
 
 
               SpaceWire-2011
    
             Proceedings of the 4th 
 International SpaceWire Conference 
 
                   San Antonio 2011 
 
 
    Editors: Steve Parkes, Allison Bertrand, Martin Suess,
                                       Glenn Rakow 
                        Editorial Assistant: Lisa Rodway 



Space Technology Centre
University of Dundee
Dundee
2011

©

All rights reserved.  No part of this publication may be reproduced or 
transmitted, in any form or by any means, electronic, mechanical, 
photocopying, recording, or otherwise, without the prior written 
permission of the publisher.

 
 

ISBN: 978-0-9557196-3-9

SpaceWire-2011
Proceedings of International SpaceWire Conference
San Antonio 2011



 

Preface 
 

 
These proceedings contain the papers presented at the 2011 International SpaceWire 

Conference, held in San Antonio, Texas, USA between 8
 
and 10 November, 2011. The International 

SpaceWire Conference aims to bring together SpaceWire product designers, hardware engineers, 

software engineers, system developers, mission specialists and academics interested in and working 

with SpaceWire, to share the latest ideas and developments related to SpaceWire technology. 

SpaceWire is a spacecraft on-board communication network designed to connect together 

instruments, mass-memory, processors, downlink telemetry, and other on-board sub-systems. It offers 

high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility 

making it ideal for many space missions. Since the SpaceWire standard was published in January 

2003, it has been adopted by ESA, NASA, JAXA and RosCosmos, and is being widely used on 

scientific, Earth observation, commercial and other spacecraft. High-profile missions using 

SpaceWire include: Gaia, Sentinels 1, 2, 3 and 5 precursor, Bepi-Colombo, James Webb Space 

Telescope, GOES-R, Lunar Reconnaissance Orbiter and Astro-H. 

The conference provides a forum for the exchange of experiences with the application of 

SpaceWire, and for the exploration of new ideas and technologies related to SpaceWire. It also allows 

presentations on the latest test and development equipment, chips and IP cores, and software 

associated with SpaceWire. 

This year the conference is hosted by Southwest Research Institute (SwRI), one of the oldest 

and largest independent, nonprofit, applied research and development (R&D) organizations in the 

United States. Founded in 1947, with headquarters in San Antonio, Texas, SwRI provides contract 

research and development services to industrial and government clients.  SwRI consists of 11 

technical divisions that offer multidisciplinary, problem-solving services in a variety of areas in 

engineering and the physical sciences. Southwest Research Institute (SwRI) spacecraft avionics have 

an excellent performance record, having flown on over 50 missions without a single on-orbit failure. 

Space Missions using SwRI spacecraft avionics include IMAGE, SWIFT, Deep Impact, Orbital 

Express, Kepler, and MMS. 

The Conference Chairpersons would like to acknowledge the support and hard work of many 

of the individuals who made the International SpaceWire Conference 2011 possible. First, we thank 

the authors and keynote speakers for their high-quality contributions. We express our gratitude to the 

members of the Technical Committee for their assistance in the review process. We thank all the 

people supporting the conference at SWRI, the Space Technology Centre at the University of Dundee, 

the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA). 

 

The Conference Chairpersons, 

 

Allison Bertrand, Southwest Research Institute, USA 

 Steve Parkes, Space Technology Centre, University of Dundee, UK 
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   Glenn Rakow, National Aeronautics and Space Administration, USA 
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NASA’S HUMAN EXPLORATION PLANS & ARCHITECTURE 
 

Bret G. Drake 
 

Abstract 

 

During the past few years the direction for future human exploration beyond low-Earth orbit has 

undergone revision and a less destination specific framework has emerged.  This strategy, 

referred to as a Capability Driven Framework, is based on the idea of an ever expanding human 

presence beyond low-Earth orbit in terms of duration and distance from the Earth.  It is based on 

evolving capabilities which are utilized after operational experience has been established from 

completing less demanding missions.  In theory, the Capability Driven Framework enables 

multiple destinations and provides increased flexibility, greater cost effectiveness, and 

sustainability.  This presentation will provide an overview of the Capability Driven Framework 

which is NASA’s approach towards developing a robust human spaceflight program that is 

sustainable over long spans of time.  Understanding future exploration needs consistent with the 

Capability Driven Framework will help guide research activities on the International Space 

Station, identifying key technology needs, and establishing future collaboration with 

international partners, academia, and industry, which are essential in maintaining progressive 

cadence of missions that ultimately land humans on Mars. 
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A GENERALIZED APPROACH TO PLUG-AND-PLAY NETWORK ATTACHED 
STORAGE USING SPACEWIRE 

         Session: SpaceWire Networks and Protocols

Long Paper 

Paul B. Wood, Sue A. Baldor, Dan Goes, Allison R. Bertrand 

Southwest Research Institute®, 6220 Culebra Road, San Antonio, Texas  78238 

E-mail:  paul.wood@swri.org, sue.baldor@swri.org, dan.goes@swri.org, 
allison.bertrand@swri.org 

 

ABSTRACT 
This paper describes a generalized approach to defining a protocol for Plug-and-Play 
(PnP) Network Attached Storage (NAS) using SpaceWire.  A key concern in the 
design of a PnP device is the presence of competing standards from the U.S. and the 
European Union for PnP on SpaceWire (SpW) networks.  Providing adaptation 
between these protocols would allow an end device such as an NAS to operate on a 
network conforming to either standard.  To validate the adaptation layer, a test bed is 
being developed.  The test bed will include a simulated NAS connected on a 
SpaceWire network.  The network will also include producer and consumer nodes to 
store and retrieve data from the simulated NAS as a challenge task.  

1 SPACE PNP UBIQUITY – THE FUTURE IS NOW! 
Plug-and-Play (PnP) technologies have been widely adopted for terrestrial computing 
applications.  Over the last two decades, terrestrial PnP technology has transitioned 
from the sarcastically monikered “Plug and Pray” to the ubiquitous Universal Serial 
Bus (USB) that allows the vast majority of devices to be connected to a typical 
workstation with no special actions required on the user’s part.  These capabilities 
commonly extend to servers and associated devices on local area networks, a scope 
comparable with a typical spacecraft (S/C) data system configuration. 

Two PnP protocol options for SpaceWire (SpW) are currently maturing – one defined 
by the Air Force Research Laboratory (AFRL) and one developed by the European 
Space Agency (ESA).  From a practical perspective, we wanted to address the concern 
that developers and managers face with regards to selecting a specific technology to 
target for PnP-enabled SpW networking.  Our approach to solving this problem has 
been to abstract the PnP protocol layer such that application programs can interact 
with either PnP protocol without a need to be aware of unique aspects of either 
protocol.  This enables the goal of developing portable applications that can be reused 
without modification. 
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We selected Network Attached Storage (NAS) as a challenge task to use for 
experiments on our adaptation layer.  An NAS device can accept data from many 
sources and provide data to many sinks.  The use of an NAS device varies from a 
common mission design pattern where mission processors typically include local 
storage to buffer data prior to transmission to the spacecraft processor.  With an NAS 
device, the data server portion of the spacecraft is separated from the mission and S/C 
processors.  Delineating the data storage as a separate device on the network allows 
for more flexible network design (including variations in which devices produce data 
and which devices consume data). 

2 RECONCILING DISPARATE STANDARDS 
In view of the desire to build an end device that can operate in networks constructed 
according to either of the SpW-PnP standards, we first sought to understand how 
these standards are similar and different.  The Spacecraft Onboard Interface Services 
(SOIS)/SpaceWire-PnP and Space Plug-and-Play Architecture (SPA)/SPA-SpaceWire 
(SPA-S) standards have similar goals and, not surprisingly, they share a number of 
characteristics in common.  These characteristics are listed in Table 1 and include 
such things as mechanisms to adapt to network changes, Electronic Data Sheets 
(EDS) allowing devices to self-describe their capabilities, and a central database of 
capabilities and services available by devices (once discovered) on the network.  
Table 2 shows areas of difference.  Differences range from policy items (International 
Traffic in Arms Regulations [ITAR] restrictions) to unique data protocols (e.g., 
Remote Memory Access Protocol [RMAP]) to the maturity of a reference 
implementation.  Note that our work is limited to areas of the standards that affect 
implementation and operation (e.g., device discovery differences). 

Table 1.  SOIS/SpaceWire-PnP and SPA/SPA-S Similarities 

Attribute Description 
Network identification Devices connected to networks are given unique network identifiers. 
Network changes Network is able to adapt to topology and composition changes as they occur. 
Data sheets Both use an Electronic Data Sheet (EDS) format with similarities between the 

two formats. 
Capability database A central service is in charge of maintaining lookup of capabilities provided and 

services requested by registered devices. 
Self-description Devices self-describe capabilities and needs through their EDS. 
Device dictionaries Standardized virtual device information repositories (Common Data Dictionary 

and Dictionary of Terms) are used, and evidence that these two dictionaries will 
align is given. 

Code generation Automated code generation for communicating with devices based on EDS is 
used. 
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Table 2.  SOIS/SpaceWire-PnP and SPA/SPA-S Differences 

Attribute SOIS/ SpaceWire-PnP SPA/SPA-S 
Source of standard Primarily coming from ESA Primarily coming from AFRL 
ITAR restriction Non-ITAR restricted Some ITAR restrictions 
Reference implementation Reference implementation currently 

unavailable (but slated for release in 
August 2011) 

Implementation based on earlier standard 
available (Satellite Data Model [SDM]), 
implementation based on new standard is 
now or will soon be available (SPA 
Services Manager [SSM]) 

Relationship to Plug-and-Play SpaceWire-PnP is a realization of the 
subnetwork portion of the standard and 
compliant with the standard, but not built 
into the core of the standard itself 

Plug-and-Play concepts and functions 
built into the foundation of SPA 

Device discovery “Active nodes” on network initiate 
device discovery 

Network managers (SPA managers) 
initiate device discovery 

System management messages System messages (for discovery, 
configuration, etc.) are RMAP-based 

System messages have their own 
proprietary packet format over 
SpaceWire 

Network sub-types Different requirements of devices based 
on composition of network (level 1 vs. 
level 2) 

Single network level without requiring 
different features of devices based on 
network composition 

Node types Distinction between passive and active 
nodes for ability to initiate commands 

Distinction between architectural 
components of the network (e.g. sub-
network managers vs. endpoints) in 
ability to control network 

 

Table 3 shows a minimal set of candidate functions needed to perform PnP 
adaptation.  Functions are provided to initialize the adaptation layer and configure the 
device.  Ideally, initialization will be able to self-discover the underlying PnP 
protocol; however, at this time, the Application Program Interface (API) takes an 
argument that determines whether the network is SPA-S or SpW-PnP.  Device 
configuration hides the unique aspects of the two underlying PnP protocols.  For a 
SPA network, this means replying to the probe message — sent by the SPA Lookup 
Service — with a message containing the component’s Universally Unique Identifier 
(UUID) and the UUID for its Extensible Transducer Electronic Data Sheet (xTEDS).  
For an SpW-PnP network, this means contacting the device identification service for a 
device’s configuration.  In SPA, the lookup service must be interrogated to establish 
the connection.  In SpW-PnP, the sources and sinks must work through the network 
manager to establish the connection.  Functions in the adaptation API are also 
provided to make connections, identify when connections are ready, and send and 
receive data across either type of network (e.g., using the lookup service vs. the 
network manager). 

Table 3.  Minimal API for Adaptation 

Function Description 
spnp_init( network type ) Configures the SpaceWire abstraction library. 
spnp_device_configure( device id, network type ) Configures the device for the network type.  
spnp_device_connect( device id ) Establishes a connection between the device and a data-service 

on the network. This connection may be bi-directional. 
spnp_device_release( connection handle ) Releases an existing connection. 
spnp_device_data_avail( connection handle ) Callback to notify the device that data from the service it’s 

connected to is ready. 
spnp_device_data_recv( connection handle, options, receive 
buffer ) 

Receives data from the connected service. 

spnp_device_data_send( connection handle, options, 
transmit buffer ) 

Sends device data to the connected service. 
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Applications must respond automatically to the system messages of both PnP 
protocols. This should be handled by the adaptation layer.  For example, a request 
may come in from an SpW-PnP network as an NMS_READ_NETWORK_ID 
message. Since this message is specific to SpW-PnP, the adaptation layer will know 
that it (the adaptation layer) needs to respond with the NMS_READ_NETWORK_ID 
indication containing the specific SpW-PnP network ID.  Similarly, if a SPA network 
status request message comes in on a SPA network, the adaptation layer must respond 
with a SPA network status reply message. 

