitigation as they
only c ontain da ta for a ve ry s hort pe riod until it i s r ead. T he r outing and port s etup
tables however ar e much larger t han the FIFOs a nd can co ntain static da ta for very
long periods and are therefore much more susceptible to error buildup. To prevent the
data from being corrupted with multiple bit-errors the core uses an automatic scrubber
device w hich pe riodically r efreshes t he r outing-table co ntents. S crubbing does n ot
have a ny impact o n r outing performance s ince t he r efresh r eads ar e issued o n idle
cycles. I n the improbable event o f a multiple er ror occurring when pe rforming a
lookup in t he routing t able the packet being routed will be d iscarded and status bits
and an e xternal signal w ill be a sserted. I t is t hen up to t he s ystem de signer t o ha ve
some kind of system monitor handling this situation.

All configuration and status access are handled through configuration port 0 which is
accessed using the RMAP protocol [4] from any of the other ports. The allowed ports
for co nfiguration acc esses c an be r estricted if n eeded us ing several c onfiguration
options.

For d iagnostic a nd test pur poses S PI, I 2C, U ART an d J TAG interfaces w ill be
provided. These low pin count interfaces are suitable in the small package that will be
used (see below) but at the s ame t ime have s ufficient ba ndwidth for t he a mount of
status and configuration in the router internals. As this method is available most of the
router configuration options have been set to known good values after the reset which
can then be changed using these interfaces. Very few are available from configuration
pins at reset.

4 CONFIGURATION 1
The first configuration considered for the ASIC consist of the base mentioned in the
previous section w ith 16 S paceWire LVDS ports a nd in a ddition e ither t wo
SpaceWire LVTTL or two FIFO ports. The only difference between the two different
SpaceWire po rt types is t he I /O t ype o f t he pa ds. T he major de sign c hoice for t his
configuration is whether to include two FIFO ports or two SpaceWire LVTTL ports.
The t arget package for the router is a s imple to handle low-pin Q FP w hich is qu ite
limited and do es r equire reducing the amount of configuration pins even more than
previously mentioned to fit two FIFO ports. Choosing two LVTTL SpaceWire ports
instead would save 36 pins but could reduce flexibility of the chip.

One o f the applications o f the FIFO ports is to cascade one o r more routers without
any g lue logic. F or this pur pose t he S paceWire por ts w ill w ork e qually w ell a nd
would in fact simplify matters. In most cases cascading would be done on a PCB and
it is well understood how to route SpaceWire signals on a PCB. The FIFO interfaces
are most useful when connecting directly to external processors and memories. To use
a S paceWire link instead would require t he insertion o f g lue-logic providing a
complete S paceWire co dec w hich w ould typically be do ne us ing a FPGA which
increases d esign co mplexity co nsiderably. I t is however a nticipated that the need to
interface t o ex ternal pr ocessors us ing parallel interfaces w ill be less r equired in t he
future since most processors will be equipped with SpaceWire interfaces which means

295

it is most likely that the two SpaceWire LVTTL ports will be chosen. This reason is
also the motivation for considering configuration 2.

Figure: 18x SpaceWire router configuration 1 block diagram

5 CONFIGURATION 2
Similar t o the first co nfiguration t he second one has 16 SpaceWire LVDS links but
instead of FIFO ports or SpaceWire LVTTL ports a PCI interface is used instead. The
router i s c onfigured w ith t wo i nternal AMBA p orts w hich pr ovide bridging us ing
DMA to an on-chip AMBA-AHB bus where a PCI initiator/targets core resides.

Through the PCI interface any PCI master can get access to the whole AMBA AHB
bus and send/receive SpaceWire packets through the two AMBA ports to any o f t he
16 SpaceWire links. There is also an AHB slave interface allowing direct access to the
router c onfiguration po rt. T his s peeds up c onfiguration and s tatus a ccesses
considerably since t he a lternative w ould be t o transfer R MAP pa ckets o ver t he
AMBA ports addressed to the configuration port.

As mentioned in the section for configuration 1 it is believed that the need for external
parallel interfaces will be less useful in the future and a bus interface like PCI will be
more appr opriate. A n a lmost identical r outer w ith a P CI i nterface us ing the
GRSPWROUTER IP core is already in use in an evaluation system at ESA as part of

296

the RASTA [5] framework. It is implemented on a Xilinx Virtex4 FPGA on a CPCI
board. T his is t hought to b e a more s uitable t ype o f external i nterfacing for fut ure
systems but the o n-going e valuation pr ocess w ill de termine w hich c onfiguration is
eventually selected.

Figure: 18x SpaceWire router configuration 2 block diagram

6 SPACEWIRE REVISION D SUPPORT
An upc oming r evision D o f t he SpaceWire s tandard is planned f or the n ear f uture
which contains some changes affecting the router ASIC development. Some additions
result in old devices po tentially not being forward compatible. I t has to be carefully
considered if a nd how t hese new features ar e implemented. T he final de tails o f t he
updates have not been decided yet and there is no date set for when this will be ready
so there is a considerable risk in implementing these new features before the standard
is finalized.

Three changes h ave b een identified as ha ving technical impact. T he f irst o ne i s t he
addition o f t imers in routers. T his w ill pr obably be o ptional in the s tandard and not
restricting the implementation details to any larger extent. The GRSPWROUTER IP
core a lready co ntains a t imer feature a s pr eviously mentioned w hich makes it
probable that no changes will be needed to the core.

The s econd change is a modification o f t he link interface FSM. T wo r equirements
have been identified [6] t hat pot entially can cause t he codec t o make u nwanted
transitions. These are unlikely corner cases and very few if any problems have been

297

seen in practice. This will probably not affect backward compatibility with old codecs
and so the r isk is estimated to be very low to include these fixes in the router. Tests
will be made dur ing validation o n FPGA t hat no d isturbances o ccur w ith o lder
devices.

The final and most complicated change is the addition of an interrupt code [6]. It uses
one o f t he r eserved control bit combinations o f t ime-codes and it must therefore be
made s ure t hat it cannot i nterfere w ith t he normal t ime-code facilities. Existing
devices might not be forward compatible with revision D compliant devices due to the
interrupt code. Some issues with these new codes are still under d iscussion and it is
not kn own e xactly how it w ill be implemented in the s tandard. T his is t herefore
indentified as t he pa rt of r evision D c ausing the highest implementation r isk if
included in t he r outer A SIC. T he de sired w ay t o g o i s t hat t he r outer i s flexible
enough to allow ports' handling of the new code to be configured individually. In this
way the router can be used as a device enabling old and new equipment to be used in
the same SpaceWire network.

7 SPACEWIRE-D SUPPORT
There i s a n ew protocol e merging c alled SpaceWire-D [7] w here D stands for
deterministic. T his is a nticipated t o b e w idely us ed in t he future to p rovide
deterministic and low-latency transfer of control and command information while still
preserving t he high bandwidth o f SpaceWire. I t basically consists o f a t ime-slotting
table replicated in each unit (node or router) in the SpaceWire network. Therefore a
router needs to have support for SpaceWire-D if it is used in a network utilizing that
protocol.

The ma in complication h ere a lso lie s in the fact t he protocol has not been finalized
and it la cks a time-table w hen t his w ill be t he case. I t i s not p ossible t o m ake a
sensible implementation with the information available a t t he moment. S ince t his
requires RTL changes in the device a specification has to be available very soon for a
possible inclusion in the router.

8 PROTOTYPING
Prototypes for ev aluation o f t he r outer c onfigurations ar e a lready a vailable a nd are
based o n X ilinx V irtex 4/ 5 FPGAs w ith an a ccompanying e valuation board
compatible with RASTA. The board provides the possibility to interface both through
FIFO ports and the PCI interface depending on the configuration. All features planned
for the ASIC are included and run at full-speed.

PCI drivers are also under development and will be available before the end of 2011.
This is a plug and play driver which automatically detects the router design on the PCI
bus. An A PI is pr ovided for c onfiguring, r eading s tatus, s ending a nd r eceiving
packets.

298

Figure: 18x SpaceWire router evaluation board with sixteen SpaceWire links

9 ASIC TECHNOLOGY
The AS IC will be targeted for a 0.18 µm or smaller t echnology. I t is required to be
SEE free a nd t olerate a T ID o f at least 100 kRad. Another important factor is low-
power consumption. The actual process and library is yet to be determined.

The package is targeted for a simple to handle QFP type.

10 REFERENCES
1. M. I somäki, S . Habinc, J. Gaisler, " A Configurable SpaceWire Router VHDL IP
Core", Proceedings of the 3rd International SpaceWire Conference, 2010, 229-232

2. J . A ndersson, M . S jälander, J . G aisler, R . Weigand, " Next G eneration M ulti-
Purpose MicroProcessor", Data Systems in Aerospace Conference, DASIA2010, June
2010

3. RT-SPW-ROUTER D ata S heet an d User's M anual, Aeroflex G aisler,
www.gaisler.com

4. Remote Memory Access Protocol, ECSS-E-ST-50-52C

5. RASTA Interface Control Document (ICD) - Hardware, TEC-EDD/2007.31/GF

6. E CSS C hange R equest/Document I mprovement P roposal, 16t h S paceWire
Working Group Meeting, www.spacewire.esa.int

7. E SA-PhA-SpW-D R equirements and baseline V 0-7, 16th S paceWire Working
Group Meeting, www.spacewire.esa.int

299

Approved for Public Release - Log # ES-MVA-092211-0153

LEVERAGING SPACEWIRE NETWORK PROTOTYPING TO CREATE
FLEXIBLE SPACEWIRE COMPONENTS AND SUPPORT SOFTWARE

Session: SpaceWire Components

Long Paper

Joseph Marshall, Steve Santee, Mary Hanley, Jeff Robertson, Dan Stanley

BAE Systems, Manassas, Virginia USA

E-mail: joe.marshall@baesystems.com, steve.santee@baesystems.com,
mary.hanley@baesystems.com, jeffrey.robertson@baesystems.com,

dan.stanley@baesystems.com

ABSTRACT
SpaceWire continues to find new usage in satellite systems worldwide. BAE Systems
has created a demonstration and software development laboratory focused on rapid
prototyping of network management, fault diagnosis and recovery algorithms for
SpaceWire networks in a variety of topologies. This paper will describe BAE
Systems’ demonstration laboratory and results to date in topology and application
modelling. It will also describe experience adding, implementing and prototyping the
recently released SpaceWire Endpoint ASIC and describe its potential usage along
with its support software in spacecraft systems utilizing SpaceWire especially those
utilizing RMAP and plug and play.

1 INTRODUCTION
In 2004, BAE Systems released its SpaceWire ASIC, a combination router and system
on chip (SOC). This joint BAE Systems and NASA Goddard based design [1] has
been used standalone, controlled by its internal embedded microcontroller, and as a
PCI-connected device to attach to other processor, memory or peripheral functions.
Based on the success of missions such as the Lunar Reconnaissance Orbiter (LRO)
[2][3] and future networking requirements of our customers, BAE Systems has
expanded its planned offering of SpaceWire products to address a wider variety of
applications including more advanced bridges, remote endpoints and large routers.

Understanding the ramifications and needs of these expanded networks led BAE
Systems to setup a networking laboratory targeted for both LVDS and SERDES types
of fabrics. The initial network implementations focused on SpaceWire. Several video
sources and sinks are tied into the network to provide data for transport. A RAD750
processor provides control and network management. Various network topologies
have been realized, network management approaches explored and middleware
software has been developed. FPGA-based network nodes enabled prototyping two
new SpaceWire ASICs: an enhanced system on a chip with a 4 port router and an
endpoint with a single link. A large 16 port router and data funnel is also under
development.

300

Approved for Public Release - Log # ES-MVA-092211-0153

2 DEMONSTRATION SETUP AND TOPOLOGIES
The laboratory is set up with multiple FPGA prototyping boards[4][5] outfitted with 9
pin micro-d connectors. FPGAs utilized are Virtex 4 and Virtex 5 of varying sizes.
These are connected by standard SpaceWire cables to each other to form the various
network configurations. Figure 1 shows the configuration used in most of the work
and Figure 2 shows a photo of the setup. One Virtex 5 FPGA supports a 12 port
router/switch, four other smaller Virtex support 4 port endpoints, each tied to a laptop
to generate video and a LCD display to display video. A third Virtex 5 FPGA type of
board, containing the largest Virtex 5, an LX330T, provides a four port connection
and maximum logic for prototyping. There is also a Virtex 4 board with sufficient
LVDS I/O to support a 16 port router/switch.

A general purpose processor is provided in a small CompactPCI chassis. A 3U
RAD750TM board[6], 3U Ethernet and a 6U SpaceWire ASIC evaluation board
provide an embedded spaceborne type processor with four SpaceWire port
connections to the network. One of these is used to interface to a 4Links SpaceWire
1U Test Board used for diagnostics, package insertion and performance monitoring.

Most of our connectors, though 9 pin micro-d in size, were not wired to the
SpaceWire standard. Thus, the network can only reliably achieve around 100-110
Mbps by running up to 133 MHz. This was sufficient to test all behaviors and
topologies and could provide a ready source of higher frequency errors for the
network management software to handle.

4‐Links

PCI Chassis

Et
h
er
n
et
 C
ar
d

3
U
 R
A
D
7
5
0

Sp
ac
eW

ir
e
Ev
al
 C
d

16‐Port
SpaceWire
Router

PCI PCI

ML525

ML505 ML505

ML505 ML505

Ethernet
PCI
SpaceWire
Future SpaceWire Connection
Double SpaceWire Connection
VGA/DVI

SpaceWire ASIC Design

FPGA Design 1 – Bridges/Routers/Switches

FPGA Design 2 – Video Endpoints/Routers

1 2

3 4

12‐Port
SpaceWire
Router

Attached Space Node

Attached COTS

COTS Test Equipment

Figure 1 - Demonstration Network Diagram

301

Approved for Public Release - Log # ES-MVA-092211-0153

Figure 2 - Photo of Demonstration Laboratory

SpaceWire[7] supports a variety of topologies as shown in Figure 3. Rings are used
to attach strings of processors in an efficient manner, in that only two links are
required at any point[8]. If a second ring is included this provides a single fault
tolerant solution making use of 4 port devices like the SpaceWire ASIC. However,
the latency between any two points on the ring may grow beyond an application’s
performance requirements. Trees are used to fan out connections to larger numbers of
nodes when a central switching approach is not possible. This is used in IEEE 1394
networks. Large routers/switches are used when latency is important and thus a
minimum number of hops from a central resource is possible. Meshes are used
between all equal nodes where all have requirements to communicate with other
nodes. Hybrids of these four topologies are of course possible and often represent the
actual implementation in a system.

Figure 4 captures the effects of each topology and compares between node sizes. It
shows a mapping of different numbers of nodes to each of the topologies identified
and which devices were optimal for each network type. This confirmed that
endpoints and routers could be more useful and if available, more likely selected for
some uses than 4-port bridge implementations.