3 DATA STORAGE CHALLENGE TASK 
Given an abstraction layer, a suitable challenge task was needed to validate the 
approach.  The idea of a Network Attached Storage device was selected as a good 
challenge task, since storage devices in the form of solid-state recorders are used on 
many spacecraft.  Terrestrial Network Attached Storage devices are complex devices 
that need to support a richer set of capabilities than that needed for space applications.  
We have begun to develop concepts for a protocol for such a device.  Some of the 
capabilities an NAS protocol must address include: 

 Reporting configuration and status information  

 Setting configuration values 

 Reading and writing data 

The protocol is organized according to requests and responses. 

Table 4.  NAS Protocol Requests 

Request Data Elements 
Information probe  General configuration information 

 Bad block information 
 Error Detection and Correction (EDAC) 

information 
 Metrics information

Import Bad Block Map Bit map of bad blocks 
Write Data  Address 

 Count (blocks) 
 Data

Read Data  Address  
 Count (blocks) 
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Table 5.  NAS Protocol Responses 

Response Data Elements 
Configuration/Status 
Data 

Configuration/Status items/value pairs 
 Power mode 
 Block size 
 Memory size 
 Bank count

Bad Block Map Bit map of bad blocks 
EDAC Data EDAC counters 
Metrics Data Memory metrics values 
Requested Data  Count (blocks) 

 Data values
 

The information probe/response is shown in Figure 1.  This figure shows the request 
format including an 8-bit field for the requested data. The probed device responds 
with requested data.  In the figure, the format of a response to an information probe 
(the Configuration/Status Item/Value Response) is shown.  Figure 1 also shows the 
write request protocol.  The request consists of an Information Probe that includes the 
request code.  Figure 2 shows the data read request protocol.  Several fields are large 
to allow for device growth.  In addition to the large size of the address and data fields, 
the reserved bits will allow for the extension of the protocol in the future for 
additional capability.  This is indicated by the most significant bit in the request and 
response protocol words. 

 

Figure 1.  Information Probe/Response and Write Request Protocol 
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Figure 2.  Data Read Request Protocol 

4 BUILDING A TEST BED 
Figure 3 shows the organization of the test bed.  The test bed consists of several 
workstations connected through a pair of STAR-Dundee SpW routers.  Separate 
workstations are dedicated for the simulated producer, consumer, and NAS functions.  
All workstations use the Ubuntu variant of the Linux Operating System.  Each 
machine has a custom SpW interface (I/F) board and a corresponding driver.  One of 
the core capabilities of these boards is a Field-Programmable Gate Array (FPGA) 
implementation of RMAP.  An optional system can be incorporated by connecting the 
SpW routers via a USB.  These connections are used to configure and monitor the 
routers. 

Having the producer, consumer, and NAS use the same configuration allowed us to 
focus on the concerns of the adaptation layer and SpW protocol specifics.  Later 
extensions to this work could include demonstrating the adaptation layer on other 
platforms, particularly embedded systems to ensure a truly universal interface.  We 
hope our experience with this adaptation layer can contribute to work on the 
standards. 

 

Figure 3.  Test Bed 
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Figure 4 shows the protocol stack for the test bed.  The positioning of the adaptation 
layer can clearly be seen between the specific protocols and the higher levels.  
Depending on the sophistication of the adaptation layer, it could be built to work 
integrated with the operating system and file system layers or to bypass them.  The 
benefits of the two approaches are greater portability on the one hand and lower 
overhead and a potentially simpler interface on the other. 

 

Figure 4.  Protocol Layers 

The raw communication level has been achieved at this time.  Application programs 
for the producer and consumer have been written to communicate directly to each 
other over the SpW I/F without any PnP elements present.  The I/F operates at nearly 
5 Mbits/s without data loss.  This data rate is not significantly affected regardless of 
whether the data passes through one or both of the SpW routers.  The producer and 
consumer applications will be modified to work with the adaptation layer and 
read/write to the simulated NAS device.  A simulated NAS device is being produced 
as well.  We plan to run experiments on the test bed to evaluate the impact of the 
adaptation layer on efficiency, ease of use, etc. 

5 CONCLUSION 
Building an adaptation layer should be possible.  Some areas of incompatibility may 
require changes to the standards to reconcile effectively (i.e., to eliminate special 
protocol unique knowledge in the adaptation layer).  Work is progressing on the test 
bed; and, through the use of reference implementations for the two standards, a 
practical evaluation of an adaptation layer can be achieved. 
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ABSTRACT 
Over the past few years, two s tandards for SpaceWire enabled P lug-and-Play (PnP) 
have em erged, one  f rom t he Air F orce R esearch Laboratory (AFRL) and t he ot her 
from t he E uropean Space Agency (ESA). This mu ltiplicity h inders th e s oftware 
designer’s ability to build reusable software that can work with either PnP platform. 
Fortunately, these SpaceWire-enabled PnP protocols share enough in common that a 
unifying interface may be d efined. W ith a  s uitable abstraction la yer, application 
software w ill be  por table a cross p rotocols, r educing the costs of  de ployment of  t he 
different pr otocols a nd f acilitating t he e valuation of  pr otocols a gainst a ctual 
application usage patterns. 

1 INTRODUCTION 
Abstraction is  a  p aradigm t hat h as be en us ed i n c omputer s cience a nd s oftware 
engineering f or de cades t o pr ovide a  c ommon i nterface t o di ffering networking 
protocols or  ha rdware. Utilizing t his i nterface, programmers m ay readily port t heir 
applications to  mu ltiple target p latforms, greatly r educing t he de velopment c osts t o 
support the different target environments.  

As s tandards f or P lug-and-Play (PnP)-enabled S paceWire n etworks co ntinue t o b e 
developed, the concept of abstraction can be applied to these protocols. Two standards 
presently exist for PnP with SpaceWire:  Space Plug-and-Play Architecture (SPA) and 
SpaceWire-PnP (SpW-PnP). B y exploiting the s imilarities a nd h andling th e 
differences at  t he l ower l evel, w e can  c reate a common i nterface t hat a ssists b oth 
software and spacecraft designers in assembling functional networks. 

In t his i nvestigation, w e apply this methodology to d efine a co mmon Application 
Programming Interface (API) for supporting SPA—with SpaceWire support—and the 
SpW-PnP standards.  

2 COMPARISON OF TWO PLUG-AND-PLAY STANDARDS 
At first glance, one may see little commonality between the core services described in 
these s tandards. H owever, i f w e l ook at t he network a s a  whole w e c an f ind 
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similarities in their operations. Though the service decomposition may be different for 
each, we can see that similar operations are performed on each network type. 

2.1 CORE SERVICES  

In SpW-PnP, the term service is used more to describe the capabilities offered by the 
network than to describe a traditional software service. This stems from the standard’s 
philosophy of largely leaving implementation details out. There are considered to be 
four core services within the SpW-PnP standard:  the Device Identification, Network 
Management, Link C onfiguration, a nd R outer C onfiguration s ervices. Additionally, 
the standard envisions support capability services that offer higher-level capabilities. 
Currently, t wo cap ability s ervices are d escribed:  the Remote M emory Access 
Protocol (RMAP) Data Source and the RMAP Data Sink.  

Table 1.  SpaceWire-PnP Services 

Core Services 
Device Identification Service: The Device Identification Service acts as a ce ntral repository 
where one  c an que ry i nformation a bout a  de vice s uch a s i ts s tatus a nd p rovided c apability 
services. The parameters stored for each device include the device’s identity, type, status, PnP 
level of service, and aforementioned capabilities. With the Level 2 PnP network, an additional 
field is defined in the device status for the owner identity. Device errors may also be reported 
through this service. 
Network Management Service: The N etwork Ma nagement S ervice permits acc ess t o 
parameters which are required for the discovery of devices and network topology. In a Level 
1 n etwork, t he si ngle active n ode al so takes t he r ole o f the m anagement ser vice. Wh en 
multiple a ctive nod es a re introduced w ith the L evel 2 ne twork, s ome mechanism must be  
introduced to a rbitrate c onflicts b etween p otential de vice ow ners. I n s uch a  ne twork, e ach 
active node  ha s a  c orresponding N etwork M anager. U sing a n additional pa rameter f or the 
node priority, conflicts in node ownership are resolved by a vote based on this priority; and, in 
the event of a tie, the port number.  
Link Configuration Service: The Link Configuration Service provides a mechanism for the 
links of a d evice to be queried and configured. This service will configure the link rates for 
each SpaceWire link on a ll connected devices. Additionally, status information including the 
current link rate and port activity may be queried. 
Router Configuration Service: The R outer C onfiguration S ervice p ermits t he f eatures of 
each SpaceWire router to be queried and configured. Foremost, the service is responsible for 
configuring the routing tables for each SpaceWire router under the active node’s ownership. 
Additionally, t he routing c ontrol p arameters of  the r outer a re c onfigured, including th e 
watchdog t imer, arbitration, and t ime code settings. The status of all router settings may be 
queried through this service. 
Optional Capability Services 
RMAP Data Source: The Data Source service allows a device to disclose data in a standard 
way o n an  R MAP i nterface.  B oth R MAP t argets and i nitiators m ay b e d escribed an d 
configured t hrough t he ca pability ser vice. A  t arget data source p rovides a n i nterface f or 
RMAP reads, while an initiator data source provides an interface for RMAP writes. Only one 
component may use the data source at a  time. Optionally, a target data source service may 
support a queue for pending read operations. 
RMAP Data Sink: Data sinks operate in a similar manner to data sources, but in the opposite 
data d irection. T arget si nks provide an i nterface f or R MAP w rites, w hile initiator sinks 
provide an interface for RMAP reads. 
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The c ore s ervices of  a  SPA ne twork, know n a s t he S PA Services M anager ( SSM), 
extend be yond ne twork di scovery a nd c onfiguration. T he c ore s ervices i n a  SPA 
network with SPA-SpaceWire (SPA-S) infrastructure provide for topology discovery 
and de vice di scovery as w ell a s pr oviding m echanisms b y w hich c omponents m ay 
locate desired data services and establish a connection to them. Four core services are 
necessary i n t he S PA n etwork: t he C entral A ddressing S ervice (CAS), t he S PA 
Lookup Service, t he SPA-X subnet manager – a SPA-S m anager i n t he case o f our 
SpaceWire network, and the SPA Local manager. 

Table 2.  SPA (with SPA-S Subnet) Core Services 

Core Services 
Central Addressing Service: The C entral A ddressing Service is r esponsible for i ssuing 
blocks of addresses to subnet managers. When a SPA system starts up, the subnet managers 
request a block of addresses from the CAS. The CAS responds with a block of addresses for 
the requesting subnet manager to use. The CAS must reside on a  node that contains a  SPA 
Local Manager. 
SPA Lookup Service: The S PA L ookup S ervice s erves a s a c entral r epository f or 
information about the components on t he network. This information includes the Extensible 
Transducer Electronic Data Sheet (xTEDS) for a device and its unique ID. Within the xTEDS, 
a device will describe its configuration and any data services that it may provide. Components 
may subscribe to particular data services through the Lookup Service. There is a single active 
instance of the Lookup Service on a SPA network. 
SPA Subnet Manager: The complexity of a SPA network is largely hidden within the SPA 
subnet m anagers. T he s ubnet m anager pe rforms t opology di scovery f or t he s ubnet i t i s 
responsible for. The manager detects new components added to the subnetwork and assigns 
them a  un ique a ddress. S ubnet m anagers a re also responsible for r outing pa ckets t o t he 
components that are under its influence.  
On a S paceWire su bnetwork, t here would r eside a t l east two S PA managers:  a S paceWire 
manager an d a local S PA manager. T he SpaceWire subnetwork manager i s r esponsible f or 
(managing) t he co nnected S paceWire resources. The S PA L ocal M anager provides an 
interface between the SpaceWire manager and the other SPA services. 

2.2 NETWORK DISCOVERY AND CONFIGURATION 

In a SPA-S network, the SpaceWire subnetwork manager is responsible for network 
topology discovery. When the network is first powered on,  the subnetwork manager 
registers itself with the CAS and acquires a block of addresses that it may allocate to 
its s ubnetwork c omponents [2]. Concurrently, the s ubnetwork m anager i teratively 
probes its network for connected components. When the manger receives its assigned 
block of addresses, it will allocate an address for each component and notify each in 
turn of its address [3]. 

Components i n a  S PA n etwork are each responsible f or t heir o wn x TEDS 
configuration doc ument. D uring t he t ime t he s ubnetwork m anager is pr obing 
components on i ts ne twork, e ach component r eplies w ith its  Universally U nique 
Identifier (UUID) and its xTEDS UUID. The subnet manager relays this information 
to t he SPA Lookup Service. Following the t opology di scovery process, the Lookup 
Service w ill s ubmit qu eries f or a  component’s x TEDS to t he m anaging s ubnet 
manger. The manager in turn forwards this request to the component. The component 
responds w ith a m essage c ontaining i ts x TEDS w hich i s f orwarded t o the Lookup 
Service [2]. 
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While the details of  network topology discovery are largely missing f rom the SpW-
PnP draft, papers by the standard’s authors have given methods for how it would be 
accomplished. Within the SpW-PnP framework, there is the notion of an active node. 
Active node s pe rform n etwork di scovery f or t heir s ection of  t he n etwork. P assive 
nodes do not  have any knowledge of the network topology and must be assigned an 
active node owner. Active nodes are a lso responsible for configuring and managing 
the passive nodes that they own [1]. The active node discovers the devices connected 
to it b y iteratively querying e ach active lin k that it c an f ind. S imulations h ave 
indicated that breadth-first searches are most efficient for network discovery [4].  

In a n SpW-PnP ne twork, de vice c onfiguration i s pe rformed dur ing t he de vice 
discovery pr ocess. H owever, t his doe s n ot e xport t he x TEDS doc uments. It is  
conceivable t hat x TEDS s upport c ould be  a ccomplished us ing t he da ta s ource a nd 
sink capability services described in the standard [3].  

2.3 DATA TRANSACTIONS 

When a  c omponent r egisters w ith t he SPA Lookup S ervice, any d ata s ervices i t 
supports a re i ncluded w ith i ts xTEDS doc ument. W hen a  c omponent w ishes t o 
subscribe to such a data service, the component contacts the Lookup Service to query 
for the type of data it wishes to consume. The Lookup Service will provide a route to 
the c omponent o r components pr oviding t he t arget da ta s ervice. From t he l ist, t he 
component w ill c hoose t o s ubscribe t o one  or m ore pr oviders. G enerally, t he 
component w ill r equest t he s ubscription f rom the Lookup S ervice w ho m anages 
subscriptions so that subscribers can be notified when a provider leaves the network. 
As data becomes available, the provider transmits directly to the subscriber. 

Within an SpW-PnP network, information about a device’s capability services – data 
sinks or  da ta s ources – is r ead b y t he Device Identification S ervice. A c omponent 
desiring t o r eceive or  p ublish a  pa rticular d ata product m ay determine a m atching 
service by inquiring through the active node. The component will establish an RMAP 
connection w ith t he s ource/sink us ing t he capability s ervice’s pr otocol. A fter t he 
connection is established, normal RMAP transactions may be used to read or write the 
data.  

2.4 COMMON ELEMENTS 

After co nsidering t he s ervices us ed b y each p rotocol, e lements c ommon to t he t wo 
standards become clear. These similarities between SPA and SpW-PnP were compiled 
to aid in the process of  defining an abstraction layer. Table 3 de scribes some of  the 
commonalities between the standards as they are deduced from services and pertain to 
the mechanics of the network. 
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Table 3.  PnP Abstraction API 

Similarities Description 
Data sheets Both standards are c ommitted to  a n E lectronic D ata S heet ( EDS) 

format, with similarities between the two formats. 
Capability database In both, there is a central service in charge of maintaining a lookup of 

capabilities provided and services requested by registered devices. 
Device dictionaries There e xists in bo th a  standardized v irtual device i nformation 

repository (Common Data Dictionary and Dictionary of Terms), and 
there is evidence that these two dictionaries will align. 

Network 
identification 

In both networks, devices connected to the network are given unique 
network identifiers. 

Network changes Both networks are able to adapt to topology and composition changes 
as they occur. 

3 PLUG-AND-PLAY ABSTRACTION 
Considering the elements in common between these two s tandards, we can begin to 
define an  ab straction l ayer capable o f c ommunicating w ith ne tworks conforming t o 
either standard. 

3.1 PROPOSED ARCHITECTURE AND API 

Our pr oposed a pproach t o t he pr oblem of  s upporting t hese s tandards i nvolves a 
layered s oftware ar chitecture w ith an  API for applications. T he A PI e xploits the 
commonality we have defined between the PnP s tandards while the complexity and 
areas o f d ivergence m ay be h idden i n t he l ower levels o f t he a rchitecture. Figure 1 
displays the software hierarchy for the adaptation architecture.  

 

Figure 1.  Adaptation Software Hierarchy 

Applications invoke the adaptation API directly to communicate with other nodes on 
the network. The API will invoke functions from either the SPA adapter or the SpW-
PnP adapter based on the type of PnP network the software resides on or is targeting. 
Figure 2 depicts how an application – a Network Attached Storage (NAS) application 
in this case – might support communications with both a SPA/SPA-S network and an 
SpW-PnP network.  

Application
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Figure 2.  Adaptation Network Example 

In t he A PI, w e pr opose s upporting t he m ajor f unctions a  c omponent m ust perform 
when c onnecting t o a  P lug-and-Play n etwork. T hese f unctions i nclude component 
discovery, component configuration, data services connection, and data transmission 
between c omponents. In d efining th is A PI, w e assume that S pW-PnP w ill ha ve a  
mechanism in place that supports exporting an xTEDS for a device. This assumption 
is necessary to choose a single document format for component configuration. Table 4 
lists our proposed functions for the PnP abstraction. We will describe in greater detail 
the implementations of these functions in subsequent sections. 

Table 4.  PnP Abstraction API 

Function Description 
spnp_init Configures the SpaceWire abstraction library.  
spnp_configure Configures the component for the network type.  
spnp_connect Establishes a connection between the device and a data service on the 

network. 
spnp_release Terminates an existing connection. 
spnp_data_avail Callback t o n otify t he co mponent t hat d ata f rom t he ser vice it is 

connected to is ready. 
spnp_data_recv Receives data from the connected service or component. 
spnp_data_send Sends device data to the connected service or component. 

3.2 NETWORK DISCOVERY AND DEVICE CONFIGURATION 

The adaptation layer must comply with the messaging requirements for each standard 
during t he ph ase of  d evice ( and o n a l arger s cale, network) discovery. T his c an 
happen a t two points in the l ifetime of  the network – during network power-up and 
when a device is newly connected to the network. To the application, this process is 
abstracted within the spnp_configure function. Each network adapter must respond to 
the specific protocol of the network it is configured to operate with. In the case of a 
SpaceWire-enabled S PA ne twork, t his r equires waiting for and r esponding t o t he 
probe message. Once the subnetwork manager receives its allocation of addresses, the 
manager will i ssue a n a ddress t o t he c omponent. The software mu st w ait f or this 
address assignment. S imilarly, the SpW-PnP adapter must support the active node’s 
query at which time the address of the device is set. 
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Following a ddress a ssignment, the spnp_configure function w ill in itiate a ny 
additional de vice c onfiguration. In t he c ase of a  S PA ne twork, t his i nvolves 
forwarding i ts x TEDS t o t he Lookup S ervices t hrough the subnetwork m anager. I n 
SpW-PnP the mechanism for exporting xTEDS is ambiguous. We assume that either a 
capability service or higher-level service – such as the Spacecraft Onboard Interface 
Services (SOIS) Device Virtualization Service – will support xTEDS export. 

3.3 DATA TRANSACTIONS 

In our  API, we group data t ransactions into four separate operations: connect, send, 
receive, and r elease. T he spnp_connect will es tablish a co nnection b etween 
components for either data receipt or transmission. The connection process covers two 
phases:  1) finding a n acceptable d ata s ervice pr ovider a nd 2)  establishing t he 
connection to the provider. For a SPA network, this would involve finding and then 
negotiating a  c onnection w ith t he L ookup S ervice. In a n S pW-PnP n etwork, t his 
requires q uerying t he D evice Identification S ervice f or a  co mpatible d ata s ink or  
source and then negotiating a connection with the node that provides the data service.  

Once t he c onnection ha s be en e stablished, t he application m ay b egin t o r eceive o r 
send d ata. If th e application is  r eceiving d ata, it  mu st w ait f or th e spnp_data_avail 
callback. The adapter software will invoke the callback when the data service has data 
ready f or t ransmission. D ata receipt and t ransmission a re pe rformed w ithin t he 
spnp_data_recv and spnp_data_send functions. D uring spnp_data_send, t he S PA 
adapter w ould n eed t o format al l d ata i n a S PA d ata p acket p rior to sending t he 
SpaceWire packet. Similarly, the SpW-PnP adapter would need to format an RMAP 
packet for the data write. For spnp_data_recv, the respective adapters would strip off 
packet headers – the SPA data packet header for SPA networks or the RMAP header 
for SpW-PnP networks – before handing the data to the application. 

4 CONCLUSION 
With mu ltiple P lug-and-Play s tandards emerging f or S paceWire, it is  imp ortant to  
find c ommon gr ound between t hem for t he s ake of  i nteroperability. Having a n 
abstraction layer which takes advantage of these common elements would be helpful 
to ap plication an d s pacecraft d esigners s eeking t o i ncorporate S paceWire el ements 
into their Plug-and-Play network. We were able to analyze the two standards in search 
of commonalities, and used our findings to define an API for adapting applications to 
be used by either SPA or SpaceWire-PnP. 
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ABSTRACT 
 
Early techniques used to discover the topology of a dynamic SpaceWire network have 
typically relied on prior knowledge of some protocol implementation. Systematically 
generated request messages, when responded to by each routing switch or end-node, 
facilitated discovery. The challenge today, however, is to discover and map network 
topology without relying on any one protocol implementation - or even any 
SpaceWire protocol. By exploiting the design of SpaceWire routing switches, 
discovery is possible on dynamic, heterogeneous SpaceWire networks using the 
concept and technique of looping messages back to oneself.  Exploring the advantages 
and implications of such a viable technique may lead to a new standard for network 
discovery. 

1 NETWORKS AND NODES 
Using the te rms a nd d efinitions from t he European C ooperation f or S pace 
Standardization (ECSS) Glossary, and bui lding u pon the S paceWire foundation [1], 
the notion of a dynamic SpaceWire network is one in which the links between routing 
switches and nodes c an be added or  removed in a  Plug-n-Play like fashion.  When 
links be tween r outing s witches a re m anipulated, t he t opology of  t he S paceWire 
network changes.  W hen l inks between nodes and routing switches are manipulated, 
packet sources and destinations appear and disappear.  

This p aper w ill b egin by d ifferentiating b etween Network Discovery and Node 
Discovery.  T he f ormer i nvolves t he s ystematic pr obing f or S paceWire r outing 
switches, a nd t he l atter i nvolves pol ling s witches f or l inks t o node s, and then 
identifying such. 

When pr obing f or r outing s witches, early network discovery t echniques t ypically 
relied on each routing switch’s configuration port to respond to identification requests 
to confirm the routing switch’s presence. A request packet was typically dispatched to 
the configuration port, and a response packet provided confirmation of existence.   

This s ame r equest/response ap proach w as generally u sed for node  i dentification a s 
well.  D ispatching one  or m ore r equests t o a n active l ink ( which m ight be  node  o r 
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another r outing s witch) c ould pr oduce a  r esponse i f a  node  w as pr esent a nd i t 
understood the protocol.  