302

Approved for Public Release - Log # ES-MVA-092211-0153

End
Point

End
Point

End
Point

End
Point

End
Point

Bridge

Router

RAD750
or EMC

Bridge

Bridge

RAD750
or EMC

Bridge Bridge

Bridge

Bridge

Bridge

Bridge

Bridge

End
Point

End
Point

End
Point

cPCI
Chassis

Bulk
Memory

Router

TREE

RING

SWITCH

Device Device Device

Device

Device
RAD750
or EMC

Device

Device

Device

Device

Device

MESH

Existing SpW Future SpW Attached Node

SpaceWire Primary Link

SpaceWire Redundant Link

Node Connection

End
Point

Device

RAD750
or EMC

RAD750
or EMC

End
Point

End
Point

End
Point

Device Device Device

BridgeBridge Bridge

Bridge Bridge
RAD750
or EMC

RAD750
or EMC

RAD750
or EMC

RAD750
or EMC

Device

RAD750
or EMC

EMC = Embedded Microcontroller

Figure 3 - SpaceWire Topologies

Ring Network Tree Network Switch Network Mesh Network

Topology

General purpose; dual

path to each node

Large number of devices

under control of small

number of nodes ‐ 1553

replacement; longer

backplane or localized network;

common assets may be shared

many peers all

sharing or sending

and receiving data;

localized

Nodes using only 1‐2

port endpoints

Expandable Ring ‐

must have 2 port

router can only be leaves of tree

can only be nodes connected to

switch

two hosts with one

port; up to three

hosts with two ports

Nodes using only 4

port routers

Two expandable

Redundant Rings: 2

ports each

Each Node supports up to

three branches

up to four port switches; then must

daisy chain (2x4=6; 3x4=9, etc.) up to five hosts

Nodes using only 6

port routers

Three expandable

Redundant Rings: 2

ports each

Each Node supports up to

five branches or dual sets of

two branches

up to six port switches; then must

daisy chain (2x6=8 or 10; 3x6=12or15) up to seven hosts

Nodes using only 8

port routers

Four expandable

redundant rings: 2

ports each

Each node supports up to

seven branches or dual sets of

three branches

up to eight port switches; then must

daisy chain (2x8=12 to 16; 3x8 =

15to24) up to nine hosts

Nodes using only 12

port routers

Six expandable

redundant rings: 2

ports each

Each node supports up to

eleven branches or dual sets

of five branches

up to twelve port switches or dual six

port switches; then must daisy chain

(2x12=18to22) up to thirteen hosts

Nodes using only 16

port routers

Eight expandable

redundant rings: 2

ports each

Each node supports up to

fifteen branches or dual sets

of seven branches

up to sixteen port switches or dual

eight port switches; then must daisy

chain (2x16=20to30)

up to seventeen

hosts

Optimal Network

Implementation

Two port routers for

single ring; Four port

routers for redundant

rings

Use different sized routers to

match localized groups of

nodes

Smallest number of largest switch

covering number of nodes to get most

crossbar effect; if more than one;

multiple cross links

Switch sized or used

to match number of

hosts

Figure 4 - Topology Affects on Network Attributes

303

Approved for Public Release - Log # ES-MVA-092211-0153

3 VIDEO APPLICATION
To demonstrate a SpaceWire or other medium to high speed network, a variable high
speed data source and sink is required. The FPGA boards we used for some of the
smaller nodes included both a VGA in and a VGA out connection. Thus, with the
addition of a laptop for data generation (connected to VGA in), an LCD display
(connected to VGA out) and some FPGA personalization, we created variable high
speed network sources and sinks. Due to the age of the VGA interface, it was not
easy to find any good descriptions of what an interface device needed to produce or
accept. Descriptions were hard to find and then turned out not to match what was
actually being created or used. Experimentation and probing filled in the gaps that led
to a successful implementation. A block diagram of the FPGA design for the video
application is shown in Figure 5. Each block is an embedded core. RIFs are bi-
directional FIFO based DMA interfaces between the SpaceWire router and the rest of
the ASIC. JTAG and I2C blocks interface to industry standard interfaces. Most of
the other blocks are self explanatory. All the demonstration designs included RMAP
functionality so that all internal registers and connected memory and devices could be
remotely loaded without device intelligence.

SpaceWire is a full duplex interface and thus can support video simultaneously in
both directions. Full lowest resolution standard color VGA required just over 400
Mbps. By changing a color signal to one color, this was reduced to around 150 Mbps.
This was still more than our simple lab setup could reliably transmit. Thus, two links
were used for each video signal with separation at the source and recombining the
data at the sink. This technique could easily be expanded to handle larger data
sources and syncs with additional SpaceWire ports. Whether using one link or four,
this FPGA demonstrates the endpoint function of sourcing data onto or sinking data
from the network.

Figure 5 - Video FPGA Block Diagram

304

Approved for Public Release - Log # ES-MVA-092211-0153

4 BRIDGE / ROUTER FPGA
The other major demonstration FPGA utilized the larger FPGA boards. Thus the
design held all of the typical interface elements in a bridge or router with the
exception of the PCI Bus, which was not available on these boards. Figure 6 shows a
block diagram of this design. The number of SpaceWire links depended on the

number of LVDS signals brought
out to the board connectors. Three
implementations were wired, one
with four ports, one with twelve
ports and one with sixteen ports. The
EMC is an embedded
microcontroller that is used in all
BAE Systems bridge and interface
ASICs and along with 4x the
embedded memory represent the
biggest addition to the chip. Using
the EMC, the ASIC can be used in a
standalone mode or in a remote
assist mode. The UART provides a
low speed standard debug interface
for the EMC-based code.

Figure 6 - Bridge / Router FPGA Block Diagram

5 SPACEWIRE ENDPOINT ASIC
As a result of the SpaceWire demonstration efforts, three new ASICs are in varying
stages of development. The Golden Gate Bridge ASIC[8][9] provides an updated
RAD750 processor bridge function for the RAD750 and parts are working in the lab.
A 16 port router is in initial design and will provide a high performance crossbar
between a 64-bit PCI Bus, 16 SpaceWire ports, internal and external memory and an
EMC. Last year, the third design, a SpaceWire Endpoint completed design and this
year was fabricated on BAE Systems’ radiation hardened RH15 150nm CMOS line.
A block diagram of this ASIC is shown in Figure 7.

305

Approved for Public Release - Log # ES-MVA-092211-0153

Figure 7 - SpaceWire Endpoint ASIC Block Diagram

The SpaceWire Endpoint ASIC was designed to function where SpaceWire was the
only system interface, likely at the extremities or remote locations on a spacecraft. It
has a single SpaceWire port with a redundant physical layer for fault tolerance. The
SpaceWire port is rated to 320 MHz or about 250 Mbps of true data movement. It
contains an EMC[9][10] with 32 KB of ECC-protected SRAM so that it can be used
either standalone or directed through its RMAP registers remotely. It is a good match
as a controller for a nanosat or CubeSat class satellite and at maximum speed can
process at a 16 Dhrystone MIPS rate. It contains a set of matched interfaces to
connect to a variety of remote devices such as memory, flash, logic, FPGAs,
subsystems or instruments. Among these are two I2C, a 32 bit memory with ECC,

SPI, UART, an 8-bit bi-directional FIFO,
JTAG Master and SelectMAP. It also has 32
discrete signals, various timers and counters
and a watch-dog timer. All resources are
available to the EMC or to the remote
SpaceWire master. The JTAG Master and
SelectMAP allow it to configure and
mitigate errors from RAM-based FPGAs.
The SpaceWire Endpoint ASIC layout is
shown in Figure 8.

Figure 8 - SpaceWire Endpoint ASIC Layout

6 DEMONSTRATION SOFTWARE
The software created for the demonstration is what brought everything together and
controlled it. Originally written to run on a PC, this software has been ported to the
RAD750 running VxWorks and works as a middleware layer between an application
and the typical board support package for the hardware. A diagram of the software is
shown in Figure 9. The demonstration software includes a discovery algorithm that
looks for different known variations of SpaceWire hardware, “discovers” the network
hardware and then sets up the network based on the discoveries. If necessary, this

306

Approved for Public Release - Log # ES-MVA-092211-0153

software cooperates with processes in the application. The software is able to manage
the network by polling diagnostic registers in the various devices to keep track of
status.

The discovery and management software communicates back to a demonstration
program running on a PC that graphically shows the network, the connections, and
applications running over those connections. A screen shot of a demonstration
network is shown in Figure 10. Outside nodes represent endpoints while inside nodes
represent bridges and other routers. Red arrows indicate assignments made for
application data transfers.

Application

Network Manager
(SpaceWire)BAE Systems

Middleware

Territory
Management

Territory

Territory
Territory

Territory

Territory

Territory

Customer

SpaceWire
Low Level

Driver

Other
SpaceWire

Device

Territory

vxWorks
(WindRiver)

Ethernet Stack

TCP/IP
UDP/IP

ARP
Sockets

Ethernet/
SpaceWire

Driver

SpaceWire Network

Standard
Network IF

BAE Systems
Support Software

BAE SW

App SW

other

BAE HW

Figure 9 - SpaceWire Network Management Block Diagram

Each of the new ASIC designs as well as all of the demonstration FPGAs contain
additional diagnostic registers that let the network management software monitor the
traffic and health of all of the links. This has also been captured by the demonstration
software on the PC. A picture of some software measurements of different links with

and without traffic during a demonstration run
is shown in Figure 11. An additional
capability was developed and proven to run IP
packets over a SpaceWire link. With this
capability, a spare SpaceWire port may be
used as a test interface for communication
with test equipment. We successfully used
this to load software and run VxWorks and its
debuggers on the RAD750 using only a
SpaceWire link. A diagram of the test
hardware and software is shown in Figure 12.

Figure 10 - SpaceWire Network Software Discovery Map

307

Approved for Public Release - Log # ES-MVA-092211-0153

Figure 11 - Demonstration Software Measurements of Different Links

Figure 12 - SpaceWire Support Software

7 SUMMARY
In this paper we have discussed the SpaceWire demonstration laboratory, its hardware
and software elements and how it has enabled a new set of SpaceWire ASICs and
software based on elements prototyped and demonstrated in the lab. These new
products address potential SpaceWire applications in big and small systems. The

308

Approved for Public Release - Log # ES-MVA-092211-0153

laboratory provides a place to benchmark applications as well as a stepping stone to
SERDES based future products.

8 REFERENCES
1. Marshall, J. R., Berger, R. W. and Rakow, G. P., “A One-Chip Hardened Solution

for High Speed SpaceWire System Implementations”, 1st International SpaceWire
Conference, Dundee, Scotland, 2007.

2. Berger, R. W., et. al., “RAD750 SpaceWire-Enabled Flight Computer for Lunar
Reconnaissance Orbiter”, 1st 1st International SpaceWire Conference, Dundee,
Scotland, 2007.

3. Marshall, J. R., “Evolution and Application of System On a Chip SpaceWire
Components for Spaceborne Missions”, 2nd International SpaceWire Conference,
Nara, Japan, 2008.

4. “ML52x User Guide – Virtex-5 FPGA RocketIO Characterization Platform”,
Xilinx Corporation, April 2008.

5. “ML505/ML506/ML507 Evaluation Platform User Guide”, Xilinx Corporation,
July 2008.

6. Marshall, J. R. and Berger, R. W. “A Processor Solution for the Second Century
of Powered Space Flight”, 19th Digital Avionics Systems Conference
Proceedings, Indianapolis, IN, 2000.

7. ECSS Secretariat, SpaceWire – Links, nodes, routers and networks, ECSS-E-ST-
50-12C, July 31, 2008, Noordwijk, The Netherlands.

8. Marshall J. R., Wood N., Milliser, M., Ferguson R. and Maher E., “Higher
Performance BAE Systems Processors and Interconnects Enabling Spacecraft
Applications”, IEEE Aerospace 2009 Conference, Big Sky, MT, 2009.

9. Marshall, J.R, Stanley, D. L. And Robertson, J. E., “Matching Processor
Performance to Mission Application Needs”, Infotech@Aerospace 2011
Conference, St. Louis, MO, 2011.

10. Marshall, J. R. and Robertson, J. E. “An Embedded Microcontroller for Spacecraft
Applications”, IEEE Aerospace Conference 2006, Big Sky, MT, 2006.

309

SPACEFIBRE CODEC: USE OF THE TLK2711-SP

Session: SpaceWire Components

Long Paper

Steve Parkes, Chris McClements

School of Computing, University of Dundee, Dundee, Scotland, DD1 4HN, UK

E-mail: cmcclements at computing.dundee.ac.uk, sparkes at computing.dundee.ac.uk

Martin Suess,

ESA, ESTEC, 2200 AG Noordwijk, The Netherlands

Email: martin.suess@esa.int

1 ABSTRACT
SpaceFibre is a very high speed serial communications link which is being designed

for use on spacecraft. A SpaceFibre link connects high data rate payloads into the on-

board data handling system and also interoperates seamlessly with a SpaceWire

network. The link is able to operate over a copper or fibre optic communications

medium and can support real data rates of more than 2 Gbit/s improving the data rate

of SpaceWire by at least a factor of 10.

University of Dundee is currently developing a SpaceFibre VHDL IP core for ESA

which is able to operate with an external SerDes device. It is also able to operate with

the Texas Instruments TLK2711-SP Wizard Link device which includes an 8B/10B

encoder and other logic as well as the SerDes.

The SpaceFibre IP core is being used in several ESA studies and will also be

implemented on a demonstration board. The demonstrator system will use currently

available radiation tolerant devices including the TLK2711-SP and the Actel RTAX

FPGA device.

2 INTRODUCTION
SpaceWire [1] provides point-to-point and networked payload communication

services for use on board spacecraft. It connects instruments to mass memory units

and processing systems and provides the connection from the mass memory to the

downlink telemetry system. SpaceWire uses bi-directional data links that operate up

to 200 Mbits/s. Higher speed operation is possible when matched impedance

connectors are used. SpaceWire is being used on many space missions across the

world. This success is due to many factors including standardisation, simplicity of

implementation, performance and flexibility.

The SpaceFibre standard is designed to work with existing high speed

serialiser/deserialiser devices. This paper examines the issues raised when using the

SpaceFibre protocol with the radiation tolerant Texas Instruments TLK2711 device

310

mailto:cmcclements(at)computing.dundee.ac.uk
mailto:sparkes@computing.dundee.ac.uk
mailto:martin.suess@esa.int

and addresses modifications required in the SpaceFibre specification to enable the use

of this device in a SpaceFibre implementation.

3 BACKGROUND
The University of Dundee has been working on a Gbit/s data link technology for

several years [3]. Trade-offs of ground data link technologies that could possibly be

used as the basis for a new spacecraft Gbit/s data link have been carried out. An initial

outline specification for SpaceFibre was written and various prototypes were

implemented and tested.

Several instruments, including synthetic aperture radar and multi-spectral imagers,

require higher data rates to the mass memory unit. Downlink telemetry systems are

being designed that can support Gbit/s data transfer leading to the need for similar

data rates to transfer the data from the mass memory unit. There is a growing

requirement for a data communication link with an order of magnitude higher

performance than SpaceWire. Standardisation, simplicity of implementation and

flexibility are also import characteristics that need to be provided for a new data link

technology to be successful. Furthermore, it must be possible to implement the high-

speed serial interface in radiation tolerant, space-qualified technologies.

4 SPACEFIBRE CODEC
An overview of the SpaceFibre CODEC architecture is provided in Figure 1.

There are nine conceptual layers to the SpaceFibre CODEC:

Virtual Channel and Flow Control: responsible for quality of service and flow

control over the SpaceFibre link.