Recent proposals, such as the SpaceWire PnP Protocol Definition Draft [2], put forth 
basic Service Definitions for device identification, network management, and link and 
router configuration.  This paper will blur the boundaries between Network Discovery 
and routing switch configuration.  Link configuration (particularly speed) is assumed 
to be automatic or take place prior to physical link connection. 

2 NEW PROBING TECHNIQUE 
Per the SpaceWire PnP Draft [2], “SpaceWire does not o ffer a s tandard mechanism 
for detecting the topology of a network.” One aim of this paper is to propose such a 
standard. 

The ne w probing t echnique involves a shift away from the r equest/response model.  
Rather t han di spatching a  r equest t o s ome pos sible ph ysical-path-address on t he 
network, and awaiting a response from a packet receiving/processing/replying entity, 
a s ingle pa cket i s addressed w ith a r ound-trip physical-path-address th at w ill 
essentially “loop” through a possible routing switch and be returned to the originator 
with all path-addressing bytes removed along the way out and back. 

Perhaps the best way to visualize this technique is to think of the SpaceWire routing 
switch a s a “ roundabout” i ntersection w ith a  v ehicle (packet) both entering a nd 
exiting the roundabout at the same point. 

 

The s ignificance to  the p robing entity is  that if  it r eceives the recognizable payload 
portion of a packet back, then that round-trip physical address is valid in most cases. 

To more explicitly reiterate this technique, consider a node acting as a probing entity 
connected to routing switch A’s port five. Switch A’s port three links to  switch B’s 
port two, a nd s witch B’s por t four links t o s witch C ’s por t one.  Therefore, t he 
physical-path-address from the probe to switch C is “34”, and the return path is “125”. 
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By a ddressing a pr obe p acket, [ PACKET], with “34125”, t hen t he pr obe node  w ill 
receive back [PACKET] after it loops through switch C.  Notionally, switch C’s port 
one (1) is the “turn-around point” or the “turn-around port.” 

The Network Discovery process is typically breadth-first. General practice is to begin 
probing one  l ink ( or “ hop”) f rom t he pr obing node, t hen a s r outing s witches a re 
discovered, a n ew lis t o f p otentially viable physical-paths i s generated for one  hop 
beyond that.  P robing can be stopped when the hop c ount reaches a point where the 
new potentially viable list yields no results. 

2.1 BREADTH-FIRST PROBING 
Recall that SpaceWire physical-path-addressing uses addresses in the range of one to 
thirty-one (1-31.) A pr obing e ntity c an di scover i ts ow n por t num ber on i ts r outing 
switch with a single-byte physical address preceding its probe packet payload.  F rom 
Figure 2, the packet containing “5[PACKET]”, when written, will cause “[PACKET]” 
to be read back. 

Round-trip physical-path-addresses are always an odd number of bytes.  The iteration 
technique, w hen generating t he pot ential l ist of  a ddresses f or t he ne xt hop c ount, 
involves inserting different pairs of port numbers just before the turn-around point of 
each known round-trip-address at the previous hop. 

For example, i f the list of known round-trip-addresses for hop num ber two (hop #2) 
was simply “325”, then the initial potential list for hop number three (hop #3) would 
be: 

a) 311
b) 3

25 
12

c) 3
25 

13
d) 3

25 
14

e) 3
25 

15
f) 3

25 
16

g) 3
25 

17
h) 3

25 
18

i) ... 
25 

lll) 388

where the maximum port to be probed is either thirty-one (31) or an implementation-
defined maximum.  F rom the list above, the maximum port to be probed for is eight 
(8.)  H owever, generating pos sible r ound-trip-addresses i s su bject to  certain p itfalls 
(see section 2.3.) 
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2.2 BASIC ROUTER IDENTIFICATION REQUIREMENT 
Discovering physical-path-addresses t hat i ndicate a potentially valid r ound-trip path 
through a routing switch is the first step in mapping a network topology.  In order to 
be able to accurately create a topology map, some unique indicator must be available 
to identify routing switch instances in order to distinguish newly discovered switches 
from ones previously discovered through other physical paths.   
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Since the SpaceWire routing switch design has a configuration component, a request 
for a  r outer ID i s one  method of  r outing s witch identification.  A p otential best 
practice for hardware designers is to allow a hardware component to be used to set a 
unique default ID pe r r outer ( not unl ike t he pu rpose of  a  “MAC” Address fo r a n 
Ethernet “PHY”.)  

Another option for identification involves using the Remote Memory Access Protocol 
(RMAP) [ 3] t o r ead an identification number o r s tring from a non-volatile memory 
location.  The SpaceWire PnP Draft [2] proposes something even more advanced. 

2.3 POTENTIAL PITFALLS 
Probing in the manner described above is subject to several pitfalls.  These pitfalls fall 
into t hree basic categories: d iscovery logic, r outing s witch d esign, a nd nod e 
robustness. 

2.3.1 COINCIDENTAL RETURN PATHS (DISCOVERY LOGIC PITFALL) 
As mentioned above, the receipt of a r ecognizable probe payload does not guarantee 
that t he round-trip physical-path-address actually l ooped at a turn-around point in a 
routing s witch.  There i s a ch ance t hat, b y co incidence, t wo s eparate r eturn p aths 
coming back from the r outing s witch are i dentical e xcept for t he turn-around port, 
itself.  In t his case, t he fact t hat t wo p robe p ackets (with i dentical out bound pa ths) 
successfully m ade their w ay ba ck t o t he pr obing e ntity i s t he c lue n ecessary t o 
identify th is s ituation a nd tr igger f urther a nalysis.  One r eturn p ath co mpletes t he 
loop-back through the routing switch, but the other return path flows through different 
links back to the probing entity. 

Referencing Figure 3, two probe packets addressed as “12115” and “12415” will both 
be r eturned t o t he pr obe e ntity.  Likewise, t wo ot hers a ddressed as “ 42115” a nd 
“42415” will also.  When only the turn-around port is different in the round-trip path-
addresses, the coincidental path should be discarded.  Determining which one should 
be d iscarded requires c onfirming t he i dentity of t he s witch one  hop prior t o t he 
suspected turn-around point.  In the case of the “12115” and “12415” pair, confirming 
that the identity returned by addressing “1” (switch B) matches that returned by “124” 
(also switch B) is required to know that “12415” is the one to keep, and “12115” is 
the one to discard. 

 

2.3.2 ECHOING (DISCOVERY LOGIC PITFALL) 
In the course of  generating the l ist of  potentially viable round-trip paths at the next 
hop c ount, c are m ust be  t aken not  t o “ echo” b ack a nd f orth be tween t wo r outing 
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switches.  F or ex ample, as  d epicted i n F igure 4 , i f a  di scovered round-trip pa th i s 
“34125”, then the temptation to probe for “3414125” should be avoided.  

 

2.3.3 NEVER BACKWARDS (DISCOVERY LOGIC PITFALL) 
Even more general than the echoing pi tfall i s the condition when generating the l ist 
produces any next hop r ound-trip path-address where the next outbound port (at the 
next hop) matches the previous turn-around point.  A s an example, consider the new 
potential pa th of  “341x125” ( where ‘ x’ i s a nything.) A s l ong a s t he bolded ‘ 1’ 
matches th e ‘ 1’ in  “ 125”, t he route w ill br ing t he pa cket ba ckwards (closer to  th e 
probe.) 

2.3.4 INACTIVE OR NON-EXISTENT PORTS (ROUTING SWITCH DESIGN PITFALL) 
As a  pr obing e ntity t ransmits i ts di scovery pa ckets a cross t he ne twork, routing 
switches w ill i nvariably r eceive p ackets p hysically addressed t o por ts that a re not  
active, or do not even exist.  D epending on t he routing switch design, an attempt to  
remove the next physical-address-byte and write the remaining packet to such a port 
could cause a router lockup.  One best practice for a SpaceWire routing switch design 
is to always silently drop packets destined for inactive or non-existent ports. 

2.3.5 BUFFER LIMITATIONS (ROUTING SWITCH DESIGN PITFALL) 
So far, little has been mentioned regarding the contents of the probe packet payload – 
the b ytes that f ind their way back to  the p robing entity indicating that a potentially 
valid round-trip address was di scovered. The i ssue a t hand i s not  so much what the 
probe packet payload contents is, but rather how large it is.  

Using the roundabout analogy presented earlier, suppose that a large truck is pulling 
three large trailers as it attempts to circum-navigate the roundabout.  Before the third 
trailer enters the roundabout from the side street, suppose the front of the truck runs 
into it.  The SpaceWire routing switch design may limit the number of bytes that can 
be buf fered while a  packet i s r etrieved f rom a  por t and then written back to i t.  T o 
minimize the likelihood of such an occurrence, very small payloads should be used in 
the probe packets.   

Note: S ince t he num ber of  b ytes w hich h ave t o l oop t hrough t he r outing s witch 
include both t he r eturn-path portion of  t he address and the payload, t hen the buf fer 
size used in the routing switch design is the key to determining the maximum number 
of “hops” that can be discovered with this technique. 

2.3.6 PACKET PARSING ERRORS (NODE ROBUSTNESS PITFALL) 
This new technique for Network Discovery can create a manageable “storm” of probe 
packets on t he S paceWire ne twork.  T he blast intervals and d elays b etween packet 
transmissions are easily configurable within the probing entity; however, the effects 
of all these physical-path-addressed probe packets on nodes could be problematic.   
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As potentially viable probe packets find their way across links from routing switches 
to nodes, the nodes may encounter bytes from the physical-path-address or  from the 
probe packet payload contents. These bytes may fall where a SpaceWire protocol byte 
is expected. Nodes have the potential of misinterpreting these packets (if they appear 
to be a recognized SpaceWire protocol), or in other cases, nodes may fail to disregard 
these packets (if they appear to be an unknown or unsupported protocol.)   

Although on the surface, this new Network Discovery technique appears to introduce 
the r isk of  node  failures, i t actually c an have the oppos ite e ffect.  B y r equiring this 
discovery technique to be used during the design and testing of routing switches and 
nodes, the entire network can be tested for a higher level of reliability and robustness 
before final implementation. 

2.4 COMPLETING NETWORK DISCOVERY 
When the probing process is completed, a  results table will contain all valid round-
trip physical-path-addresses a nd c orresponding r outer i dentities. M ultiple r ows m ay 
be found for any router identity signifying multiple paths to the router.  At this point, 
a logical addressing scheme can be used to compile route tables. These tables can be 
generated w ith an y d esired r egional a ddressing s upplement. Note t hat section 2. 6 
contains a method for consistent logical address assignment based on t he concept of  
affinity. 

Routing s witches ma y be p artially c onfigured n ow.  S pecifically, s witch-to-switch 
logical address routes may be inserted into all route tables.  Node Discovery is now 
possible using ei ther p hysical-path or (routing switch le vel) logical ad dressing 
combined with (node level) physical addressing. 

Finally, the results table can be used to dynamically visualize the network. Depicted 
are t he pr obing e ntity ( blue), a nd r outing s witches f rom t wo s eparate vendors (red, 
and green.)  Presumably, t he i dentification of  r outing s witches m ay h ave i nvolved 
more than one technique (per section 2.2.) 

 

2.5 POLLING FOR NODES 
The process o f Node Discovery involves the systematic p olling of nodes for 
management information. Node D iscovery requires t hat e ach node r eceive an d 
process a request packet, then respond. 
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As of the writing of this paper, the authors are unaware of an adopted standard in the 
SpaceWire community to address Node Discovery in a multi-vendor, heterogeneous 
SpaceWire network. 

A proposal to adopt an Internet s tandard, such as the S imple Network Management 
Protocol (SNMP), could remedy the situation.  Specifically, adoption of SNMPv1 [4] 
as a  S paceWire-supported pr otocol w ith a  m inimal required implementation o f th e 
“System” group fro m R FC-1213 [5] c ould enable s tandardized Node D iscovery as 
well a s pr ovide a  s ingle t echnique f or r outing s witch a nd e nd-node identification.  
Such adoption may be consistent with one of the aims of the SpaceWire PnP Draft [2] 
to “leverage existing technologies as much as possible.” 