Broadcast: responsible for broadcasting short messages across a SpaceFibre network

and for receiving and checking those messages.

Framing: responsible for framing SpaceWire packets data, broadcast messages and

FCTs to be sent over the SpaceFibre link. It is also responsible for scrambling

SpaceWire packet data for EMC mitigation purposes.

Retry: responsible for recovering from transient and persistent errors on the

SpaceFibre link, and for reporting errors and link failure. Detects missing and out of

sequence frames.

Lane Control: responsible for operating several SpaceFibre links in parallel to

provide a higher data throughput and to provide redundancy with graceful

degradation.

Link Control: responsible for initialising the link, detecting link errors and re-

initialising the link after an error has been detected.

Encoding/Decoding: responsible for encoding data into symbols for transmission and

decoding symbols into data for reception.

311

Serialisation: responsible for serialising and de-serialising SpaceFibre symbols so

that they may be transferred over the physical medium.

Physical: responsible for transferring the electrical signals across a fibre optic or

copper medium.

SerDes Interface

Link Control Interface

Retry Interface

Serial Interface

Encoding/Decoding Interface

Virtual Channel Layer

Retry Layer

Link Control Layer

Encoding Layer

Serialisation Layer

VC Interface

Frame Interface

Framing Layer

Physical Layer

Lane Control Interface

Lane Control Layer

Broadcast Interface

Broadcast Layer

Figure 1 SpaceFibre CODEC architecture overview

5 TLK2711 WIZARD LINK
Wizard link [4] is family of high-speed serial communications devices. One of these

is available in radiation tolerant form: the TLK2711-SP. This device contains both a

transmitter and receiver and offers data rates from 1.28 to 2.0 Gbits/s (1.6 to 2.5

Gbits/s data signalling rates). The transmitter takes in 16-bit wide serial data, encodes

it using 8B/10B encoding and serialises it for transmission over a VML differential

signal pair. The receiver takes the serial data, de-serialises it, and performs 8B/10B

decoding to provide the 16-bit parallel data. The TLK2711-SP is currently the device

of choice when the data rate requirements exceed 1Gbit/s and it is widely used in a

number of missions.

The TLK2711-SP device is attractive for use within a SpaceFibre CODEC as it

provides the essential high-speed serialisation and de-serialisation technology, which

is difficult to implement in a FPGA or ASIC unless radiation tolerant phase-locked

loops are available in those devices. A complete SpaceFibre interface could be

implemented using a radiation tolerant FPGA for the higher layers of the SpaceFibre

protocol and a TLK2711-SP device for the Serialisation layer and part of the

Encoding layer. The problem is that there are some characteristics of the TLK211-SP

which prevent it being used to implement the initial SpaceFibre specification. The

SpaceFibre specification needs to be modified to be able to use the TLK2711-SP and

serialiser/de-serialiser devices with similar characteristics.

312

The following sub-sections describe the TLK2711-SP operation in some detail. The

transmitter operation is described first, followed by that of the receiver.

5.1 TLK2711-SP TRANSMITTER

A block diagram of the TLK2711-SP transmitter is shown in Figure 2. Note that both

the transmitter and receiver are provided in a single device.

The parallel data input to the TLK2711-SP transmitter comprises two bytes of data

(TXD0-7 and TXD8-15) along with two control/data flags (TKLSB and TKMSB

respectively). The control/data flags are high when the corresponding data byte

contains a control code (K-code) and low when it contains data. The two data bytes

and the control/data flags are latched into an 18-bit register on the rising edge of the

TXCLK signal. Each data byte and its corresponding control/data flag is passed to an

8B/10B encoder, which converts them into a 10-bit code. The two 10-bit codes are

passed to a 2:1 selector which selects the least significant 10-bit code first (generated

from TXD0-7) followed by the most significant 10-bit code (generated from TXD8-

15). Each 10-bit code is serialised in turn by a parallel to serial converter with the

least significant bit being sent first. The serial data stream is passed to a differential,

voltage mode logic (VML) driver for sending over a 50 ohm medium.

The TXCLK signal must be a continuous clock with a frequency in the range 80 to

125 MHz. This is used to register the data bytes and control/data flag into the 18-bit

register, to drive the 10-bit code selector, and as the input to the clock synthesiser

which multiplies up TXCLK by 20 to provide the clock to drive the parallel to serial

converter. This means that the data signalling rate on the serial outputs is 20 x

TXCLK, whereas the data rate is 16 x TXCLK (due to the 8B/10B encoding). The

clock synthesiser also provides a reference clock for the clock recovery circuitry in

8
B

/1
0

B

En
co

d
er

8
B

/1
0

B

En
co

d
er1
8

-b
it

 R
eg

is
te

r

Clock
Synthesiser

TXP

MUX

MUX

PRBS
Generator

Parallel
to Serial

BIAS

Controls:
PLL, Bias, RX, TX

TXN

PRE

LOOPEN

PRBSEN

TXD0-7

TKLSB

TXD8-15

TXCLK

TESTEN

ENABLE

To RX

TKMSB

SY
N

C
LK

TX
D

AT
A

LO
O

P
EN

P
R

B
SE

N

Figure 2 TLK2711-SP Transmitter

313

the receiver.

Copper transmission media have higher losses at higher frequency. This is seen as a

slow rising and falling edges in the eye diagram at the receiver. To mitigate this

problem it is possible to apply pre-emphasis to the transmitted signal: increasing the

amplitude during the first part of the signal which compensates for the loss of this part

of the signal through the transmission medium. Two levels of pre-emphasis may be

selected using the PRE input. When low the pre-emphasis is 5%, when high it is 20%.

5.2 TLK2711-SP RECEIVER

A block diagram of the TLK2711-SP receiver is shown in Figure 3. Note that both the

transmitter and receiver are provided in a single device.

The received serial data is received on the RXP and RXN pins and converted to a

single ended signal inside the device. The TLK2711-SP device includes line

termination at the input to the receiver. The received signal is fed via a pair of

multiplexers to a serial to parallel convertor and to an interpolator and clock recovery

block. The interpolator and clock recovery block recovers the received clock, to

provide bit and word synchronisation.

Bit synchronisation is achieved using a phase locked-loop (PLL) that takes the

transmit bit clock from the transmitter (SYNCLK) as a reference and provides an

output frequency locked to the transitions on the received serial bit stream. To be able

to do this the frequency of the transmit bit clock and the receiver bit stream must be

almost the same i.e. within +/- 100 ppm. There must also be a sufficient number of bit

transitions in the received serial bit stream for the receiver PLL to lock on to. This is

guaranteed by the use of the 8B/10B encoding, one of the characteristics of which is

plenty of bit transitions in each 10-bit code.

314

Using the bit and word synchronisation signals from the interpolator and clock

recovery block, the serial data is converted to a correctly aligned pair of 10-bit codes.

The two 10-bit codes are decoded by a pair of 8B/10B decoders, each providing an 8-

bit data byte and a control/data flag RKMSB and RKLSB). These signals are

registered in an 18-bit register.

6 TLK2711 COMPATIBILITY WITH SPACEFIBRE
The TLK2711 Wizard Link has some anomalies and features which made it

functionally incompatible with the initial SpaceFibre specification. The inclusion of

support for the TLK2711 device requires some adjustment to the layering and

functionality of the SpaceFibre standard.

The functions of the device which can be used with the current SpaceFibre standard

include: 8B/10B encoding and decoding, serialiser and deserialiser, line driver and

receiver, clock recovery, and symbol synchronisation.

6.1 PROBLEMS WITH THE TLK2711-SP

The functions of the TLK2711 device which are not compatible with the initial

SpaceFibre specification are now discussed.

Bit-Stream Inversion: The TLK2711 device does not support bit-stream inversion

which is very useful to aid high-speed board layout. Bit-stream inversion should be

mandatory for new devices, but optional for legacy devices. While legacy devices,

like the TLK2711-SP, are being used bit inversion on the printed circuit board is not

permitted.

Bit-Synchronisation: Bit synchronisation and symbol synchronisation are performed

internally in the device but status information is not provided to indicate that bit

8
B

/1
0

B

D
ec

o
d

er
8

B
/1

0
B

D

ec
o

d
er1
8

-b
it

 R
eg

is
te

r

MUX

PRBS
Verifier

Serial to
Parallel

LO
O

P
EN

RXD0-7

RKLSB

RXD8-15

RKMSB
RXP

MUX

MUX

RXN

TX
D

A
TA

MUX

P
R

B
SE

N

Signal Detect
(LOS)

Interpolator &
Clock Recovery

SY
N

C
LK

Figure 3 TLK2711-SP Receiver

315

synchronisation has taken place. This impacts the receive synchronisation state

machine, which used the bit-synchronisation signal.

Parallel Loopback: The device does not have the capability to support parallel

loopback operation. This is not a serious limitation as the TLK2711-SP does provide

the more important serial loopback capability. Parallel loopback needs to be made

optional in the SpaceFibre specification.

Symbol Synchronisation: The TLK2711-SP does not support symbol

synchronisation on negative disparity commas. This leads to the possibility of the link

never being synchronised depending on the data being sent over the link. In

SpaceFibre data and control words each contain four symbols with a data word

decoding to a 32-bit data value. A synchronising control word starts with a comma in

the least significant symbol position which is sent first. When this is detected in the

receiver both symbol and word synchronisation can be performed. To support symbol

and word synchronisation in the TLK2711-SP it is necessary to send two

synchronisation control words, one after the other, and to ensure that the symbols

following the comma in the word have even disparity. If the initial running disparity

is negative, the first synchronisation control word will contain a positive disparity

comma, and synchronisation will be performed successfully. If the initial running

disparity is positive, the first synchronisation control word will contain a negative

disparity comma, and synchronisation will not occur on that comma, but the running

disparity will now be negative. The following three symbols all contain even disparity

so the running disparity will be negative when the subsequent comma has to be sent.

This comma with therefore have positive disparity and synchronisation will occur on

this comma. The solution is to ensure that the control words being used for link

initialisation start with a comma and are followed by three symbols with even

disparity, then symbol and word synchronisation will be ensured during link

initialisation. This solves the problem with synchronisation, but there is another

problem when bit inversion is implemented. It is possible that the symbols forming

the link initialisation are inverted when they are received. It is therefore necessary for

the symbols forming the initialisation control word to have bit-wise inverse symbols

that are both valid and also have even disparity. The initialisation control words for

SpaceFibre have now been carefully selected to exhibit these properties.

Interface: The TLK2711-SP has a 16-bit interface (16 data bits + 2 D/K bits). The

32-bit data and control words from SpaceFibre have to be multiplexed over this

interface and recovered with correct alignment in the receiver. The SpaceFibre

specification needs to define the interface to the 8B/10B encoders in such a way as to

permit different interfaces: 8+1, 16+2, or 32+4.

Word Synchronisation: The TLK2711-SP synchronises commas in the least

significant byte position of a 16-bit word. The SpaceFibre specification needs to

specify that commas are in the least significant symbol position of the control words.

A means of aligning two 16-bit words into a 32-bit data or control word is required in

the receiver.

Error Indication: The TLK2711-SP uses an invalid symbol to indicate the

occurrence of errors in the receiver: K0.0 indicates the reception of an invalid symbol

or the detection of a disparity error. This error indication must be decoded for use in

the SpaceFibre receive synchronisation state machine.

316

Line Drivers and Receivers: The TLK2711-SP uses Voltage Mode Logic (VML)

rather than Current Mode Logic (CML). The fibre optic components for SpaceFibre

have been designed with CML in mind. CML provides better conducted emissions

than VML. It is possible to translate from CML to VML using resistors so this is not a

significant issue.

6.2 REVISED SPACEFIBRE ARCHITECTURE

It is important that SpaceFibre defines an interface to the lower layers which is

compatible with different serialiser/de-serialiser devices. It may then be necessary to

adapt a particular device to this common interface. The resulting architecture is

illustrated in Figure 4.

There are two interfaces identified in this revised architecture which are relevant to

serialiser/de-serialiser devices: the Encoding/Decoding interface and the SerDes

Interface.

The Encoding/Decoding interface provides an interface which transfers control and

data words. The Encoding layer is then responsible for the 8B/10B encoding of these

words into groups of four symbols, which are then passed to the SerDes interface for

serialisation and transmission. The Encoding layer receives unsynchronised parallel

data over the SerDes interface and performs symbol synchronisation, 8B/10B

decoding, and word synchronisation. The resulting stream of data and control words

are passed out of the Encoding/Decoding interface. The Encoding layer also includes

the Receive Synchronisation State Machine and an Error Decoder which translates

error indications from the 8B/10B decoder into a form suitable for the Receive

Synchronisation State Machine to use.

317

INIT_1
INIT_2

STANDBY
LOS

8B/10B
ENCODER

SERIALISER

DRIVER RECEIVER

DE-SERIALISER

8B/10B
DECODER

SYMBOL
SYNC

RECEIVE
ELASTIC
BUFFER

CLOCK
RECOVERY

MUX

MUX

LINK LAYER
ORDERED SET
EXTRACTION

LINK
INITIALISATION
AND STANDBY
CONTROLLER

RECEIVE
SYNC

STATE MCH.

LINK
SYNC

SerDes Interface

Link Interface

MUX

IDLE

MUX

SKIP
SKIP

INSERTION
COUNTER

Symbol Synchronisation

Serialisation/
De-Serialisation

Link Initialisation and
Standby Management

Data Rate Adjustment

8B/10B Encode/Decode
8B/10B

ENCODER
8B/10B

DECODER

MUX

Line Driver/Receiver

Serial Interface

10, 20, 40

10, 20, 40

8+1, 16+2 , 32+4

32+4
32+4

32+4

32+4

32+4 32+4

Word Synchronisation

Serial Loop-Back

10, 20, 40

8+1, 16+2, 32+4

WORD SYNC

Encoding/Decoding Interface

MUX

IDLE

ERROR
DECODER

Link Control Layer

Encoding Layer

Serialisation Layer

MUX Parallel Loopback

INVERTER

10, 20, 40

LoS

Inv Rx

Inv Rx

LoS

Rx Inversion

LINK ACTIVE

Figure 4 SpaceFibre CODEC transceiver supporting TLK2711

The SerDes layer contains the serialiser, line driver, line receiver, de-serialiser, bit

clock recovery, and an optional bit-stream inverter.

The functions contained in the TLK2711-SP are shown in pink in Figure 4 and those

that are required to adapt this device to the common Encoding/Decoding interface are

shown in green.

7 CONCLUSION
SpaceFibre is designed to meet the high data-rate, onboard communication needs of

future spacecraft. The requirement for radiation tolerant and space-qualified approach,

obliges a pragmatic approach to the standard specification which permits the use of

existing space-qualified components, without constraining the functionality and

performance of SpaceFibre. A key component for SpaceFibre in the short term is the

TLK2711-SP device which provides 8B/10B encoding/decoding and serialisation/de-

serialisation functions in a radiation tolerant, space-qualified device. The SpaceFibre

specification has been revised to permit the use of this and other SerDes devices with

similar limitations. The SpaceFibre specification has been layered to permit ready

adoption of this and future SerDes devices.