2.6 LOGICAL ADDRESS ASSIGNMENTS – AFFINITY 
The notion of affinity (of a S paceWire logical address to a particular switch or node) 
can be  bor rowed f rom t he plug-n-play behaviour of  m any c omputers a nd pe rsonal 
computing devices. Consider how portable storage devices or serial communications 
devices are often managed when they are attached to a computer: 

For example, upon the first attachment of a USB modem to a personal computer (PC), 
the U SB plug-n-play device m anager w ill d etermine t he d evice t ype an d s erial 
number of the modem.  If this specific device is not listed within a registry, then it is 
assigned the next unused “COM” port and added to the registry.  In the future, each 
time the device is subsequently attached, its registry information is used to re-assign 
the s ame “COM” por t a s be fore, s o t he de vice has a n affinity t o a  pa rticular por t 
number.  T he rationale f or th is b ehaviour is  th at h umans w ill n aturally remember 
which C OM por t i s which ove r t ime, a nd hum ans w ill w ant c onsistency i n 
assignments. 

Another example of affinity is the manner in which Dynamic Host Control Program 
(DHCP) servers typically assign Internet Protocol (IP) addresses.  When a request for 
an IP address is made, most DHCP servers will attempt to re-assign one that was last 
used by the requesting MAC if that IP address is not already in use. 

This same notion applies to dynamic plug-n-play SpaceWire networks.  When a new 
routing s witch or  node  i s di scovered, t he pr obe e ntity c an a ssign t he n ext unus ed 
logical a ddress f or t he r egion.  If t he pr obe ha s a  m eans t o pe rsistently save t he 
identity of  t he di scovered s witch or  node , along w ith its  n ewly a ssigned lo gical 
address, t hen s ubsequent r e-discoveries of  t he s ame e ntity can r esult i n c onsistent 
logical address re-assignment. 

3 SUMMARY 

The t echniques de scribed a bove f or Network Discovery and Node Discovery are 
indeed different.  W hile the request/response type of discovery technique is required 
for node  di scovery, t he be nefits of  us ing r ound-trip p hysical-path-addressed 
SpaceWire packets to discover routing switches are many.  Chief among them is not 
relying on packet processing entities to support (understand) one or more SpaceWire 
protocols.  E ssentially, i f a  routing switch has active l inks on t he network, and i t i s 
functioning with a unique identity, then it can be discovered and mapped through its 
switch-to-switch links.  
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ABSTRACT 
The SpaceWire working group on Plug-And-Play have drafted a protocol 
specification to allow network discovery and the detection of configuration changes in 
the network. The objective of using these techniques is to support rapid integration of 
future spacecraft that are using SpaceWire networks. In this paper, we recall the need 
for formalising and breadboarding the current draft standard for SpaceWire 
Plug-And-Play as well as the features that a demonstrator for such breadboard should 
exhibit. We also explain how this issue should be tackled through the ESA/TRP 
activity “Network Discovery Protocols”. We discuss the capabilities of SpaceWire 
Plug-And-Play on an example of complex on-board data systems architecture and we 
describe the steps still to be taken in order to prepare for the standardisation of the 
SpaceWire Plug-And-Play protocol by the appropriate ECSS Working Group. 

1 BACKGROUND 
Through several years of standardisation and technology development activities, the 
European Space Agency (ESA) have prepared the SpaceWire technology that allows 
embarking high speed data networks on board spacecraft. This new technology has 
become widely adopted not only by ESA missions but also by other agencies and 
industries. 

The SpaceWire standard [1] defines the aspects of a highly flexible and capable 
communication system which roughly correspond to the physical and data-link layers 
of the ISO Open Systems Interconnection (OSI) basic reference model. The standard 
also defines a number of features which fit into the network layer of this model. 
Whilst following the standard does ensure a certain degree of interoperability, which 
is further extended by the protocol identification mechanism [2] and the SpaceWire 
standard protocol suite ([3], [4]), SpaceWire networks must still be designed, 
constructed, and configured carefully for a given application, usually requiring 
customised software and/or hardware. 

The lack of standardisation for simple configuration tasks required on almost all 
SpaceWire networks limits the level of interoperability which may exist between 
devices and software, and the extent to which both hardware and software can be re-
used between different applications. 
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The SpaceWire working group on Plug-And-Play (PnP), consisting in European and 
US experts from industry as well space agencies, have drafted a protocol specification 
to allow network discovery and the detection of configuration changes in the 
network [7]. The objective of using these techniques is to support rapid integration of 
future spacecraft subsystems that are using SpaceWire networks. 

In its latest version, the draft SpaceWire PnP protocol is based on the syntax and 
synchronisation rules of the SpaceWire Remote Memory Access Protocol 
(RMAP) [3]. This draft protocol specification is quite advanced but, in view of its 
standardisation in the frame of the European Cooperation for Space Standardisation 
(ECSS), it must be completed and validated through breadboarding, verification, and 
demonstration.  

This is currently being done in the frame of the “Network Discovery Protocols” 
Research & Development (R&D) contract kicked off in October 2011. This contract is 
funded under the ESA Technology Research Programme (TRP). 

The overall goal of this activity is to further define design, breadboard, test, and 
validate a SpaceWire Plug-And-Play protocol, and produce the related documentation. 
To this purpose, such a protocol will first be designed and described in detail. Then, a 
SpaceWire Plug-And-Play test bed will be built up mainly from existing SpaceWire 
equipment. The necessary functions to support the PnP protocol will be implemented 
in firmware and/or in software. Functional tests and overall demonstration will be 
performed, assessing the usefulness and deriving recommendations for improvements. 

2 OBJECTIVES 
SpaceWire does not offer a standard mechanism for detecting the topology of a 
network, or what devices are attached to it. Nor does it offer a standard mechanism for 
configuring the various aspects of a SpaceWire network, such as links and switches. 
SpaceWire also lacks standard features to assist detection or configuration beyond the 
network, in the service domain. It is the aim of the SpaceWire-PnP protocol to add 
these features, within the scope of what is practical. 

The first objective of this activity is to design a SpaceWire Plug-And-Play protocol 
that fulfils all these needs and to describe it in a form as close as possible to current 
ECSS writing rules in order to prepare for later standardisation of this protocol at 
European level. 

2.1 BASIC PRINCIPLES OF PLUG-AND-PLAY 

The aim of SpaceWire-PnP (Plug-And-Play) is to provide standardised, interoperable 
mechanisms for performing key functions associated with SpaceWire networks. The 
term ‘Plug-And-Play’ originates from the commercial electronics market where a 
range of techniques were developed to improve the user experience of device 
integration. From the perspective of a space user, application of the term 
‘Plug-And-Play’ indicates that it should be possible to interface two or more arbitrary 
devices without the need for configuration. Plug-And-Play generally involves two key 
aspects: 
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Figure 1 - Example of configuration to demonstrate SpW PnP features 

1. Automatic discovery and configuration of hardware and software systems in 
response to changes in physical interfacing or availability, including whilst the system 
is running (‘hot plugging’); in other words, the capability to detect any connection or 
disconnection of Plug-And-Play enabled devices. 

2. Detection, registration, and configuration of the services that a newly 
connected Plug-And-Play enabled device provides; as well as detection and de-
registration of the services that a newly disconnected Plug-And-Play enabled device 
was providing. 

2.2 FULL COMPATIBILITY WITH THE CURRENT SPACEWIRE STANDARD SUITE 

The overall goal of the SpaceWire-PnP standard is interoperability at the Network 
Level as defined in [1]. As such, SpaceWire-PnP should provide services to discover, 
identify and configure the features of a SpaceWire network, as covered by the next 
revision of the SpaceWire standard [5], plus a few more corresponding to only the 
most common use cases. 

SpaceWire-PnP should not require devices to support more of the SpaceWire standard 
than is required to achieve their objectives: if something is optional in the SpaceWire 
standard, SpaceWire-PnP should not require that it be implemented. 
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2.3 VALIDATION 

The second objective of this activity is to implement and test the SpaceWire network 
discovery and configuration capabilities of the Plug-And-Play protocol and techniques 
over a real SpaceWire network. This will be done through testing of each protocol 
feature whenever possible, and through demonstration of the overall capabilities of 
the protocol. From the testing and demonstration, recommendations for improvements 
will be derived which will support the process of standardisation of the SpaceWire 
Plug-And-Play protocol. 

For the validation of these new features at breadboard level, the test setup should be 
mainly based on existing SpaceWire equipment modified and upgraded with the 
Plug-And-Play capabilities. Figure 1 shows an example of configuration to 
demonstrate SpW PnP features. 

3 EXAMPLE 
Figure 2 shows a representative architecture for on-board data systems as well as 
space-to-ground telecommunication. 

3.1 LINEAR NETWORKS 

We consider now Figure 2 in which the SpaceWire link in dotted lines between the 
two central switches (S2 and S4) is not connected, because the rate of the data 
potentially flowing between these two switches is, in the worst case, lower than the 
maximum SpaceWire data rate allowed for the given on-board data systems 
architecture. Assuming that the network is discovered from each of the Payload Data 
Handling Units (PDHU) and according to the algorithm baselined for the SpW PnP 
protocol ([7], [12]), the resulting networks explored, before node merging phase, is 
shown in Figure 3. 

The first conclusion that we can draw from this network exploration is that networks 
#4 and #7 are identical, as well as networks #3 and #8. The second conclusion is that, 
although the on-board data systems network shown in Figure 2 seems very complex, 
there is actually no loop in the explored networks. The second phase of the network 
discovery algorithm (merging nodes or networks) is therefore not required in this 
case. This on-board data system is in fact made of six linear networks. The SpaceWire 
Plug-And-Play service can then proceed with the discovery and configuration of the 
services provides by each of the terminal nodes in each network. 

The configuration of logical addresses for these six networks is straightforward – 
since they contain no loop – and can be fully handled by the SpaceWire 
Plug-And-Play service. The six networks being independent, the same logical address 
may be assigned to the four SpaceWire interfaces of the PDHU, which might reduce 
the complexity of the applications running on other terminal nodes (instruments and 
Spacecraft Management Unit – SMU). The same applies to the two SpaceWire 
interfaces of the SMU. For the same purpose, it is also possible to assign the same 
logical address to the Nominal and Redundant SpaceWire interfaces of each 
instrument, provided that the switching tables in each switch is carefully designed.  
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Figure 2 - Example of representative data systems architecture 
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With this scheme, it is even possible to allow Group Adaptive Routing (GAR, as 
defined in [1]) between the two switches to enable SpaceWire-level automatic Failure 
Detection, Isolation, and Recovery (FDIR). 

 

Figure 3 - Exploration of Linear SpaceWire Networks 

3.2 NON-LINEAR NETWORKS WITH SIMPLE LOOPS 

We now assume that a second link is connecting the two central switches (the 
SpaceWire link in dotted lines between switches S2 and S4 in Figure 2 is now 
connected) in order to accommodate more data rate between these two switches. As 
shown in Figure 4, a simple loop is introduced in network #4/7. Since this loop 
involves only two switches, the node merging phase of the network discovery 
algorithm is straightforward and the assignment of logical addresses can follow the 
same pattern as described for the previous case (linear network). 

3.3 NON-LINEAR NETWORKS WITH COMPLEX LOOPS 

If we want to increase even more the possibility of using redundant paths in case of 
failure, we can connect switches S1 and S2 together via an additional SpaceWire link, 
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as well as switches S3 and S4. This introduces a complex loop and increases 
significantly the number of possible paths from one terminal node to another, e.g. 
from an instrument to the PDHU. 

An illustration is provided in Figure 5. A reasonable network discovery algorithm 
would now consider this physical network as only one logical network, assigning 
different logical addresses to each of the terminal nodes, and therefore to different 
SpaceWire interfaces of the same spacecraft unit (e.g. the PDHU), although this might 
not be the preferred option for the system spacecraft designer. 

This advocates for the SpaceWire Plug-And-Play services to be complemented with 
some tools allowing Computer Aided Design (CAD) of SpaceWire networks. 