318

8 REFERENCES
[1] S.M. Parkes. C. McClements and M. Dunstan, “SpaceFibre Outline

Specification”, University of Dundee, 31st Oct 2007.

[2] ECSS Standard ECSS-E-50-12A, “SpaceWire, Links, Nodes, Routers and

Networks”, Issue 1, European Cooperation for Space Data Standardization,

February 2003.

[3] S.M. Parkes. C. McClements, M. Dunstan and M. Suess, “SpaceFibre: Gbit/s

Links For Use On board Spacecraft”, International Astronautical Congress,

Daejeon, Korea, 2009, paper IAC-09-B2.5.8.

[4] Texas Instruments, TLK2711-SP Data Sheet: 1.6-Gbps to 2.5-Gbps Class V

Transceiver, Reference Number SGLS307D, July 2006, Revised July 2009.

319

Missions and Applications 2

320

BACKPLANE DESIGN CONSIDERATIONS FOR

HIGH SPEED SPACEWIRE NETWORKS

Session: Missions and Applications

Long Paper

Shahana Aziz Pagen

MEI Tech Inc., NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

E-mail: Shahana.A.Pagen@nasa.gov

ABSTRACT

SpaceWire is becoming a preferred protocol for board to board communication over a
backplane in addition to its existing use over cabled interfaces, replacing other
protocols due to its simplicity and readily available flight quality physical layer
devices, IP cores and test equipment. However, without specific guidelines for
implementing SpaceWire over a backplane, designers are left to make trade decisions
regarding connector selection, layout design rules and test accessibility issues. This
paper will discuss NASA’s Goddard Space Flight Center’s implementation of high
speed SpaceWire over backplane on James Webb Space Telescope and other
missions.

1 INTRODUCTION

SpaceWire has been used for several years for communication between spacecraft
sub-systems over a shielded twisted pair cable interface. The SpaceWire interface is
well suited for long length cables, while maintaining the signal quality required for
high speed propagation. The SpaceWire standard has well defined specifications for
the necessary design considerations for communicating over cabled interfaces.

However, SpaceWire can also be used within a sub-system for communicating
between cards connected by a printed circuit board (PCB) interface (such as a
backplane). SpaceWire has several advantages over other backplane based
communication protocols like CompactPCI; with its relatively simple software
interface, fault tolerance support, high data throughput and ease of expansion using
nodes and routers. However, unlike CompactPCI, which has a well defined backplane
standard; there are no rules or recommendations established in the SpaceWire
standard that addresses the unique challenges of designing this interface for a
backplane. While several cable based design considerations still apply, there are other
design considerations that are unique to this application but not addressed in the
SpaceWire standard. This can leave designers unsure of how to implement the
protocol to achieve desired performance as well as meet adequate design margins.

Test and verification access is another area where currently available test equipment
and test methodologies may not be adequate when the interface operates across a
backplane. While most available test equipment has built in interfaces to the
SpaceWire defined connector; it is up to the design engineer to consider accessibility

321

issues in the backplane environment and plan accordingly. If this is not considered
early enough in the design phase, it may not be possible to accommodate later in the
project’s development.

2 OVERVIEW

This paper takes a step by step look at the various design trades that need to be made
when designing SpaceWire interface over a backplane. The topics covered by this
paper include the following:

• Connector selection: issues to consider include choosing a connector that
is suited for high reliability applications and has the appropriate
characteristics for high speed signal propagation

• Impedance control: specifying a stackup and routing constraints to meet
differential impedance requirements

• Signal integrity and crosstalk: impacts to the design, methods of mitigating
problems, analysis tool options

• Power integrity: methods of mitigating power distribution problems,
analyzing return current flow, analysis tool options

• Test and accessibility: ways of providing probing access, verifying
margins, interfacing to available validation and test equipment

3 DESIGN CONSIDERATIONS

In a backplane environment, multiple cards plug into the common backplane, high
speed signaling passes between cards through PCB connectors across the peripheral
cards and backplane PCBs. To ensure functionality and margins, several things need
to be considered as part of both the peripheral cards and backplane PCB designs.

3.1 CONNECTOR SELECTION

Connector selection is an integral part of doing design for any high speed interface,
and SpaceWire is no exception. The SpaceWire standard specifies 9-pin Micro-D
(MDM) connectors, cabling and shielding, however, none of these apply well to a
backplane interface. Peripheral cards and backplanes typically use PCB mounted
connectors, which, if not selected correctly, can result in problems ranging from
unreliable operation to complete failure at the required speeds.

Rugged connectors traditionally used for backplane interface design in space flight
often have high inductance/capacitance contacts which do not adequately pass high
frequency signals. Additionally, the connector contacts may not be properly matched
to the trace impedance, causing an impedance discontinuity which may also degrade
performance. Not all vendors provide high speed propagation data for their
connectors. However more and more vendors are providing this service, most often
vendors whose products are commonly used for high speed applications and not for
lower speed space flight applications. For the JWST and ICESAT-2 missions the
backplane connectors chosen for their high speed SpaceWire applications have
excellent high speed performance characteristics up to 1GHz [1]. This data was
obtained from the vendor (Hypertronics Corporation) who designed these connectors
for CompactPCI – another high speed application. Hypertronics makes TDR and eye
pattern data readily available along with connector models for customers to use to

322

validate their designs by simulation. Based on their modelling, they are also able to
recommend an optimal pinout for arranging the differential pairs that minimizes
interfering noise. Figure 1 shows the recommended pinout and routing pattern for
alternating the “+” and “-“ of each differential pair within a column, separated by
ground and staggered from the location of the “+” and “-“ pair in the adjacent column
of the connector.

+

-

G

G

G

A B C D E F

Single Pair

Routing

Channel

Route a channel on one

layer, but skip this

channel on adjacent

layer

Route next channel on

adjacent layer, but skip

this channel on first

layer

(-) of Differential Pair

(+) of Differential Pair

Ground

-

- - -

--

- -

- -

-- -

- -

- - -

G

+

G G

G G

G G

G G

G G

G G

G G

G G

+

+ + +

+

+ +

+ +

+ +

+++

+

++

G

G

G

G

G

G

G

G

G

G

G

Figure 1: Connector Arrangement of a typical high density BP connector

This figure also demonstrates the difficulty with routing differential signals through
the connector’s pin grid. With densely spaced pins within a single connector and often
multiple connectors lining up along the backplane, only a single routing channel may
be routed between the pins for a single differential pair.

Connector vendors may also provide guidance on the size of the pad and antipad of
the connector to reduce noise, EMI, jitter, improve manufacturability and reduce
reflections that can in turn reduce data rates [2].

Designers can use various modeling tools to verify vendor data and ensure
performance meets their custom requirements before locking down a design. This
type of Multi-Board simulation can provide both single ended and differential
simulation waveforms, along with eye pattern data [3].

Figure 2: Differences in Signal Quality Depending on Connector Type

While all connectors make electrical connections, not all electrical connections are
well suited for high speed propagation. A connector that might be qualified for flight
and perfectly suitable for low edge rate signaling, may not function at the required

323

speeds for SpaceWire. Figure 2 shows simulated waveforms of a signal propagating
between peripheral cards through a backplane using connectors with different R, L, C
parasitic values. The contact R, L, C affects the path impedance and delay of the
signal and can greatly change signal behaviour.

3.2 IMPEDANCE CONTROL

The electrical signaling requirements for SpaceWire over a backplane are the same as
over a cabled interface, thus the 100-ohm differential impedance rule still applies.
Engineers must take care to specify a set of routing rules and a PCB stackup that will
meet these criteria over the entire length of the trace pair.

Figure 3 shows a typical impedance controlled stackup [3]. However, it is not enough
to specify rules that meet the theoretical impedance numbers. The stackup and routing
rules must also comply with a PCB vendor’s manufacturing constraints. Vendors have
material and process variations that mean that a set of rules that work for one vendor
may not work for another and meet the same tolerances. Even with the same vendor
not all materials achieve the same results. Surface finishes and the coatings used on
the surface layers can change the impedance of traces routed on the outer layers. All
of this must be considered upfront when choosing a vendor.

Figure 3: Example Impedance Controlled Stackup

Another trade is the differential trace routing topology. Two structures are commonly
used for differential routing - edge coupled and broadside. With edge coupled, the
differential pair is routed on the same layer side by side. With broadside the pair is
routed on adjacent layers over-under. Figure 4 shows the difference between these
two topologies. Edge coupled often presents a better solution for tighter impedance
control. On the other hand, for broadside differential process and materials variations
might have a larger impact on impedance variations. Vendors may not guarantee the
tolerance for each broadside routing layer-pair [4].

Edge - Coupled Broadside

324

Figure 4: Edge-Coupled vs. Broadside Differential Routing

While edge-coupled may be superior for impedance control, it can be difficult to have
enough space between high density connector land patterns to route a differential pair
with the desired width and spacing for edge coupled impedance control as shown
previously in Figure 1. This creates the need for tightly coupled differential routing,
which comes with its own difficulties. Broadside routing can provide additional
routing density, however depending on the di-electric thickness, may or may not
create tightly coupled differential traces as well. Trades need to be made to select the
appropriate structure that does not impose impossible constraints on either the design
or the manufacturing process. If these things are not determined upfront, a design may
not be manufacturable or may not be able to meet the 100 ohm differential impedance
requirements.

3.3 SIGNAL INTEGRITY AND CROSSTALK CONCERNS

Signal Integrity and crosstalk concerns are not unique to SpaceWire. Any high speed
PCB design has to pay special attention to ensuring proper signal integrity and
minimizing crosstalk. When SpaceWire signals are not isolated by cable shielding and
are routed on a backplane, they are far more susceptible to noise. This problem is
exacerbated by the fact that LVDS SpaceWire signals may run on the same layer or
adjacent to densely routed noisier single ended traces, such as LVTTL.

Differential traces need to be routed in a way to minimize the chance of coupling from
an adjacent differential pair or an adjacent single ended trace, while at the same time
maintaining the required coupling to meet differential impedance. Coupling can occur
on the backplane or on the peripheral cards which source the signals or the
destinations where they end. Traces run on adjacent layers, because of thin dielectric
materials the separation between two signal layers might be less than a typical trace
separation, causing more crosstalk than from signals routed on the same layer.
Additionally, unlike in a twisted pair cable, aggressor nets can, and usually, couple
asymmetrically, as opposed to common mode coupling, to each trace in the pair
causing timing and jitter problems. It is important to ensure possible aggressor nets
are sufficiently distant from the pair that coupling effects are insignificant.

Signal integrity can also be affected by the connector selection as mentioned earlier,
the difference in trace length, and the driver or receiver devices used for the link. A
practical approach to trace matching should be taken by considering the skew budget
instead of trying to obtain an exact match in trace length. Adding serpentine delay
lines in order to match a pair can cause more degradation of the circuit than having a
practical length difference that still meets the skew budget of the fastest rise and fall
times at the receiver [4].

Signal integrity analysis tools provide the best ways to trade these issues and quantify
the noise risk. Eye pattern analysis can give a designer early indication of problems
that might occur due to impedance mismatches or the particular type of connector and
driver-receiver devices. Crosstalk can also be verified using simulation tools in a
multi-board simulation environment that provides worst case numbers for coupling
accumulated over the entire route. This eliminates the risk of bit failures that may only
happen intermittently under certain switching situations. Corner case simulations can
be used to verify margins. Figure 5 and Figure 6 show examples of simulation tool

325

results that designers can use to verify their designs before fabrication, avoiding costly
respins and compromising mission success [3].

FASTEYE DIAGRAM VIEWER
Design file:

Date: Monday Aug. 1, 2011 Time: 23:07:40

-500.0

0.00

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

-5.000 0.00 5.000 10.000 15.000 20.000 25.000 30.000 35.000
Time (ns)

V
o
l
t
ag
e -
m
V-

V [U53_B02.42_(at_pin)(3)]
FastEye results

Spectrum Analyzer
Design file: SMAP_MB2.HYP Designer: perry

HyperLynx v8.1.1
5mA

0mA

-5mA
0 ns 120 ns

0 500.000 MHz 1.000 GHz

1mA

100uA

10uA

Date: Monday Aug. 1,2011 Time: 23:08:33

Net name: APUV_FB-SB_CLK_B02

Figure 5: Example Signal Integrity/EMC Simulation Results

Type E-Net Receiver Meas. Source Contrib
crosstalk bp/1/net/AD21 bic/1/U1-100 354.1 AD20/bic/1/U1-104 186.9
crosstalk bp/1/net/AD21 hk/1/U50-100 257.4 AD20/hk/1/U50-104 165.9
crosstalk bp/1/net/AD23 bic/1/U1-94 240.3 AD21/bic/1/U1-100 161.3
crosstalk bp/1/net/AD23 sbc/1/U1-G5 221.9 AD21/bic/1/U1-100 44.3
crosstalk bp/1/net/AD21 sbc/1/U1-J7 217.6 AD20/bic/1/U1-104 167.5
crosstalk bp/1/net/AD20 bic/1/U1-104 192.3 AD21/bic/1/U1-100 192.3
crosstalk bp/1/net/AD23 fpap1/1/U1-94 182.8 AD21/hk/1/U50-100 35.7
crosstalk bp/1/net/C_BE3_N sbc/1/U1-J8 180.3 AD23/sbc/1/U1-G5 180.3
crosstalk bp/1/net/AD20 hk/1/U50-104 169.5 AD21/hk/1/U50-100 169.5
crosstalk bp/1/net/AD20 sbc/1/U1-F1 160.4 AD21/sbc/1/U1-J7 160.4
crosstalk bp/1/net/C_BE3_N fpap1/1/U1-86 150.3 AD23/fpap1/1/U1-94 150.3
crosstalk bp/1/net/AD21 fpap1/1/U1-100 150.2 AD20/fpap1/1/U1-104 112.3
crosstalk bp/1/net/AD21 fpap3/1/U1-100 148.5 AD20/bic/1/U1-104 99.2
crosstalk bp/1/net/AD23 hk/1/U50-94 145.9 AD21/hk/1/U50-100 72.5

Figure 6: Example Crosstalk Simulation Results

3.4 POWER AND GROUND NOISE

When routing SpaceWire on a PCB, care must be taken to ensure proper routing of
the ground plane as well as minimizing noise on the power delivery network (PDN).
In a backplane environment there is no shielded cable that runs the differential pairs
across large distances, so the shielding must be handled via ground routing on the
PCB itself. Care needs to be taken to design the power distribution network where
noise transients are adequately minimized. This includes having adequate decoupling
capacitors but more so inter-plane capacitance that is effective at higher frequencies
where decoupling capacitors are not effective. Simulations can again be used to verify
PDN noise and margins.

Another important element is the location of power and return planes and the impact
of return currents on inducing noise on other signals or planes. Differential traces are
best routed adjacent to a ground reference plane and not crossing planes through vias,
which can have unintended results with return currents and induced reverse crosstalk.
This is true for the single ended signals that may share the same PCB. If care is not
taken on providing for a clear return path, then unaccounted for reverse crosstalk may
induce noise onto the differential signals reducing noise margins.

4 TEST AND ACCESSIBILITY

When designing backplane distribution for SpaceWire, test and accessibility
considerations must be made during the design phase as access cannot be built into

326

the system once the PCB’s are fabricated. Again, off the shelf SpaceWire test
equipment is designed to interface to the standard 9 pin MDM connectors, thus
without necessary access points, – test and verification when peripheral cards are
installed into the backplane may prove to be impossible.

4.1 ON-BOARD PROBE ACCESS

Eye pattern measurements are a common way of verifying performance and margins.
These measurements are made by attaching a differential probe near the receiver and
apply to both cable and backplane based systems. If access is not designed into the
PCB, optimal measurements cannot be made and the results will be inaccurate.
Designers should consider placing test terminals close to the receiver in a 3 pin
arrangement that complies with the dimensions of the particular model of differential
probe with ground pin that will be used during testing. This makes it possible to
properly connect a measurement probe without degrading the measurement. However,
care must be taken that the type and placement of the test terminal will not degrade
the signal itself. Modeling can again be done to ensure that the location of the
terminal or the via used does not adversely affect the signal.

Another potential problem is being able to access the test terminal itself. If the card is
installed into a backplane next to other cards, that that test terminal may not be
accessible. During testing it may not be feasible to demate the card and test it on a
bench top environment where probe access is possible or recreation of the problem
may require the existence of the other cards in the system. Extender cards are an
excellent way to provide access to a single card when installed in a system. However,
extender card designs have to take signal and power integrity issues into consideration
and may need to be custom designed for this purpose. Because adding an extender
changes the trace length, any differences in propagation delay and skew must be
accounted for post measurement. Multi-board simulations can again be used to
validate the extender card design, and identify differences between the extender and
non-extender signaling by correlating the simulated vs. actual measurement results.

4.2 INTERFACING TO TEST EQUIPMENT AND ANALYZERS

Test requirements often dictate the need to use link analyzers or other test equipment
for functional and margin testing of the SpaceWire interface. Such equipment is likely
to be available only with the standard 9 pin MDM interface. Duplicating test features
with custom ground support equipment can cause an impact to schedule or be cost
prohibitive. Thus ensuring that existing ground support equipment (GSE) can be used
without modification is a goal designers must achieve.

One way to accomplish this is to include the footprint of a PCB mounted MDM on the
peripheral card itself. However this requires additional space and may degrade the
SpaceWire signals due to the location of additional stubs and vias. In this case an
extender card and/or a test backplane with breakout connectors are likely to provide
the best solution. In either of these conditions the unit under test is installed into the
extender or test backplane. The extender or test backplane includes a breakout
connector to a PCB mounted MDM connector to which test equipment can be readily
connected. This offers a way to test the board in a similar arrangement to the standard
cable interface without incurring any additional development cost. Figure 7 shows an

327

arrangement where the peripheral card backplane connector is installed on one side of
a test backplane with breakout connectors on the back.

Figure 7: Peripheral Card Test Access

Designers need to accommodate the proper mechanical mounting of the PCB mounted
MDM. A ground connection to the metal shell of the connector should be maintained
such that the SpaceWire cable used for interfacing to the test equipment has the same
grounding path as a panel mounted MDM. Without taking this into consideration it is
possible to damage of degrade the flight and/or test hardware. Many PCB mounted
MDM connectors do not include a metal body, so care must be taken when selecting a
connector to provide proper grounding.

4.3 CONCLUSION

This paper has taken a brief look at some of the various complexities regarding a
backplane distribution system for SpaceWire. While SpaceWire provides an excellent
solution for board to board interfaces within a backplane distribution system, failure
to consider the issues unique to this environment risk degradation of system
performance, and even mission failure.

5 REFERENCES

1. Frank Morana, Hypertronics Corporation, “Single Ended and Differential TDR
Characterization Data”, August 2010.

2. Tyco Electronics, “AMP Z-Pack HS3 Connector Routing”, Report #20GC004-1,
November 15, 2000.

3. Hyperlynx SI, Hyperlynx PI and Interconnectix Synthesis, Signal and Power
Integrity Tools, Mentor Graphics Inc.

4. Lee W. Ritchey, “A Treatment of Differential Signaling and its Design
Requirements”, Sept 9, 2008.

328

 NEXTAR: SMALL SATELLITE BUS BASED ON SPACEWIRE
DETERMINISTIC IMPLEMENTATION

Session: SpaceWire Missions and Applications

Short Paper

Hiroki Hihara

NEC TOSHIBA Space Systems, Ltd., 10, Nisshin-cho 1-chome, Fuchu, Tokyo, Japan

Toshiaki Ogawa and Kenji Kitade

NEC Corporation, 10, Nisshin-cho 1-chome, Fuchu, Tokyo, 183-8551, Japan

E-mail: h-hihara@bc.jp.nec.com, t-ogawa@dt.jp.nec.com, k-kitade@cq,jp.nec.com

ABSTRACT
The NEXTAR (NEC Next-generation Star) standard platform provides a payload
application development framework based on deterministic communication protocol
through SpaceWire and Remote Memory Access Protocol (RMAP), and system
integration can be completed in a short time without reducing reliability. The
protocol layer for time slot control is separated from re-transmission and redundancy
control protocol layer in order to implement determinism in the communication
protocol for the NEXTAR standard platform, because RMAP packet format, which
has inherent transaction capability, can be fully exploited for diagnosis and assured
transmission leaving the time slot control capability within SpaceWire protocol layer.
This scheme is formalised in SpaceWire-D draft specification.

1 DETERMINISM REQUIRED FOR SATELLITE BUS SYSTEM
Small satellites are expected to be used widely for remote sensing purposes. Since the
earth observing satellite are required to be put on orbit promptly for commercial use
as well as scientific purposes, assembly and integration duration are desired to be as
short as possible. NEXTAR standard platform responds to this need by providing
determinism without any modification on SpaceWire and RMAP protocol.

SpaceWire is often used for payload subsystem because of its high-speed transmission
capability. We also use SpaceWire for the bus system in order to unify testing
environment for satellite bus and payload, and additional characteristics are required
on SpaceWire. The major requirement is determinism, and it is going to be
incorporated in the additional specification of SpaceWire discussed as SpaceWire-D
in the SpaceWire working group. ‘D’ stands for determinism.

One reason of the usefulness of deterministic implementation of SpaceWire is
effectiveness for reducing test cases during the validation of communication among
onboard equipments. Deterministic communication protocol is also useful for
employing as-built equipment, because those equipments often accommodate

329

deterministic communication characteristics for the transmission of command and
telemetry based on legacy protocol like MIL-STD-1553B, UART, or CAN.

2 DETERMINISM IMPLEMENTATION EXPLOITING RMAP PROTOCOL
Existing SpaceWire and RMAP protocol specification is to be used without any
modification, in order to keep compatibility. The specifications we use are the
original SpaceWire protocol, and two upper layer protocols, which are Protocol
Identification and RMAP. The implementation scheme has been established through
scientific satellite projects as ASTRO-H [1].

2.1 UTILIZATION OF RMAP PACKET FORMAT

One interesting thing about RMAP is that it has transaction control capability within
itself. RMAP read and write reply packets have several characteristics for
determinism. They have Cyclic Redundancy Check (CRC) code and Status Field in
RMAP layer. Then also have End of Packet (EOP) and Error End of Packet (EEP)
code in SpaceWire layer. Fault detection function can be implemented without
modifying SpaceWire and RMAP protocol.

2.2 UTILIZATION OF RMAP TRANSACTION SEQUENCE

Write action and Read action are specified in RMAP, as well as transaction identifiers
in RMAP read reply and write reply packets. Therefore assured transmission can be
achieved without any modification on RMAP specification.

3 PROTOCOL LAYER FOR SCHEDULING AND ASSURED TRANSMISSION
The conventional protocol used in Japanese scientific satellites data handling system
has the same capability as RMAP. Physical layer and lower portion of data-link layer
are dedicated, whereas we could replace the layers with SpaceWire and RMAP. It is
possible to maintain the scalability as wide variation on configuration and size using
SpaceWire and RMAP, which is required for those satellites, and NEXTAR standard
platform inherits the capability.

Figure 1 Protocol Stack Layer for Determinism

User Application

SpaceWire
(ECSS-E-ST-50-12C)

Segmentation and Blocking

Retry / Redundancy

Protocol ID / RMAP
(ECSS-E-ST-50-51C/52C)

Scheduling

Packet Transfer
Protocol Plug and PlayTelemetry/Command Design Criteria

Annex for each project

SpaceWire Network Design Criteria

330

In order to add deterministic characteristics, scheduling protocol layer is added
between SpaceWire and RMAP layer [2], [3]. SpaceWire Time-Code is utilised for
the definition of time slots in this protocol layer. Latency condition is specified in the
layer in order to carry on successive transactions in one time slot. Assured
transmission is realized by adding retry and redundancy capability on RMAP protocol
layer. The inherent RMAP characteristics described in section two is exploited in
order to implement the assured transmission capability without any modification on
RMAP. The additional protocol stacks are shown in figure 1. The specification for
the protocol is provided as NEXTAR’s SpaceWire Network Design Criteria.

Segmentation and blocking capability for large amount of data transmission are
provided between User Application layer and Retry / Redundancy protocol layer. The
specification for the protocol is established in JAXA as Space Monitor & Control
Protocol (SMCP) [4].

4 COMMUNICATION SERVICES
Telemetry and command handling functions are realised through communication
services, which utilize transaction capability inherent in RMAP packet formats.

Distribution service comprises three communication services. Command distribution
service performs retransmission of an RMAP write command packet in case of
detecting error status in an RMAP write reply packet. Data distribution service
doesn’t perform retransmission even if an error status was found in an RMAP write
reply packet. Time distribution service doesn’t use an RMAP write reply packet, and
no retransmission occurs. The time value sent through the time distribution service is
different from SpaceWire Time-Code, and the usage of the value is dependent on the
system requirement.

Collection service comprises five communication services. A user request code can
be transmitted through user request service. An RMAP initiator reads a user request
code through the user request service using an RMAP read command. The initiator
sends request acknowledge for the user request with an RMAP write command packet,
and can perform retransmission in case of detecting an error in an RMAP write reply
packet. An initiator collects a variable length Space Packet or a fixed length raw data
packet through master triggered collection service using an RMAP read command.
No retransmission occurs through the master triggered collection service. An initiator
collects essential house keeping (HK) telemetries through essential HK collection
service. A fixed length telemetry packet is collected through the service, and the
telemetry packet is to be collected even in the system safe hold mode. On-demand
data collection is carried on through guaranteed user triggered collection service or
non-guaranteed user triggered collection service. An initiator performs re-
transmission through the guaranteed user triggered collection services, and sends
acknowledge when it receives telemetry data successfully. The target must keep the
same telemetry data on its buffer memory until it receives acknowledge from the
initiator. No retransmission nor acknowledge transmission occurs through non-
guaranteed user triggered collection.

Each communication service is associated with pre-determined interface buffer
memory address, so as to distinguish each communication service with the associated
memory address. The memory address map is called as standard RMAP memory

331

address, and the memory address map is maintained for the plug and play capability.
The memory map is shown in figure 2.

Figure 2 The standard RMAP memory address on NEXTAR bus.

5 CONCLUSION
Scheduling and assured transmission capability for determinism are realised without
any modification on SpaceWire and RMAP specification. The NEXTAR satellite bus
employs the implementation scheme and to be planned next year [5].

6 REFERENCES
1. Tadayuki Takahashi, et al., ”The ASTRO-H Mission”, SPIE, 7732, 77320Z, 30

July 2010.

2. Takahiro Yamada, and Tadayuki Takahashi, “Standard Onboard Data Handling
Architecture Based on SpaceWire”, International SpaceWire Conference 2008, 4-
6 November 2008, p.253-256.

3. Takahiro Yamada, “Proposal for Defining Standard Services Over SpaceWire
- Revision A -”, The sixteenth SpaceWire working group meeting ESTEC,
Netherlands, 22 March 2011.

4. Takahiro Yamada, “Spacecraft Monitor & Control Protocol (SMCP)”, GSTOS
200, 15 September 2009.

5. Toshiaki Ogawa, Yusuke Kobayashi, Shoichiro Mihara, Koichi Ijichi, and
Hideyuki Hamada “Outline and Progress of ASNARO (Advanced Satellite with
New System Architecture for Observation) Satellite System”, 8th IAA
Symposium on Small Satellites for Earth Observation, Berlin, Germany, 04 – 08
April 2011.

Undefined Area is available for
Configuration Information

(ex) QoS lookup table , etc.

[Internal Register usage example]
- GPO/GPI register for functional check
- LED control for GSE
- SpaceWir e Logical Address
- IP revision
- Buffer memory map informat ion
- etc.

Dependent area
for specific
satellites

CSR Reset

Undefined

CS0

CS1

CS2

CS3

4000_ 0000

8000_ 0000

C000 _0000

F000_0000
F000_000C

Undefined

F000_0010

FFF0_0000

FFFF_FFFF

PIM Internal
Memory Buffer

User’s PIM
Window

TI (Time Ind icator)

PIM Register
and Free Area

3800
37FC

3004
3000

1D00

1900
1500

100C

1004
1000

0000

DPRAM
(Data

Send
Buffer)

Send Request Te lemetry

Size

User Request Code

Command Distribution
Area

On-demand Telemetry
(not Assured)

Periodic Telemetry

System HK Telemetry

Data Distribution Area

3 FFC

DPRAM
(Data

receive
Buffer)

FF00_0000

FF80_0000

FF80_8000

0FF0
User Request ACK

Send Request ACK
0FF4

0 FFC
User Request Flag

0FFE
Send Request Flag

Send Request Te lemetry
Format

1008

SI Polling

1E00

On-demand Telemetry
(Assured)

Undefined (User’s Area)
0FF8

Undefined (User’s Area)

1100
Undefined (User’s Area)

1D02

Undefined (User’s Area)

Undefined (User’s Area)

2200

Undefined (User’s Area)
3100

F001_0000

Internal
Registers

F001_0050

Undefined (User’s Area)

8000

ON_Command_Register

Undefined

0004
0008

0014

0000

OFF _Command_Register

ON/OFF STS_Register
000 C
0010

GPI Register

0018
GPO Register

0020
Undefined

UECC_ERR Address
Register

0022
UECC_ERR Address

Register

UECC_ERR Address
Register

0022

UECC_ERR Count
Register

0024

UECC_ERR Clear

Register

0028
Undefined

0FF0

PIM

Registers

332

A DETERMINISTIC SPACEWIRE NETWORK
ONBOARD THE ASTRO-H SPACE X-RAY OBSERVATORY

Session: Missions and Applications

Short Paper

Takayuki Yuasa, Tadayuki Takahashi, Masanobu Ozaki, Motohide Kokubun

Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuou-ku,
Sagamihara, Kanagawa 252-5210, Japan

Masaharu Nomachi

Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
Hiroki Hihara

NEC TOSHIBA Space Systems, Ltd., 1-10 Nisshin, Fuchu, Tokyo 183-8551, Japan
Kazuyo Mizushima, Takashi Kominato, Kuniyuki Omagari

NEC Corporation, 1-10 Nisshin, Fuchu, Tokyo, 183-8551, Japan
Kazunori Masukawa

Mitsubishi Heavy Industries, Ltd., Nagoya Guidance & Propulsion systems works,
1200 Higashi-Tanaka, Komaki, Aichi 485-8561, Japan

E-mail: yuasa@astro.isas.jaxa.jp, takahasi@astro.isas.jaxa.jp,
ozaki@astro.isas.jaxa.jp, kokubun@astro.isas.jaxa.jp, nomachi@lns.sci.osaka-u.ac.jp,

h-hihara@bc.jp.nec.com, kazunori_masukawa@mhi.co.jp

ABSTRACT
ASTRO-H is the space X-ray astrophysical observatory which is scheduled to be
launched in 2014, and has been constructed by an international collaboration lead by
JAXA. SpaceWire and RMAP compose the fundamental infrastructure of the highly
redundant data-handling network of the satellite. For constructing a dependable and
deterministic network, a set of constraints are designed and applied to
communications over the network. In the paper, the concept of the constraints is
described followed by a short report on a SpaceWire integration test joined by
components developed under the constraints by different companies.