 

Figure 4 - Exploration of Non-Linear 
SpaceWire Networks with Simple Loops 

 

Figure 5 - Exploration of Non-Linear 
SpaceWire Networks with Complex Loops 
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4 CONCLUSION 
Once designed, formally verified, breadboarded, and validated, the Plug-And-Play 
services and protocol presented in this paper will be handed over to the SpaceWire 
Working Group for endorsement. They will then be subject to formal standardisation 
by the European Cooperation for Space Standardisation (ECSS).  

This paper also showed the need for the SpaceWire Plug-And-Play services to be 
complemented with some tools allowing Computer Aided Design (CAD) of 
SpaceWire networks. Such tool should be specified by the SpaceWire Working 
Group. Its breadboarding and validation could possibly be supported by ESA R&D 
activities. 
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ABSTRACT 
Historically, the integration of spacecraft systems has been an expensive proposition 
because it requires much dedicated time. Plug-and-Play (PnP) describes a mechanism 
by which devices can be discovered and configured automatically to be ready for use 
soon after th ey are in serted in to a  s ystem. Although P nP i s already ub iquitous i n 
terrestrial c omputing, it h as n ot yet b ecome w ell e stablished in  s pacecraft s ystems. 
Application of  P nP t o s pacecraft s ystems pr ovides m uch pr omise f or r educing 
integration efforts. 

Since f irst s tandardized, S paceWire ha s ga ined w idespread popul arity for us e i n 
spacecraft systems because of its simple circuitry, low power consumption, and high 
link speeds. In 2007, a  working group developed an initial proposal for adding PnP 
capabilities to  SpaceWire. Based on t his work, two different proposals emerged and 
are n ow und er consideration f or s tandardization. The first, “S pace Plug-and-Play 
Avionics – SpaceWire” ( SPA-S) w as s ubmitted t o t he American Institute o f 
Aeronautics a nd A stronautics (AIAA). The second, “S paceWire-PnP P rotocol 
Definition,” w as s ubmitted to  th e European C ooperation f or S pace S tandardization 
(ECSS). In t his pa per, we ch aracterize the expected p erformance of t hese pr otocols 
for network discovery and identify some factors that could influence performance. 

1 INTRODUCTION 
Historically, s pacecraft integration has b een both a time-consuming and ex pensive 
proposition. A key challenge has been to quickly establish communication pathways 
between a myriad of spacecraft components in order to establish proper data flow. A 
part of the difficulty lies in the fact that many spacecraft are purposed for a particular 
mission a nd consequently have unique c ombinations of s ensors, a ctuators, a nd 
processors. 

Recent years h ave s een a significant push f or a r eduction in c ost a nd dur ation of  
spacecraft integration efforts. The U.S. Department of Defense has funded a series of 
initiatives for Operationally Responsive Space (ORS) aimed at decreasing the cost of 
creating space assets and increasing the speed of deployment. In April 2007, a  report 
was s ubmitted to  th e C ongressional A rmed Services C ommittee w hich broadly 
defined ORS as “assured space power focused on t imely s atisfaction of  J oint Force 
Commanders’ needs” [1].  The report breaks down responsiveness into tiers, with the 
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goal for delivery of capabilities requiring existing technologies on the order of days-
to-weeks. In addition to the U.S., Europe has also expressed interest in improving the 
responsiveness o f t he s pace enterprise [ 2]. An important e lement o f improving 
responsiveness is the development of better technologies. 

Plug-and-Play (PnP) is one  t echnology which offers some promise f or r educing 
integration e ffort.  The term P nP i s of ten us ed t o describe a m echanism b y w hich 
devices can be di scovered and configured automatically soon after they are inserted 
into a  system.  It is  a lready ubiquitous in  terrestrial computing, and efforts are well 
underway to apply it effectively to spacecraft systems.  

In 2007, a s mall w orking group de veloped a n i nitial pr oposal f or a dding P nP 
capabilities t o S paceWire. From th is in itial e ffort, tw o proposed standard pr otocols 
emerged: Space P lug-and-Play A rchitecture - SpaceWire ( SPA-S) an d 
SpaceWire-PnP. Each pr oposed s tandard ha s a s lightly di fferent s et o f s ervices an d 
benefits. 

In this paper, we highlight some of the dissimilarities between the proposed standards 
with e mphasis on ne twork di scovery and device configuration. In a ddition t o 
describing some of  t he protocol features, w e p rovide some analysis o f t he ex pected 
performance of each. 

2 COMPARISON OF PLUG-AND-PLAY PROTOCOLS 
SPA-S a nd SpaceWire-PnP provide slightly different a pproaches to a ccomplishing 
network discovery and device configuration on a SpaceWire network. 

2.1 SPA-S 

Space Plug-and-Play Architecture (SPA) is a collection of standards to facilitate rapid 
development, i ntegration, and t esting of  s pacecraft. SPA w as i ntroduced by t he Air 
Force Research Laboratory (AFRL) and later investigated by collaboration with many 
other government a nd i ndustry partners [ 3]. A SPA r eference imp lementation was 
implemented in s oftware by a  group at the U tah S tate University S pace D ynamics 
Lab. SPA a llows a  ne twork of  s ensors, a ctuators, a nd pr ocessors t o s elf-organize 
regardless of  t he t opology and c omposition of  t he ne twork. SPA-S provides a 
subnetwork specification for SPA with SpaceWire as the physical layer.  

With th e SPA, ne twork di scovery i s dr iven b y network m anagers

Because a SpaceWire subnetwork can be connected to multiple subnetworks, several 
network m anagers can coexist o n t he s ame subnetwork. Every ne twork m anager 
performs ne twork di scovery f or i tself, de termining a  pa th t o e ach e lement of  t he 
subnetwork to w hich i t i s co nnected. Network managers do  not  take o wnership of  
nodes. Instead, they simply learn the location of each node and pass down addressing 
and identification from the core SPA services to them. 

 that live at th e 
border of two adjacent subnetworks. For instance, a network manager might bridge a 
SpaceWire s ubnetwork ( SPA-S) a nd a  l ocal s ubnetwork ( SPA-L). O ther c ore SPA  
services are attached to these local subnetworks. 
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2.2 SPACEWIRE-PNP 

Another proposed standard, S paceWire-PnP, w as de veloped b y t he U niversity o f 
Dundee and submitted for s tandardization t o t he E uropean C ooperation f or S pace 
Standardization (ECSS) [4].  A pr ototype implementation is currently under 
development b y S ciSys and will be  us ed t o evaluate t he pr otocol.  SpaceWire-PnP 
includes the f ollowing services:  device id entification, n etwork ma nagement, lin k 
configuration, and router configuration. 

The de vice i dentification a nd ne twork m anagement s ervices pr ovide t he s upport 
needed by S paceWire-PnP for ne twork di scovery. At t he h eart of t he ne twork 
management service is the concept of active nodes

The SpaceWire-PnP provides two support levels: Level-1) M anaged N etworks a nd 
Level-2) Open Networks. In a 

. When active nodes come online, 
they discover the nodes on the network by doing a breadth-first search. Active nodes 
gain “ownership” of  passive nodes as they are d iscovered.  Complex networks may 
have more than one active node. 

Managed Network, network designers ensure that there 
is no c ompetition between active nodes for ownership of  passive nodes. In an Open 
Network

3 PERFORMANCE 

, m ultiple a ctive node s vi e f or ow nership of  pa ssive node s; a  r esolution 
algorithm is used to eliminate conflicts. 

Network di scovery for both S PA-S an d S paceWire-PnP de pend on a breadth-first 
search al gorithm. Each n etwork m anager o r a ctive n ode m ust s earch t he en tire 
subnetwork. Thus, expected performance is O(N +L), where N is the number of nodes 
on the network and L is the number of links. 

For both pr otocols, specific timing r equirements ha ve not  be en l evied on de vices.  
This makes comparison of  t iming between the protocols di fficult without evaluating 
particular implementations. Experimental research i s needed to realistically evaluate 
performance. Southwest Research Institute (SwRI®) is currently conducting ongoing 
experimental research to evaluate implementations of these protocols. 

Performance will be influenced by several implementation factors: 

• Device Protocol Support. 

The message format for S paceWire-PnP i s ba sed on t he R emote M emory 
Access Protocol (RMAP).  Since many devices today support a hardware core 
implementation of RMAP, these could be adapted to support SpaceWire-PnP. 
Since t he pr otocol us es c ommand-response m essaging, ha rdware s upport 
would improve speed. 

To comply with SPA-S, an end node must only keep a routing path to a Subnet 
Manager (SM-s). Nevertheless, since routing messages through the SM-s can 
overload i t, i t is de sirable f or e nd node s t o c ache r outes t o ot her node s that 
they communicate with often. 
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• Network Topology. 

A larger network will take longer to map than a smaller one.  Timing delays 
for an Open Network will be less controlled than a Managed Network. 

4 CONCLUSION 
Protocols for adding plug-and-play capability to SpaceWire have started to mature. As 
we move forward to adopt these implementations for use on missions, we must keep a 
cautious eye o n p erformance. Performance w ill l ikely b e i nfluenced much by t he 
support included within SpaceWire devices for these emerging protocols. 
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ABSTRACT 
Aeroflex Gaisler has developed in collaboration with the European Space Agency 
(ESA) an initial protocol for the transmission and synchronization of CCSDS 
Unsegmented Code (CUC) time in SpaceWire networks. The working name of the 
protocol is "SpaceWire - CCSDS Unsegmented Code Transfer Protocol" (CUCTP). 

Aeroflex Gaisler has developed under indirect funding from the European Space 
Agency (ESA) a new IP core that implements the SpaceWire - CCSDS Unsegmented 
Code Transfer Protocol named SPWCUC, providing automatic SpaceWire Time-
Code transmission and reception, and automatic CUCTP packet reception. It also 
provides support for CUCTP packet transmission. 

The CUCTP protocol and its implementation is a first iteration to solve some of the 
time distribution problems that exist in SpaceWire networks. Additional work is to be 
performed both on the specification side as well as on the implementation side before 
a standard protocol can be established. This paper provides the background to the 
work and it discusses the current draft solution, with an outlook on what needs to 
done in the future.  

1. BACKGROUND 

Time synchronization in spacecraft is becoming increasingly important. For example 
instruments & navigational on-board resources can now be combined for establishing 
scientific observations and therefore need to be well synchronized in time.  

Traditionally time synchronization has been done via dedicated signals or via 
deterministic on-board buses (e.g. MIL-STD-1553 or OBDH). With the advent of 
SpaceWire point-to-point links and router switches being used for critical control 
functions, the need for accurate time synchronization via this network has arisen.  

The SpaceWire protocol provides rudimentary time-code transmission, but lacks 
support for automatic time message distribution and time synchronization. It has no 
means for handling latency (delays) and jitter caused by routing or drift caused by 
unstable oscillators. 

2. TIME IN SPACEWIRE NETWORKS – A PROBLEM DEFINITION 

The SpaceWire (SpW) standard ECSS-E-ST-50-12C is currently being proposed to be 
used as well for critical real-time control applications. A missing element is a 
coherent and accurate means of time message distribution and time synchronization.  

46



Ongoing work is focused on these two aspects, with the direct benefit of being useful 
for these critical real-time control applications as well as for any type of mission 
requiring highly accurate time distribution over a SpW network. The aim s to address 
some of the main time distribution issues that are common to many types of networks 
or buses and to develop a solution specifically for the SpW network that allows 
controlling time distribution latency (delay), jitter and drift as defined below. 

The standard specifies a Time-Code character that is propagated throughout a SpW 
network and is used for time distribution. The Time-Code character has the highest 
transmission priority and is broadcast through the complete network via one or many 
router switches or directly via point-to-point links. 

The transmission time of a Time-Code character is at least 14 transmission clock 
periods (ESC + data character), which is multiplied by the number of links that the 
Time-Code has to traverse from the time source to the destination. This introduces a 
minimum delay or latency of 7 us for each link at 2 Mbit/s transfer rate. This defines 
the time distribution delay. 