1 INTRODUCTION
The ASTRO-H satellite [1] is one of the very first missions in Japan that fully utilizes
SpaceWire as an onboard data-handling infrastructure. As of 2011, engineering
models of its subsystems have been fabricated and tested, and flight model
productions will start aiming integration in 2012-2013 followed by a launch in 2014.

Almost all of onboard subsystems of ASTRO-H such as the command/data handling
system, the attitude control system, and four types of X-ray/gamma-ray telescope
instruments are connected to the SpaceWire network using a highly redundant
topology [2]. Figure 1 shows a topology of the onboard network with representative
components being only illustrated. The number of physical SpaceWire links between

333

components exceeds 140 connecting ~40 separated components (i.e. separated boxes),
and there are more links in intra-component (intra-board) networks.

Figure 1 A schematic diagram of the onboard SpaceWire network of ASTRO-H.

2 RULES APPLIED FOR DETERMINISM
The onboard network of ASTRO-H is very large as explained above, and therefore,
strict network management policy is necessary for the whole system to operate in a
deterministic manner without suffering from congestions and unexpected delays of
packet deliveries. For achieving this, several rules described below are applied when
designing the network and its operation scheme.

2.1 SINGLE MASTER: THE SATELLITE MANAGEMENT UNIT

The all transactions in the network are controlled by the central master called Satellite
Management Unit (SMU). The SMU is responsible for distributing commands sent
from the ground stations to onboard components, and collect house-keeping data from
them using RMAP Write and Read, respectively. In addition, the SMU can be
configured to detect an abnormal state of a certain component from house-keeping
data and autonomously send a series of commands to control the component. Data
output from the scientific mission instruments which are relatively large compared to
the house-keeping data are collected by RMAP Read transactions initiated by the Data
Recorder (DR) following data collection schedule planned by the SMU. Since the
transactions from the DR are fully managed by the SMU, the DR acts like a delegate
of the SMU thus leaving the SMU as the single master. This single master
configuration well simplifies allocation of time slices described below, and helps to
qualitatively estimate achievable bandpass.

2.2 TIME SLICING BASED ON TIME CODES

The real time is divided into 64 time slots using 64-Hz time codes emitted by SMU.
All types of transactions from the SMU and the DR, such as the command distribution,
the house keeping data collection, the scientific mission data collection, and the

334

auxiliary polling of request flags, are performed in any of specifically allocated time
slots. Figure 2 summarizes transaction types allocated for individual time slots. The
spacecraft bus system (e.g. the SMU and the DR) and the mission instruments shares
this allocation table, and the latter updates for example house-keeping data stored in
registers or memory after particular time slots where the SMU RMAP-reads the data.

In order to gain the bandpass under the moderate time code frequency, to perform
multiple transactions in one time slot is allowed. The present design allows a packet to
be transferred over the network crossing the boundary of two time slots, i.e. there is
no explicit time-of-silence which is a technique sometimes used for clearing the
network.

Figure 2 Time slot allocation used in ASTRO-H.

2.3 LIMIT ON THE PACKET LENGTH AND THE RESPONSE LATENCY

The maximum packet length is limited to 1024 bytes including the RMAP header and
an additional header part defined in the mission. This well limits the maximum
blocking time in the wormhole routing path in SpaceWire routers.

An RMAP target nodes should reply to received RMAP commands as soon as
possible to maximize an achievable bandpass. Although hardware-implemented
RMAP target nodes can relatively quickly respond to commands, there are several
software RMAP targets especially in mission instrument electronics. Considering
these conditions, response latencies are defined depending on the transaction types
(HK collection, mission data collection, etc) starting from ~500us to a few ms. If the
SMU does not receive an RMAP reply from a certain component within defined
timeout duration, it cancels the transaction.

SpaceWire routers used in ASTRO-H are equipped with watch-dog timers to prevent
a dead lock of the routers. When a packet occupies a certain wormhole for specified
time duration, the packet is killed, and the router tries to recover from the anomaly.

2.4 BANDPASS

In ASTRO-H, the highest throughput is required for transferring mission instrument
data to the DR. Since the DR can perform 70 transactions in three consecutive time
slots (e.g. time slots 5,6, and 7, or 41, 42, and 43) and there are 14 sets of these slots

335

in the present time-slot allocation, 980 packets can be transferred from 9 mission
instrument electronics (CPU boards) used in the 4 instruments. Referring to the packet
length limitation, this translates into ~980 kB/s. Note that link rates of individual
nodes are rather heterogeneous, ranging from 10 to 50 MHz.

3 TESTS OF THE CONCEPT
To integrate components developed by several manufacturers smoothly, the ASTRO-
H project arranged three-step preliminary tests that should be done in manufacturer
sites; SpaceWire-layer test done by STAR-Dundee’s SpaceWire Conformance Tester
(step 1), RMAP-layer test examined by STAR-Dundee’s RMAP Conformance Tester
(step 2), Telemetry/Command-layer test done with an SMU simulator provided by the
spacecraft bus team (step 3).

The mission instrument electronics developed by Mitsubishi Heavy Industries and the
spacecraft bus components from NEC/NEC-Toshiba Space Systems have experienced
the preliminary tests, and then joined the first integration test held in JAXA in June-
July 2011. Thanks to the pre-tests, the components are successfully communicated
using RMAP without having a big problem, and it is revealed that basic
telemetry/command functionalities work as designed. After completing
implementation of full functionalities of the SMU software and the DR hardware
logic, the second integration test will be held in October 2011 to examine the mission
instrument data collection where cooperation of the two is essentially important.

Figure 3 An overview of the first SpaceWire integration test.

4 REFERENCES
1. Tadayuki Takahashi, “The NeXT mission”, SPIE meeting 7011 "Space

Telescopes and Instrumentation II: Ultraviolet to Gamma Ray 2008", Marseille
(2008).

2. Masanobu Ozaki et al., “SpaceWire-driven architecture for the ASTRO-H
satellite”, International SpaceWire Conference 2010, St. Petersburg, Russian
Federation, June 22-24, 2010.

336

APPLICATION OF SPACEWIRE TECHNOLOGY IN HYDROACOUSTICS

Session: SpaceWire missions and applications

Short Paper

Petr Eremeev, Sergey Kozyrev, Viacheslav Grishin

SUBMICRON, 2, 4, 4806 Street, Zelenograd, Moscow, Russia
E-mail: epm@se.zgrad.ru, seyoza@mail.ru, grishin@se.zgrad.ru

ABSTRACT
This article covers the theme of hydroacoustic complexes construction using the
SpaceWire technology. The task of large volume data arrays collection and
commutation between receiver and handler is solved by means of this technology.
High bandwidth, low power consumption, channel reliability and communication
features permit to develop integrated system of getting high-quality image. The
structure of the system intercommunication network is based on CompactPCI PICMG
2.16(1) backplane. Such backplane has differential links that agrees with SpaceWire
transmission standard. The connection is realized in double-star topology that allows
organize the route reservation, thereby the hardware reliability increases. This project
presents the signal preprocessing equipment that performs collecting and compacting
data received from hydroacoustic antennas.

1 INTRODUCTION
“Submicron” Company takes the leading position in Russian aerospace equipment
development, but that is not an only area of Company’s work. One of the actively
upcoming courses is presented with hydroacoustics. The new concept of the
hydroacoustic complexes construction based on the SpaceWire technology was
developed to perfect already engineered systems and to solve the main tasks of the
hydroacoustics. Utilization of this technology permits to decrease power consumption,
to solve synchronization problem and to create full-connected network at the protocol
level.

The principle of the high-precision hydroacoustic complexes development is based on
the multipoint signal collection by means of the multielement antenna array. The
quality of the result primarily is affected by the preprocessing equipment of
hydroacoustic signals. The purpose of the work is to create the system capable to link
a number of input analog channels with information processing system.

2 PROJECT DESCRIPTION
The project of the hydroacoustic complex is realized as a set of Input and Compacting
crates (Figure 1). The Input crate executes digitization and compaction (the first level)
of data received from antennas and further transmission of compacted arrays to the
handler. The Compacting crate is set behind the Input crates. It executes the second

337

level compaction and organizes intercommunication between elements of the
complex. The hierarchical system construction permits to increase quantity of the
input analog channels adding more Input crates.

Each Input crate is meant for 224 input analog channels. It consists of 14 Modules of
Input Hydroacoustic Signals (MIHS) and two Modules of Compacting Hydroacoustic
Signals (MCHS). The modules are founded on the integrated chips developed by
“Elvees”(2)(3). All MIHS and only one MCHS can work in each point of time and at
the same time the second MCHS is reserved. The modules redundancy permits to
increase reliability of hydroacoustic complex in case of one of the networked modules
failing. The intercommunication between modules in the single crate realizes with
SpaceWire interface using standard backplane CompactPCI PICMG 2.16(1).

The MIHS module (Figure 2) is assigned for input analog signals digitization and data
transmission to SpaceWire channel. Eight ADC microcircuits are set on the MIHS.
Each ADC simultaneously operates with two analog channels. Therefore the MIHS
board has 16 input analog channels in whole. The ADC microcircuits are sequentially
joined through SpaceWire interface that is used for control information exchange and
digitized data issue.

The number of the issuing digitized data modules is 14, and the rate of the packet
transmission does not exceed 25 Mbps from each MIHS in whole. Hence there is the
necessity of the MCHS modules (Figure 3) utilization, where it performs data array
collection and compaction. The MCHS is designed on the Concentrator microcircuit
that commutes and accumulates the data from 14 MIHSs and issues the tightened flow
through SpaceWire or RapidIO interface. At these conditions the average speed of the
data issue after the first level compaction does not exceed 250 Mbps. During
operation the data filtering and compression does not occur, while the compactness
and speed of the exchange through SpaceWire channels increase. I.e. all received
digitized data transmits to the primary processing system that finally increases the
accuracy of the data processing result.

The modules are made in the universal design of the 6U standard. The
intercommunication between models within one input crate executes through
CompactPCI PICMG 2.16 backplane. The MIHS modules are Node Boards, and the
MCHS are Fabric Boards. The modules are linked using differential pairs topology of
the backplane. This network operates in the full-duplex mode with 100 Ohm wave
impedance. The bandwidth of these lines can be up to 4 Gbps. The connection is
realized in a double-star topology as the main route of information packages transfer
from MIHS to MCHS and transfer of control information from MCHS to MIHS.
Thus, the boards are linked using SpaceWire technology implemented with the
communication lines of the backboard.

3 CONCLUSION
The main idea of the SpaceWire technology application in this project consists in the
integration of all system components in the single communication area of the data
packets and control information transmission using standard backplane. Thus, the task
of high data volume collection in one processing machine is solved as one of the main
tasks of the hydroacoustics. The selection of SpaceWire interface as the primary
method of the information exchange is also caused by the high bandwidth and

338

Figure 1 Structure of Hydroacoustic Complex

MIHS1

MCHS
reserved

MCHS
main

MIHS 2

MIHS 3

MIHS 4

MIHS 5

MIHS 6

MIHS 7

MIHS 8

MIHS 9

MIHS 10

MIHS 11

MIHS 12

MIHS 13

MIHS 14

M
ul

tie
le

m
en

t a
nt

en
na

 a
rr

ay

First compacting level

Reserved data
processing

system

Treatment level Reception and digitization

RapidIO/
Gigabit SpW

Main data
processing

system
MCHS_i

SpaceWire SpaceWire

Input crate

Compacting crate

MCHS_i
reserved

Second compacting level

339

Figure 2 Module of Input Hydroacoustic Signals

Figure 3 Module of Compacting Hydroacoustic Signals

reliability of the channel work, as well as by its compatibility with ready to use
developments.

4 REFERENCES
1. PCI Industrial Computer Manufacturers Group, “CompactPCI”, Packet Switching

Backplane, PICMG 2.16 Draft 0.9.1, July 3, 2001.

2. www.elvees.com

3. www.multicore.ru

MIHS_n

C
om

pa
ct

PC
I P

IC
M

G
 2

.1
6

ADC
(1)

ADC
(8)

SpW_nB

SpW

Input 1

Input 2

Input 15

Input 16

SpW_nA

MCHS

Concentrator

SpW_1A

C
om

pa
ct

PC
I P

IC
M

G
 2

.1
6

SpW_2A

SpW_14A

SpW1

SpW2

Gigabit

RapidIO To processing
system

To processing
system

To second
compacting

level

340

SPACEWIRE, A BACKBONE FOR HUMANOID ROBOTIC SYSTEMS

Session: Missions and Applications

Short Paper

Nickl Mathias and Jörg Stefan, Bahls Thomas, Nothhelfer Alexander, Strasser Stefan

Institute of Robotics Mechatronics, German Aerospace Center
E-mail: mathias.nickl@dlr.de

ABSTRACT
The DLR Hand Arm System is an anthropomorphic system with 52 actuators and 430
sensors of different types. In order to maintain good performance the application must
have the most direct access to all actuators and sensors. Therefore, a SpaceWire
network connects FPGAs and CPUs and acts as real-time communication backbone.
This publication focuses on the SpaceWire protocol implementation and the dedicated
extensions that are defined for that system.

1 INTRODUCTION
The DLR Hand Arm System (see Fig. 1) is an
anthropomorphic system that is aimed to reach its
human archetype regarding size, weight and
performance. It features intrinsic compliance
implemented as variable stiffness actuation [1].

The hand arm system has in total 26 DOF, thereof
19 DOF in the hand, 2 DOF in the wrist, and 5
DOF in the arm. To implement all those DOF, the
hand arm system comprises 52 actuators and 430
sensors of different types. To operate that many
actuators and sensors precisely for a certain control
application the complexity of the system needs to be hidden from application
designers. On the other hand, in order to maintain good performance the application
must have the most direct access to all actuators and sensors.

In other words, a valuable means of abstraction with only minimal execution overhead
is required. This is the task of the Computing and Communication Architecture. It
incorporates the operating software and the computing and communication
infrastructure of the DLR Hand Arm System. The aim is to provide a convenient high-
level hardware abstraction that still allows high-performance feedback control with
cycles beyond 1 kHz.

Fig. 1. The DLR Hand Arm System

341

mailto:mathias.nickl@dlr.de

 To balance the opposing
requirements of flexibility and
high integration, the DLR Hand
Arm System’s computing and
communication platform is laid
out hierarchical: At the top are
general purpose, commercial-of-
the-shelf (COTS) components.
The footprint decreases towards
the bottom end which is defined
by the dedicated physical
interfaces of sensors and motors.
The available computing power
and communication bandwidth
decreases along with the
decreasing footprint. A modular
layout on each level together with the aggregation of components on successive levels
by the means of suitable communication creates the desired platform flexibility (see
Fig. 2). This hierarchy is not driven by a functional separation but only by the
requirement of small footprint sizes at the physical interfaces. The functionality of an
application can be flexibly mapped onto this hierarchy as required.

A SpaceWire network provides the necessary flexibility within the architecture and
acts as a real-time communication backbone that connects FPGAs and CPUs. This
publication has the focus on the SpaceWire protocol implementation and the
dedicated extensions that are defined for the DLR hand arm system. A more detailed
description of the entire Communication and Computation architecture is given in [2].

2 THE PROTOCOL STACK

2.1 PHYSICAL LAYER, CHARACTER LAYER, AND LINK LAYER

 Inspired by the IEEE 1355 specification for
fibre optical links as well as the Gigabit
Ethernet and the FiberChannel specifications,
the character-layer is realized with 8b10b [4]
encoding. Therefore, a commercial GigE
physical-layer interface circuit from Texas Instruments (TLK1221) is used, which has
a dedicated ten-bit interface suitable for 8b10b encoding. The 8b10b encoding is
implemented on FPGAs. This design allows SpaceWire links with data-rates of
1Gbit/sec and heterogeneous networks with fiber and copper.

The link-layer implementation meets the SpaceWire specification.
It is adapted to 8b10b encoding by mapping the SpacewWire
escape-characters to the 8b10b-K.Chars (see Table 1]). This
implementation is flexible, since the link-layer implementation can
be used for different character-layers. But the broken-link
propagation with timeout is not efficient. A dedicated SpaceWire
link-layer specification for 8b10b would be useful.

Fig. 2: The DLR Hand Arm System’s hierarchical com-
puting and communication platform

ESC KChar
IDLE K28.5
TC K28.1
FCT K28.2
EEP K28.3
EOP K28.4
NULL K28.6

Table 1: ESC to
KChar mapping

Fig. 3: SpaceWire Link with 8b10b encoding

342

2.2 NETWORK LAYER

Table 2 shows the links and switches that are developed for the backbone of the DLRs
Hand Arm System:

2.3 TRANSPORT LAYER

The Datagram Protocol defines a simple non-reliable
connection between Sink and Source. A Datagram is a single
Spacewire Packet. The payload of the datagram is validated by
crc (see Fig. 4).

The RequestResponse Protocol is a transmission control
protocol optimized for the implementation on FPGAs. The
payload is validated by a crc. The process flow is validated by
a configurable timeout (see Fig 5).

The timeout control is located at the
Initiator. Hence, the footprint on the target
side is reduced. A detected timeout triggers
an error-cycle, which is repeated until the
Target acknowledges the error (see Fig. 6).

Datagram Sink and Source as well as
Initiator and Target are SpaceWire Nodes.
Source, Initiator, and Target store the
address of their peer Node in a lookup table.
A Node Configuration Protocol allows the
configuration of this peer-address-LUT
during runtime (see 2.4).

Fig. 7 shows the SpaceWire-packets of
Datagram Protocol and RequestResponse
Protocol.

Name Platform Comment
SW-Switch QNX SpaceWire Crossbar Switch for QNX with optional LUT

for logical address resolution
HW-Switch FPGA SpaceWire Crossbar Switch for QNX with optional LUT

for logical address resolution
HW/SW-Switch FPGA and QNX Runs on in-house PCIe interface card. Routes packets in

dedicated DMA-buffers or HW-links. Allows high
performance packet routing with minimum latency.

Copper Link FPGA to FPGA See 2.1
HW-Link FPGA Connects HW-Switches and/or HW-Nodes within an

FPGA. Optional FIFO allows to buffer characters or
packets. If packet-buffering is switched on, EEP-packets
can be deleted.

IPC-Link QNX connects SW-Switches and/or SW-Nodes
HW/SW-Link FPGA and QNX connects HW-Switches or HW-Nodes to SW-Switches

or SW-Nodes
Copper2Fiber Transceiver for seamless connection of fiber and copper

networks

Table 2: Building blocks for SpaceWire backbone

Fig 4: Datagram

Protocol

Fig 5: RequestResponse

Protocol

Fig 6: RequestResponse Protocol

343

2.4 APPLICATION LAYER

Switches with dynamic logical address
mapping are configured by the Switch
Configuration Protocol. The Configu-
rator is an independent Node that
configures the SpaceWire network. If
the configuration has failed, the
response packet is determined by EEP.
Thus, configuration errors yield a
Configurator timeout. Analogous, the
Configurator configures the lookup
tables of Nodes (see 2.3) by the Node
Configuration Protocol (see Fig. 7).

Furthermore, a configurable Test Suite
is available. A dedicated Test Node,
which can act as Sink, Source,
Initiator, or Target, generates
periodical or random network traffic.

3 CONCLUSIONS
The concepts of FIFO channels and wormhole packet routing of the SpaceWire
specification [3] combined with GigE physical-layer circuits results in a valuable
communication platform for complex applications that require hard real-time. In [2] is
shown that the Hand Arm System operates with control sample rates of 3 kHz and
latencies below 333 us.

Especially the extended communication bandwidth of 1 Gbit/sec and the determinism
(for known network topologies) make SpaceWire to be a good choice for high
performance signal processing, since there is still no common alternative for
deterministic communication beyond 1 GBit.

Beyond that, dynamic network configuration and the configuration of connections
(i.e. peer-address) by an independent Configurator is a scalable solution with small
footprint and a high degree of flexibility.

4 REFERENCES
1) M. Grebenstein et al., “The DLR hand arm system”, Proc. IEEE International

Conf. on Robotics and Automation, April 2011.
2) Stefan Jörg, Mathias Nickl, Alexander Nothhelfer, Thomas Bahls, Gerd Hirzinger,

“The Computing and Communication Architecture of the DLR Hand Arm
System”, IEEE International Conf. on Intelligent Robots and Systems, 2011, tbp.

3) ECSS E-50-12A SpaceWire - Links, nodes, routers and networks, European
Cooperation for Space Standardization (ECSS), http://spacewire.esa.int, 2003.

4) A. X. Widmer, P. A. Franaszek, “A DC-Balanced, Partitioned-Block, 8B/10B
Transmission Code”, IBM Journal of Research and Development, (1983)
Volume 27, Number 5, Page 440

Fig 7: SpaceWire Packets for Datagram,
RequestResponse, Switch Configuration,

and Node Configuration Protocol

344

Exhibitors

4LINKS

 4Links test equipment is the de-facto SpaceWire reference, with unparalleled maturity

in our design and an unparalleled record of finding errors, and providing the

information to correct them;
 The family includes bridges, diagnostic interfaces, routing switches, and monitors, a

time interface (IRIG-B) plus an RMAP responder to give hardware response times -

all controlled from a single (possibly remote) PC;

 Products interface to Ethernet and Internet, able to be interfaced with virtually any

computer, any OS, any where;

 All products are available with connectors for synchronization and triggers, so that

multiple test units can be synchronized and recordings time tagged consistently

between different computers and discs;

 4Links test equipment helps to reduce cost and delay by enabling users to detect bugs

that other methods miss, and by providing information to fix those bugs where other

methods fail. See 4Links news about a Tutorial on SpaceWire Test on the Monday

preceding the Conference.

AEROFLEX
Aeroflex Colorado Springs is a supplier of integrated circuits

and custom circuit card assemblies. We supply a broad range of

standard products for HiRel applications including a LEON

3FT microprocessor, logic, FPGAs, memories, serial

communication interfaces for MIL-STD-1553, 1773, Clocks, an

LVDS family of products and our SpaceWire products -

Transceivers, Protocol IP, Routers. Our RadHard-by-Design

Digital and Mixed-Signal ASICs handle design complexities up

to 3,000,000 usable gates.

Aeroflex Gaisler is a provider of SoC solutions and IP-cores for exceptionally competitive

markets such as Aerospace, Military and Commercial applications. The Aeroflex Gaisler's

IPcores

consist of user-customizable 32-bit SPARC V8 processor and floating-point-unit cores,

SpaceWire cores, peripheral IP-cores and associated software and development tools.

Aeroflex Gaisler solutions help companies develop application-specific SoCs that are highly

competitive for customer specific applications. Gaisler Research's personnel have extended

design experience, and have been involved in establishing standards for ASIC and FPGA

development.

345

http://www.4links.co.uk/news/ISC-2011.html

 AXON’ CABLE
Axon’ Cable manufactures wires, cables, cable assemblies and connectors for high tech

applications including space, aeronautics, medical, automotive and electronics. The

consolidated turnover in 2011 amounts 100 million €, 60% of which is achieved through

export. The headquarters of the company is situated in France (100 km east of Paris) and

employs 1500 staff world-wide in 11 subsidiaries across Europe, America and Asia.

Axon’ Cable has been involved in many space projects such as the ISS, leo and geo satellites,

rocket launchers including Ariane 5.

The group offers various types of products for space applications:

- ESCC wires and cables, aluminum round cables for power distribution in satellites.

- Bus bar for power distribution in satellites.

- MIL-STD-1553 databus cables, couplers and connectors for digital transmission

systems.

- High data rate links for Voice-Data-Image transmission used in on-board electronics

(SpaceWire, IEEE1394, Ethernet, Fibre Channel, etc).

- Custom designed products.

 BAE SYSTEMS
BAE Systems is a global defense, security, and aerospace company, delivering a full range of

products and services for air, land, and naval forces, as well as advanced electronics, information

technology solutions, and customer support services. BAE Systems’ Space Products and Systems

(SPS) division specializes in radiation-hardened electronics and space applications, developing and

producing a wide variety of space products from radiation hardened components (processors, ASICs,

memories, FPGAs, Spacewire routers and interfaces) and single-board computers solutions, to

complete system payloads. Our facilities are accredited as DoD Category 1A Trusted, covering

design, wafer foundry, packaging/assembly, and test services, and our space product portfolio is QML

qualified to MIL-STD specifications and test methods. With more than 600 computers in space,

including the 16-bit GVSC1750, 32-bit RAD6000®, and the RAD750® family of products, BAE

Systems space computers and electronics have logged over 5,000 years in orbit. For more

information, please visit www.RAD750.com.

338

http://www.rad750.com/

GLENAIR – MINIATURIZED CONNECTORS AND CABLES

Glenair manufactures ultra-miniature interconnect solutions for high-performance

applications such missile systems, satellites, and fighter-jets. Our innovative contacts,

connectors and cables are used in air and space platforms that require reliable performance as

well as miniaturized packaging. Glenair is the world’s largest manufacturer and supplier of

both mil-qualified and commercial Micro-D and Nanominiature connectors in wired and

unwired space-grade formats. We also offer turnkey flex circuitry assemblies as well as

space-grade wire harnesses terminated to our high-availability connector products.

 Glenair Inc

1211 Airway

Glendale

California

USA 91201-2497

www.glenair.com

Contact details re: Micro D space wire connectors and cables.

Fred Van Wyk, Product Manager :

Phone: +1 818 247 6000

fvanwyk@glenair.com

Ross Thomson, Business Development Manager (Europe):

Phone: + 44 1623 638114

Cell: +44 7711 029 715

rthomson@glenair.com

JAPAN SPACEWIRE USER GROUP
Web: https://galaxy.astro.isas.jaxa.jp/SpaceWire/

Japan SpaceWire User Group is a consortium formed by Japanese space agencies, JAXA and

USEF, and multiple companies that develop and use SpaceWire technology. The consortium

aims to promote SpaceWire and satellite design based on SpaceWire to wider users, and has

been developing and releasing SpaceWire development environment such as the SpaceCube

computer and the SpaceWire-to-GigabitEther converter (Shimafuji/JAXA) for ground testing,

and the SpaceCube2 (NEC) and SpaceCard (MHI) onboard computers with SpaceWire

capabilities. An open-source SpaceWire codec IP core is also available from the consortium

for free.

339

http://www.glenair.com/
mailto:fvanwyk@glenair.com
mailto:rthomson@glenair.com
https://galaxy.astro.isas.jaxa.jp/SpaceWire/

 NEC CORPORATION

www.nec.com

NEC Corporation is one of the world's leading providers of Internet, broadband network and

enterprise business solutions dedicated to meeting the specialized needs of a diversified

global base of customers. NEC delivers tailored solutions in the key fields of computer,

networking and electron devices, by integrating its technical strengths in IT and Networks,

and by providing advanced semiconductor solutions through NEC Electronics Corporation.

The NEC Group employs more than 140,000 people worldwide. For additional information,

please visit the NEC Web site at: www.nec.com.

 SOUTHWEST RESEARCH INSTITUTE

Southwest Research Institute® (SwRI®) was founded in 1947 as a public service scientific

corporation to provide contract R&D to both industrial and government clients. The Institute

provides extraordinarily technical capabilities through 10 technical operating divisions, with

approximately 3300 staff members and gross annual revenue of $540 million.

 SwRI’s Department of Space systems has a long and distinguished track record of producing

high quality, high reliability spacecraft avionics for NASA, DoD, ESA, and commercial

space missions. Since the first SC-1 spaceflight computer was developed in 1979, SwRI has

developed hardware for over 53 space flight missions without a single on-orbit failure. The

track record of the last 32 years is a product of a strong commitment to support the current

and future needs of the space community. SwRI is recognized as one of the leaders in space

instrument design and development, command and data handling (C&DH) systems and

mission management.

340

http://www.nec.com/

 STAR-DUNDEE

STAR-Dundee Ltd is dedicated to the development and advancement of SpaceWire,

providing expert support to users and developers of SpaceWire technology.

Our products cover everything needed to design, develop, integrate and test SpaceWire sub-

systems:

 Chips and industry leading IP cores: enabling our customers to develop their own

flight subsystems and providing custom IP cores to fulfil specific customer needs

 Interface devices, Debug and Analysis Tools: enabling the development, simulation

and testing of SpaceWire networks and devices

 Bespoke Design Services: Equipment and design of electronic circuit boards for

custom requirements.

 SpaceWire Training: Onsite expert tuition direct from our experienced engineers,

tailored to suit the customer

STAR-Dundee has the largest product line of SpaceWire test and development equipment of

any manufacturer. We pride ourselves on the quality of our products and are continually

enhancing their capabilities to meet the needs of our customers.

The STAR-Dundee team has leading expertise in all areas of SpaceWire technology. Our

commitment is to help our customers to quickly and efficiently get up to speed with

SpaceWire technology and to provide continued support through the full development life

cycle.