Although the time Time-Code character has priority over other characters defined in 
the protocol, its transmission on a link can be seen as asynchronous with respect to the 
on-going transmitted character stream. Thus, the actual time of the Time-Code 
transmission depends on whatever is being transmitted at the SpW link at the time of 
the Time-Code transmission request. The delay between this Time-Code request and 
the actual transmission is equal to the time left to complete the transmission of the on-
going character. The difference between the shortest and longest time left depends on 
the character being sent and is in the range of 10 transmission clock periods. Thus for 
a 2 Mbit/s transfer rate the achievable accuracy for a point-to-point link is in the range 
of 5 us. The problem is compounded when multiple router switches have to be passed 
in a network, each router switch contributing to the uncertainty. This defines the jitter. 

The SpW network is asynchronous, i.e. there is no common clock signal being 
distributed for the communication, with each node being responsible for its own 
clock. This means that the local clocks run independently and can exhibit different 
stability. The variation between the different clocks (be that oscillators or crystals) 
will lead to drift and mismatches over time. For example, a SpW node might be 
clocked by an oscillator that not only a slight frequency offset and may experience 
also frequency variations over time. This will lead to an increasing difference between 
the times kept by two nodes in a system. This describes the drift. 

3. CURRENT PROTOCOL FORMAT 

The current SpaceWire - CCSDS Unsegmented Code Transfer Protocol (CUCTP) 
packet conforms to the ECSS SpaceWire standard. It contains the CCSDS 
Unsegmented Code (CUC) field. The CUC field is fixed to a P-Field (possibly 
extended) and 7-byte T-Field. The T-Field of the CUC format comprises two parts: 
the coarse time part and the fine time part. The former is in this case a 32-bit counter 
counting integer number of seconds. The latter is in this case a 24-bit counter 
counting fractions of seconds, from 2-1 down to 2-24. The CUCTP packet is being used 
for transmitting time-information, it is however not used for transmitting the actual 
time synchronization events, for which SpaceWire Time-Codes are being used 
instead. 
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4. CURRENT PROTOCOL OPERATION 

CUCTP provides synchronization between Elapsed Time (ET) counters in the local 
node and remote nodes, by means of SpaceWire Time-Codes and SpaceWire packets. 

SpaceWire Time-Codes are continuously transmitted from a master node to all slave 
nodes. The transmission of the Time-Codes is synchronized with the local ET counter 
in the master node. The six bits of the Time-Code time-information correspond to six 
bits of the local ET counter (its exact mapping being programmable by means of 
register access). The ET bits with lower weights than the six bits mapped to the Time-
Code time-information bits are all zero at time of Time-Code transmission. 

When a Time-Code is received in a slave node, the Time-Code time-information is 
first verified to be an increment of the previously received time-information. The 
event of the Time-Code reception is assumed to occur synchronously with the local 
ET counter in the slave node.  

Additionally, whenever the Time-Code time-information wraps from 0x3F to 0x00 it 
is possible to synchronize the ET bits that have a higher weight than the bits mapped 
to the Time-Code time-information bits. This is performed whenever a new CUCTP 
packet has been received preceding the reception of the Time-Code with the wrapping 
time-information. If no such packet has been received, then the synchronization will 
be as described above, but with an increment of the ET bits with the higher weight.  

To summarize, ET bits mapped to the Time-Code time-information bits and ET bits 
with lower weight are checked for every Time-Code received; whilst ET bits with 
higher weight are checked whenever the time-information is wrapping. ET bits with 
lower weight can be offset from the all zero value. ET bits with the lowest weight can 
be ignored to form a window of tolerance. 

5. CURRENT PROTOCOL IMPLEMENTATION 

The SpaceWire - CCSDS Unsegmented Code Transfer Protocol interface IP core, 
named SPWCUC, operates in an AMBA bus system. The AMBA bus is used for 
configuration, control and status handling. The interface is tightly coupled with 
Aeroflex Gaisler’s CCSDS Time Manager (GRCTM) and SpaceWire codec with 
AHB Interface and RMAP target (GRSPW2) IP cores.  

The IP core has already been integrated in the RASTA (Reference Avionics System 
Testbench Activity), and has been delivered to SciSys and Astrium for usage in 
activities related to CCSDS Spacecraft Onboard Interface Services (SOIS). 

6. OUTLOOK 

The current CUCTP protocol implementation does solve some of the problems related 
to time distribution in SpaceWire networks, but there is still some work to be done. 

The CUCTP protocol is currently under review and modifications are being foreseen, 
possibly using an RMAP based approach. Also different methods to counteract 
latency, jitter and long term drift are being considered for further work. The goal is to 
include CCSDS based time distribution in the ECSS SpaceWire protocol standards. 
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1 INTRODUCTION: 

Delay jitter is the key parameter to reflect the network transmission performance, 
which measures the difference between the maximum transmission delay and the 
minimum transmission delay from end to end. For large bandwidth traffic flow, 
greater delay jitter requires larger cache for sending and receiving. If the maximum 
transmission delay is too long, the real-time transmission performance of the network 
will fall, causing the bus performance degradation. Delay jitter performance has 
especially obvious impact on the quality of images and videos transmission with high 
bandwidth. Meanwhile, the highly real-time control services also have higher 
requirements on delay jitter performance of the bus. Currently, all kinds of satellites 
are equipped with more and more images-payload. Parameters like Delay jitter are 
always of concern to system designers. 

Through theoretical calculations and modeling simulations, this essay carried out 
quantitative analysis and research for the delay jitter of the SpaceWire under specific 
application scenarios. Theoretical calculations get the delay jitter under particular 
scenarios by theoretical derivation. Modeling simulations, on the other hand, 
established simulation model by Opnet, and obtained the maximum transmission 
delay and minimum transmission delay by simulation. In this way, it is possible to 
calculate the delay jitter, qualitatively and quantitatively. By comparison, we obtain 
the parameters which have key impact on delay jitter. Recommendations and methods 
to improve the delay jitter are given by analyzing the conclusions. The research 
results of this article can provide a reference for the SpaceWire design to build a low 
delay jitter SpaceWire network. 

2 CHARACTERISTICS OF TRANSMISSION SERVICE OF THE ON-BOARD DATA 
NETWORK 

For accurately analyzing the delay jitter performance of SpaceWire network, the 
characteristics of transmission service of the on-board data network must be firstly 
clarified. Based on the requirements for the parameters such as bandwidth, real-time 
performance (delay jitter), and data reliability of the transmission service stream, the 
services can be classified into 3 types, as shown in Table 1. 
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Table 1 Transmission Service Types of the On-board Data Network 

Service Type Bandwidth Real-time 
Performance 

(Delay Jitter) 

Data 
Reliability 

Control service low average to high high 

High real-time data 
service 

high high low 

Low real-time data 
service 

average low average 

3 SIMULATION AND ANALYSIS 

We first build a chain topology. Low-speed device node_0, high-speed equipment 
node_2 and node_5 are connected to the 4-port router node_4 and node_6. Node_7 is 
connected to a 4-port router which is a hot module (such as CPU, mass storage). 
Routers are connected to form a chain topology. Peripheral nodes, which are node_2 
and node_5, send data flow fn1 and fn2. Fn1 is the controlling data stream which is 
low-speed and low real-time. Fn2 is the data stream sent by high-speed device. 

Using Opnet Software to create the following model 

 

In this model, node_0, node_2 and node_5 are source nodes. Intervals between 
packets can be set to a variety of functions distribution. Here we set the intervals of 
the node_0 as constant distribution, and set the intervals of the node_2 and node_5 as 
random distribution, which are uniform patterns. In this case, when node_0 is counted, 
the packet intervals are consistent so that they are easy to compare. Meanwhile, 
node_2 and node_5 are sending packets randomly so that it is easy to manufacture 
collisions. 
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Node_4 and node_6 are routing nodes. Node_7 only counts the end-to-end delay 
when node_0 is sending packets. In order to see more directly the situation during the 
simulation, when packets are blocked causing the end-to-end delay increases, we set 
node_0 to send packets at the simulation time of 0.01s, node_2 at 0.009998s and 
node_5 at 0.009999s. Each of the three nodes sends packets of 1024 bit. First, we set 
the sending interval of node_0 is constantly 0.0001, and it send 100 packets in total. 
The sending intervals of node_2 and node_5 are random numbers between 0.0001 and 
0.0002. Simulation gets statistics as following: 

 

Statistics in the chart are the end-to-end delays. Every line consists of 128 dots each 
of which represents an N-char delay. In this simulation, the start time of end-to-end 
delay records from the creation of the package, and the ending time records from 
when each N-char is received. It leads end-to-end delay of each N-char increase. The 
highest point of each vertical line is the end-to-end delay of the packet. The 
simulation time of the task is 0.02s in total, but according to the simulation results, 
some packets’ delay will be longer than average due to congestion. The first packet’s 
delay is particularly long. This is deliberately made when setting the packet’s sending 
time, which is in line with the expectation. 

In above case, sending speed of node_5 is equal to node_0. Despite the first package 
reflects relatively long delay, the overall delay is quite steady. In our plan, node_5 is 
high-speed device. When node_5 sending according to the function which is 
randomly distributed from 0.00001 to 0.00002 (that is 10 times larger than the above), 
we get the following results. 

 

This shows that without high-level routing protocols, high-speed devices can cause 
interference with high real-time device, thus greatly increasing the end-to-end delay 
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of it. In extreme cases, node_5 sends packets according to the function which is 
randomly distributed from 0.000005 to 0.000006 (it close to the total capacity of the 
link). We get the following results: 

 

It shows that end-to-end delay increases. This is because node_5 occupies almost all 
links so that node_6 is always in collision. The routing program used random 
selection for collision, while end-to-end delay records from the creation of the 
package, leads this result. We can see link utilization of node_5-> node_6: 

 

4 IMPROVEMENT OF SPACEWIRE END-TO-END DELAY 

In the simulation we can see, real-time data may not arrive on time due to the lack of 
high-level agreements. If only for extreme cases described in the end, priority rotation 
of the routes can solve the problem. But if we want to effectively control the delay 
jitter of a source, here are two options: 

4.1 Division of Priority 

When a packet with high priority enters the route, sending of the low-priority packet 
is immediately stopped and replaced with high-priority packets. Low-priority packet 
is put in cache and waits until high-priority data is finished. 

4.2 Division of time fragment 

Routing behaviour can be divided into multiple time fragments. Each fragment is 
allocated to different routing ports fairly. This is easy for implement, but will extend 
end-to-end delay of all packets. 
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5 CONCLUSION  

SpaceWire bus standard is still expanding and improving. It is playing a more and 
more important role in analyzing the characteristics of the SpaceWire network 
transmission delay. Since SpaceWire technology has been successfully applied in a 
number of space missions, it is hopefully to become future bus standard of in-orbit. 
However, analysis and research on the characteristics of its network delay is still not 
enough. 

This article analyzes the factors that influence the data stream delay characteristics of 
SpaceWire network under the typical topology structure based on an OPNET model. 
It carries out the quantitative and qualitative analysis on the delay jitter performance 
under different conditions, thereby providing a universally applicable method for 
designing the SpaceWire network and also the guidance for the design in the aspect of 
improving the delay jitter. 
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ABSTRACT 
Through several years of standardisation and technology development activities, ESA 
has prepared the SpaceWire technology that allows embarking high speed data 
networks on board spacecraft. This new technology has become widely adopted not 
only by ESA missions but also by other agencies and industries. However, some 
evolutions of the SpaceWire standard have been proposed by the SpaceWire Working 
Group. 

The working group identified shortcomings of the current SpaceWire protocol stack in 
terms of network management and FDIR. This issue was already addressed several 
times within the frame of ESA funded R&D activities. First, the “Unified On-Board 
Processor Architecture for Spacecraft Avionics, Payload Processing and Data 
Handling” (UNIONICS) GSTP contract investigated the possibilities of task 
migration over a distributed SpaceWire network. Then, the TRP contract “Multi-
processor On-board System for Robotic Exploration” (MOSREM) consolidated the 
concept by applying it to the most demanding application in terms of space on-board 
computing, i.e. space robotics. Recently, the GSTP contract “Modular Architecture 
for Robust Computing” (MARC) allowed proposing some FDIR scheme based on 
SpaceWire backplane networks. 