341

Papers Indexed by Author

Author Surname A - J

Jan Andersson, Marko Isomäki, Sandi Habinc, Jiri Gaisler, Luca Fossati, Roland Weigand;

NGMP – QUAD-CORE NEXT GENERATION MICROPROCESSOR WITH ON-CHIP

SPACEWIRE ROUTER 277

Sue A. Baldor, Paul B. Wood, Allison R. Bertrand, Dan Goes; A SOFTWARE

ADAPTATION LAYER FOR SUPPORTING MULTIPLE SPACEWIRE PLUG AND

PLAY STANDARDIZATIONS 17

Steve Belvin; RAPIDIO OVER SPACEWIRE: BLENDING COMPLEMENTARY

PROTOCOLS 151

Frank Bubenhagen, Holger Michel, Harald Michalik, Björn Fiethe, Björn Osterloh, Wayne

Sullivan, Alex Wishart, Jørgen Ilstad; IMPLEMENTATION OF THE SOCWIRE

PROTOCOL (SOCP) WITHIN THE DYNAMIC RECONFIGURABLE PROCESSING

MODULE 104

Leonard Burczyk, Justin W. Enderle, Daniel Gallegos, Paul S.Graham, Richard D.Hunt,

Jeffrey L . Kalb, David S. Lee, Jacob E. Leemaster, John M. Michel, and Justin L. Tripp;

SPACEWIRE IN THE JOINT ARCHITECTURE STANDARD 95

Cara Christophe, Eric Doumayrou, Pinsard Frederic; TIME DISTRIBUTION OVER A

SPACEWIRE NETWORK FOR THE ARTEMIS SUBMILLIMETRIC INSTRUMENT 170

Barry M Cook, C Paul H Walker; LOW-LATENCY PACKET DELIVERY IN

SPACEWIRE NETWORKS 135

Christopher T. Dailey, Michael W. Pagen; SPACEWIRE NETWORK PACKET ERROR

HANDLING 56

Petr Eremeev, Sergey Kozyrev, Viacheslav Grishin; APPLICATION OF SPACEWIRE

TECHNOLOGY IN HYDROACOUSTICS 329

Albert Ferrer, Steve Parkes, Alberto G. Villafranca, Martin Suess; HARDWARE

IMPLEMENTATION OF AN RMAP NETWORK SCHEDULER 121

Wahida Gasti, Jorgen Ilstad, Farid Guettache, Giorgio Magistrati; IMPLEMENTATION

ASPECTS OF THE PHYSICAL LAYER IN SPACEWIRE 68

342

Kristoffer Glembo, Marko Isomäki, Sandi Habinc; ETHERNET TO SPACEWIRE BRIDGE

- AN EVOLUTION OF SERVICES 250

Damaris L. Guevara, Omar A. Haddad ; USING TVS TO VERIFY SPACEWIRE

DESIGNS 220

Sandi Habinc, Marko Isomäki, Daniel Hellström; CCSDS TIME DISTRIBUTION OVER

SPACEWIRE 46

Sandi Habinc, Marko Isomäki, Jiri Gaisler; GR712RC – DUAL-CORE PROCESSOR WITH

SIX SPACEWIRE LINKS – VERIFICATION RESULTS 174

Omar A. Haddad; NASA-GSFC REMOTE MEMORY ACCESS PROTOCOL TARGET IP

CORE 75

Hiroki Hihara, Toshiaki Ogawa and Kenji Kitade; NEXTAR: SMALL SATELLITE BUS

BASED ON SPACEWIRE DETERMINISTIC IMPLEMENTATION 321

Marko Isomäki, Sandi Habinc; CASCADING THE 10X SPACEWIRE ROUTER FPGA

STANDARD PRODUCT IN A FLIGHT BOARD DESIGN 178

Marko Isomäki, Sandi Habinc; DEVELOPMENT OF A NOVEL 18X SPACEWIRE

ROUTER 285

Paul Jaffe, Eric Rossland, Eric Bradley, Greg Clifford, Herb Axe; TACSAT-4: SPACEWIRE

FOR RESPONSIVE INTEGRATION AND LAUNCH 181

David Jameux; NETWORK MANAGEMENT AND FDIR FOR SPACEWIRE

NETWORKS 55

David Jameux; SPACEWIRE EVOLUTIONS 185

David Jameux; TOWARDS SPACEWIRE PLUG-AND-PLAY ECSS STANDARD 33

Author Surname K - R

Satoko Kawakami, Kazuyuki Yamada, and Hiroki Hihara, Masaharu Nomachi, Takahiro

Yamada, Motohide Kokubun, and Tadayuki Takahashi; DETERMINISTIC

IMPLEMENTATION OF SPACEWIRE ON DATA RECORDER AND PAYLOAD

INTERFACE UNITS 189

Clifford E. Kimmery; DC-BALANCED CHARACTER ENCODING FOR

SPACEWIRE 261

Robert A. Klar, Dan Goes, Paul B. Wood, and Sue A. Baldor; PERFORMANCE OF

SPACEWIRE PLUG-AND-PLAY PROTOCOLS 41

343

Shoji Komatsu, Naohisa Anabuki, Hiroshi Tsunemi, Masaharu Nomachi, THE

DEVELOPMENT OF THE SPACEWIRE COMMUNICATION TESTER (SPACEWIRE

TEST MODULE) 242

Jennifer Larsen; 1553 TO SPACEWIRE BRIDGE 79

Joseph Marshall, Steve Santee, Mary Hanley, Jeff Robertson, Dan Stanley; LEVERAGING

SPACEWIRE NETWORK PROTOTYPING TO CREATE FLEXIBLE SPACEWIRE

COMPONENTS AND SUPPORT SOFTWARE 292

Kody D. Mason, Justin W. Enderle; NEW TECHNIQUE FOR SPACEWIRE NETWORK

DISCOVERY 25

Chris McClements, Stephen Mudie, Pete Scott, Stuart Mills, Steve Parkes; THE

SPACEWIRE LINK ANALYSER MK2 193

Alan A. Mick, Joseph R. Hennawy, Christopher J. Krupiarz, Horace Malcom; SOLAR

PROBE PLUS AND SPACEWIRE: VIRTUAL SPACECRAFT BUS 86

Stuart Mills, Alex Mason, Steve Parkes, Takayuki Yuasa; STANDARDISATION OF

SPACEWIRE SOFTWARE APIS 271

Stephen Mudie, Paul E. McKechnie; SPACEWIRE EGSE 226

Minoru Nakamura, Tatsuya Ito, Yasutaka Takeda, Isao Odagi, Ichiro Takahashi, Toshihiro

Obata, Ryoichiro Yasumitsu; SPACEWIRE THERMAL INTERFACE NODE FOR

SATELLITE THERMAL CONTROL 197

Nickl Mathias and Jörg Stefan, Bahls Thomas, Nothhelfer Alexander, Strasser Stefan;

SPACEWIRE, A BACKBONE FOR HUMANOID ROBOTIC SYSTEMS 333

Shahana Aziz Pagen; BACKPLANE DESIGN CONSIDERATIONS FOR HIGH SPEED

SPACEWIRE NETWORKS 313

Steve Parkes, Chris McClements, Martin Suess; SPACEFIBRE CODEC: USE OF THE

TLK2711-SP 302

Steve Parkes, Martin Suess; VIRTUAL CHANNELS, BROADCAST CHANNELS AND

SPACEFIBRE 143

Vanderlei Cunha Parro, Sergio Ribeiro Augusto, Rafael Corsi Ferrão e Tiago Sanches,

Philippe Plasson and Loic Gueguen; CAMERA SIMULATOR FOR PLATO MISSION 201

David Paterson, Alan Spark, Bruce Guoxia Yu, Steve Parkes; SPACEWIRE REMOTE

TERMINAL CONTROLLER DEVELOPMENT SYSTEM 205

Eric Pritchard, Dick Durrant and Alan Fromberg, Jean Francois Dufour; OFF THE SHELF

WIRELESS BRIDGES INTERFACING TO SPACEWIRE: POSSIBILITIES,

PRACTICALITIES AND OPPORTUNITIES 254

344

Glenn P. Rakow, Eric T. Gorman, Alexander B. Kisin; SPACEAGE BUS: PROPOSED

ELECTRO-MECHANICAL BUS FOR AVIONICS INTERCONNECTIONS 159

Gilles Rouchaud, Jorgen Ilstad, Florent Mettendorff; LOW MASS SPACEWIRE 64

Author Surname S – Z

Pete Scott, Paul Crawford, Steve Parkes, Jorgen Ilstad; TESTING SPACEWIRE SYSTEMS

ACROSS THE FULL RANGE OF PROTOCOL LEVELS WITH THE SPACEWIRE

PHYSICAL LAYER TESTER 232

A. Senior, P. Worsfold; ADVANTAGES OF A SPACEWIRE BACKPLANE DURING

SPACECRAFT UNIT INTEGRATION AND TEST 246

Martin Suess, Albert Ferrer; AVOIDING SPACEWIRE NETWORK CONGESTION 129

Brian Van Leeuwen, John Eldridge, Jacob Leemaster; SPACEWIRE NETWORK

SIMULATION OF SYSTEM TIME PRECISION 113

Xie Weihua, Jing Xiaochuan, Lin Xiaofeng, Chen Xianglong; STOCHASTIC PETRI NETS

MODELING AND ANALYSIS OF FAULT TOLERANCE FOR SPACEWIRE BUS 255

Paul B. Wood, Sue A. Baldor, Dan Goes, Allison R. Bertrand; A GENERALIZED

APPROACH TO PLUG-AND-PLAY NETWORK ATTACHED STORAGE USING

SPACEWIRE 9

P. Worsfold, A.Senior; INCORPORATION OF SPACEWIRE WITHIN THE

BEPICOLOMBO RIUS 211

Chen Xiaomin, Hou Jianru, Cao Song, Sun Huixian; THE QUANTITATIVE ANALYSIS

AND RESEARCH OF SPACEWIRE DELAY JITTER

Takahiro Yamada; DEVELOPMENT OF SPACEWIRE HIGHER LAYER PROTOCOLS

BASED ON THE CCSDS SOIS ARCHITECTURE 227

Takayuki Yuasa, Tadayuki Takahashi, Masanobu Ozaki, Motohide Kokubun, Masaharu

Nomachi , Hiroki Hihara, Kazuyo Mizushima, Takashi Kominato, Kuniyuki Omagari,

Kazunori Masukawa; A DETERMINISTIC SPACEWIRE NETWORK ONBOARD THE

ASTRO-H SPACE X-RAY OBSERVATORY 353

345

	Front Cover
	Copyright Notice
	Preface
	Technical Committee
	Tuesday 8 November
	Keynote Presentation
	Mr. Bret G. Drake - Biography
	Drake - NASA's Human Exploration Plans and Architecture

	Networks and Protocols 1
	Wood - A Generalized Approach to Plug-and-Play Network Attached Storage Using SpaceWire
	Baldor - A Software Adaptation Layer for Supporting Multiple SpaceWire Plug and Play Standardizations
	Mason - New Technique for SpaceWire Network Discovery
	Jameux - Towards SpaceWire Plug-and-Play ECSS Standard
	Klar - Performance of SpaceWire Plug-and-Play Protocols

	Networks and Protocols 2
	Habinc - CCSDS Time Distribution Over SpaceWire
	Chen - The Quantitative Analysis and Research of SpaceWire Delay Jitter
	Jameux - Network Management and FDIR for SpaceWire Networks (Abstract)
	Dailey - SpaceWire Network Packet Error Handling

	Components 1
	Rouchaud - Low Mass SpaceWire
	Guettache - Implementation Aspects of the Physical Layer in SpaceWire
	Haddad - NASA GSFC Remote Memory Access Protocol Target IP Core
	Larsen - 1553 to SpaceWire Bridge

	Wednesday 9 November
	Missions and Applications 1
	Mick - Solar Probe Plus and SpaceWire: Virtual SpaceCraft Bus
	Tripp - SpaceWire in the Joint Architecture Standard
	Bubenhagen - Implementation of the SOCWire Protocol (SOCP) Within the Dynamic Reconfigurable Processing Module

	Networks and Protocols 3
	Van Leeuwen - SpaceWire Network Simulation of System Time Precision
	Ferrer - Hardware Implementation of an RMAP Network Scheduler
	Suess - Avoiding SpaceWire Network Congestion

	Networks and Protocols 4
	Cook - Low Latency Packet Delivery in SpaceWire Networks
	Parkes - Virtual Channels, Broadcast Channels and SpaceFibre
	Belvin - RapidIO Over SpaceWire: Blending Complementary Protocols
	Kisin - SpaceAGE Bus: Proposed Electro-Mechanical Bus for Avionics Interconnections

	Poster Presentations
	Cara - Time Distribution Over a SpaceWire Network for the ArTeMIS Submillimetric Instrument
	Habinc - GR712RC - Dual-Core Processor with Six SpaceWire Links - Verification Results
	Isomaki - Cascading the 10x SpaceWire Router FPGA Standard Product In a Flight Board Design
	Jaffe - TacSat-4: SpaceWire For Responsive Integration and Launch
	Jameux - SpaceWire Evolutions
	Kawakami - Deterministic Implementation of SpaceWire on Data Recorder and Payload Interface Units
	McClements - The SpaceWire Link Analyser Mk2
	Nakamura - SpaceWire Thermal Interface for Satellite Thermal Control
	Parro - Camera Simulator for Plato Mission
	Paterson - SpaceWire Remote Terminal Controller Development System
	Worsfold - Incorporation of SpaceWire Within the BepiColombo RIUs
	Yamada - Development of SpaceWire Higher Layer Protocols Based on the CCSDS SOIS Architecture

	Test and Verification 1
	Guevara - Using TVS to Verify SpaceWire Designs
	Mudie - SpaceWire EGSE
	Scott - Testing SpaceWire Systems Across the Full Range of Protocol Levels With The SpaceWire Physical Layer Tester
	Shi - Systematic and Complete Verification of SpaceWire Bus with Model Checking

	Thursday 10 November
	Test and Verification 2
	Komatsu - The Development of the SpaceWire Communication Tester (SpaceWire Test Module)
	Senior - Advantages of a SpaceWire Backplane During Spacecraft Unit Integration and Test
	Glembo - Ethernet to SpaceWire Bridge - An Evolution of Services
	Pritchard - Off The Shelf Wireless Bridges Interfacing to SpaceWire: Possibilities, Practicalities and Opportunities (Abstract)
	Weihua - Stochastic Petri Nets Modeling and Analysis of Fault Tolerance for SpaceWire Bus
	1. Introduction
	2. The Stochastic Petri net Model of SpaceWire
	3. Verification of the Stochastic Petri net Model of SpaceWire
	3.1 The Analysis Based on Reachability Graph
	3.2 The Specified State Analysis on SpaceWire

	Standardisation
	Kimmery - DC-Balanced Character Encoding for SpaceWire
	Mills - Standardisation of SpaceWire Software APIs

	Components 2
	Andersson - NGMP - Quad-Core Next Generation Microprocessor with On-Chip SpaceWire Router
	Isomaki - Development of a Novel 18x SpaceWire Router
	Marshall - Leveraging SpaceWire Network Prototyping to Create Flexible SpaceWire Components and Support Software
	Parkes - SpaceFibre Codec: Use of the TLK2711-SP

	Missions and Applications 2
	Pagen - Backplane Design Considerations for High Speed SpaceWire Networks
	Hihara - NEXTAR: Small Satellite Bus Based on SpaceWire Deterministic Implementation
	Yuasa - A Deterministic SpaceWire Network Onboard the ASTRO-H Space X-Ray Observatory
	Eremeev - Application of SpaceWire Technology in Hydroacoustics
	Nickl - SpaceWire, A Backbone for Humanoid Robotic Systems

	Exhibitors
	Papers Indexed by Author