These techniques are highly promising but they need to be harmonised and 
breadboarded prior to their eventual standardisation because they will be adopted by 
the SpaceWire community only if they are backwards compatible, i.e. if they can 
operate with existing SpaceWire devices. 

This will be done in the frame of the ESA/TRP “Network management and FDIR for 
SpaceWire networks” to be kicked off in July 2011. 

In this paper, we recall the need for the design of SpaceWire networking protocol to 
address the issue of network management and FDIR as well as the improvements 
foreseen to be developed, breadboarded and documented in ECSS standardisation 
format through the ESA/TRP activity “Network management and FDIR for 
SpaceWire networks”. We inform about the achievements of the project team [in 
August 2011] and describe the steps still to be taken in order to prepare for the 
revision of the SpaceWire standard by the appropriate ECSS Working Group. 
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ABSTRACT 
Packet error handling is an essential aspect for reliable, fault tolerant SpaceWire 

(SpW) networks. Without packet error handling, some faults in a subsystem could 

propagate through a SpW network, disrupting other packets or possibly the entire 

network. Due to SpW’s unbounded packet size and wormhole routing, these faults 

must be mitigated at the network level. The packet error handling logic was revised in 

the National Aeronautics and Space Administration (NASA) Goddard Space Flight 

Center (GSFC) developed SpW Router Field Programmable Gate Array (FPGA) to 

automatically preclude packet fault propagation by adding logic on top of the SpW 

protocol which has been tested and performs as intended. 

1 INTRODUCTION 
SpW is becoming commonly used for communication networks between and within 

spacecraft subsystems. This is the case for the Magnetospheric Multiscale (MMS) 

Mission SpW network, which uses the NASA GSFC developed SpW Remote 

Memory Access Protocol (RMAP) and Node cores as well as Router FPGAs to 

connect subsystems within each of the four MMS spacecraft.  

The GSFC SpW Router FPGA consists of a multi-port non-blocking routing switch. 

Multiple SpW Nodes and Routers are typically connected together to implement a 

SpW network. While SpW networks can have any topological form, including loops, 

SpW traffic on spacecraft typically resembles a funnel shape. On networks like these, 

such as MMS, some paths only carry packets to and from one node while other paths 

are shared, carrying packets from one or more sources to one or more destinations.  

Shared paths can propagate faults when one source or destination fails such that a 

packet takes too long, either temporarily or (more likely) indefinitely to wormhole 

through the shared path. Note that brief stalls are normal consequences of packet 

funneling which contribute to packet latency through a network and are not faults. 

When a packet stalls for too long, other packets that need to use the shared path(s) are 

precluded from doing so, effectively propagating the fault in one board or subsystem 

over the network to other boards within the subsystem and/or to other subsystems. 
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A packet can take too long to wormhole through a shared path due to: 

 A fault in the source that increases the packet size to be too long or infinite 

 A fault in a source that stops sending a packet for too long (without ending the 

packet with an End Of Packet (EOP) or Error End of Packet (EEP) and 

without increasing its intended size) 

 A fault in a destination that starts receiving a packet then stops for too long 

The packet error handling logic was revised in the NASA GSFC SpW Router FPGA 

by the Code 561 Flight Data Systems & Radiation Effects Branch for, and funded by, 

the MMS mission to automatically preclude packet fault propagation. The packet 

error handling logic added to the GSFC Router FPGA exists on top of and transparent 

to the SpW protocol and assumes the SpW router(s) in a network are properly 

designed such that that radiation upsets or faults within the router(s) cannot credibly 

cause a packet to take too long to wormhole through a shared path. 

2 SPACECRAFT SPW TRAFFIC 
On spacecraft SpW networks, SpW nodes and routers are used to move command and 

telemetry packets between and within several subsystems. Below, a generic network 

topology shows command packets funneling-out from the processor in Figure 1 while 

telemetry packets flow back to the processor for processing and downlink in Figure 2. 

57



 

 

SpW Link

SpW Link

SpW Link

SpW Link

S
W
I
T
C
H

SpW Router

SpW Link

SpW Link

SpW Link

SpW Link

S
W
I
T
C
H

SpW Router

SpW Link

SpW Link

SpW Link

SpW Link

S
W
I
T
C
H

SpW Router

SpW Link Downlink

SpW Link Processor

SpW Link Subsystem
SpW Node

SpW Node

SpW Node

SpW Link Subsystem

SpW Link Subsystem
SpW Node

SpW Node

SpW Link Subsystem

SpW Link Subsystem

SpW Link Subsystem
SpW Node

SpW Node

SpW Node

 

Figure 1: Generic Command Packet Flows 
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Figure 2: SC FSW Processed Telemetry Packet Flows 

The command and telemetry paths within the SpW network have shared paths. A fault 

in any one of the subsystems that causes packets to take too long to wormhole through 

the shared paths would block communication to/from the others, propagating the fault. 

3 PACKET ERROR HANDLING 
Packet error handling is provided in the GSFC Router FPGA and not in the GSFC 

Node core as its purpose is to prevent fault propagation on shared paths. A node and 

the link it connects to comprise a dedicated path in a SpW network. Therefore a fault 

in a node’s board or subsystem only affects that board or subsystem, provided the 

fault is not propagated. However, inside a router, the routing switch can have shared 

paths which, if blocked, can propagate faults.  

3.1 NETWORK LEVEL 

Faults that leave wormholes open on shared paths have to be mitigated at the network 

level, specifically the network switch boundaries, as these cannot always be mitigated 

in other levels. This is a consequence of SpW’s unbounded packet size and wormhole 

routing.  
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Since packets can be of any size, there is no time limit on wormhole routing in the 

SpW standard. Therefore, a wormhole that remains open does not violate any of the 

“rules” for the physical, signal, character, exchange, packet or network levels. In fact 

the rules are followed in order for the wormhole to remain open. The link remains in 

the RUN state but is only passing NULL characters (stalled packet) or is also passing 

bytes of data (infinite packet) but not an EOP or EEP.  

Mitigating at the transport or application levels, such as automated (watchdog) or 

operator initiated resets or power cycles, may or may not stop fault propagation.  

If a fault was due to a transient problem then resetting or power cycling may allow 

operations to be restarted, provided the cause of the problem was cleared by the reset 

or power cycle. When faults propagate, it can be difficult to determine the cause and 

therefore difficult to know what to reset or power cycle. Also, resetting or power 

cycling is typically best left as a last resort as doing so can erase status information, 

making troubleshooting more difficult, and usually has significant mission impacts. 

If the fault is persistent, then the stuck-open wormhole problem would re-occur after 

the reset or power cycle, re-propagating the fault. Resetting or power cycling, even 

repeatedly, would not stop fault propagation in this case. 

Thus it is best to mitigate stuck-open wormhole faults at the network level, above the 

SpW protocol and below any transport or application level services, such as RMAP. 

3.2 STUCK-OPEN WORMHOLE MITIGATIONS 

Packet error handling to prevent fault propagation from stuck-open wormholes is 

implemented via two types of limit checks: maximum packet size and packet timeout. 

If either limit is exceeded, the packet is truncated with an EEP so that the wormhole is 

closed. Closing the wormhole allows subsequent packets to pass through the path that 

was stuck, thereby limiting the fault to its source or destination in the SpW network 

and precluding a fault with this packet from propagating to other packets.  

The maximum packet size limit is selectable from several values including an option 

to disable this limit check (allow packets of any size), via writing registers within the 

routers. When enabled, the number of bytes in each packet is counted as the packet 

bytes traverse the routing switch. If the byte count exceeds the limit, the routing 

switch logic performs the packet error handling steps below. 

The packet timeout limit is also selectable from several values including an option to 

disable this limit check, via writing registers within the routers. When enabled, a timer 

starts as packet bytes traverse the routing switch. If a timeout occurs, it is due to either 

a fault in the source or destination. If the empty flag of the source First-In First-Out 

(FIFO) is asserted for longer than the timeout value, then a fault has occurred in the 

source of the packet. If the destination FIFO’s full flag is asserted for longer than the 

timeout value, then a fault has occurred in the destination of the packet. Depending on 

which occurred, the routing switch logic performs the packet error handling steps 

below. 
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The packet error handling steps are: 

 Disconnect the path between the source and destination switch ports inside the 

router 

o Subsequent packets from other sources can then arbitrate for the 

destination port, thereby precluding fault propagation from faults in 

packet sources 

 Discard the remainder of the packet from the source port by draining the 

source FIFO until an EOP or EEP is found 

o This may never complete if the source is sending an infinitely long 

packet or has stalled sending a packet 

o If the source completes sending the packet (with an EOP or EEP) then 

subsequent packets from this source can arbitrate for destination ports 

in the routing switch 

 This would be the case if the fault did not occur in the source or 

the source was able to recover from the fault 

 Truncate the packet at the destination port by appending an EEP 

o If the destination port has failed to read the packet before the timeout 

value then the destination port is marked as failed and any subsequent 

packets requesting this port will be discarded 

 This allows any subsequent packets arriving through the source 

port to arbitrate for other destination ports, thereby precluding 

fault propagation from faults in packet destinations 

 If the fault in the destination is fixed such that its destination 

port FIFO in the router is read then the destination port’s fail 

flag is automatically cleared and the destination port can 

resume receiving new packets 

 Set the appropriate error status 

3.3 NETWORK SWITCH BOUNDARIES 

Packet error handling should be performed as close as possible to the cause of the 

fault. This can be done by only performing packet error handling at the network 

switch boundaries, where packets begin or end their wormhole paths through one or 

more routers. Packet error handling could be performed at intermediate points inside 

the network switch boundaries but doing so is unlikely to be beneficial. 

Packet error handling can be enabled or disabled for each switch port in each router 

individually so that it is only applied to the network switch boundaries. This is 

necessary to preclude destination timeout packet error handling from occurring in 

intermediate routers along a packet’s wormhole path. Otherwise, destination timeouts 
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could disable destination ports in intermediate routers, which would be a form of fault 

propagation, rather than just the destination port in the last router. 

3.4 VERIFICATION AND VALIDATION 

The packet error handling logic has been verified through simulation and 

inadvertently validated in integration and test of MMS. Software sent a command 

packet with a logical address that opened a wormhole from the processor to a node 

which was mis-configured and did not accept the packet. This stalled the packet and 

resulted in a destination port timeout in the (properly configured) router port, which 

disconnected the wormhole at the destination node. Subsequent packets sent by 

software to other subsystems were then able to pass through the router.  

The configuration fault was not propagated, which provided for quicker 

troubleshooting as a communication failure was reported. Had the packet error 

handling logic not been present (and enabled), software would not have been able to 

send any packets to any other subsystems after sending the command packet. The 

problem likely would have been reported as the whole SpW network locked-up and 

finding root cause would have taken longer. 

4 CONCLUSION 
This paper described the packet error handling enhancements added to the GSFC 

SpW Router and how these are applied to the MMS SpW network. Rationale for 

performing this error handling at the network level, on top of the SpW protocol and 

not at higher levels, as well as at network switch boundaries was also discussed. The 

packet error handling logic has been verified though simulation and validated in 

integration and test. 
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1 INTRODUCTION 

This presentation concerns the Low Mass SpaceWire project, reference A0/1-

6214/09, in cooperation with the  European Space Agency.  There is an existing 

standard for SpaceWire and its reference is ECSS-ST-50-12C [1].  

It would appear that this existing SpaceWire standard is too oriented to detailing the 

cable construction when the reality of space applications require greater focus to be 

given to the physical and electrical properties and particularly to the length and the 

flexibility of the SpaceWire cable assembly (Link). 

A possible consequence is that long SpaceWire links may be too lossy, while short 

connections may be more rigid and heavier than necessary.  Another possibility is that 

the SpaceWire solution may sometimes be discarded by users as being too simplistic 

and having too many physical and electrical limitations compared to what they need 

for their application.  

This project provides an opportunity to review the SpaceWire standard with the 

primary objective of reducing its mass by half.  The approach is in three steps: 

development, manufacture and test of a Low Mass SpaceWire cable.  The same or 

equivalent performance levels shall be maintained for the cable assembly. 
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2 DEVELOPMENT 

This project started by the definition of additional physical and electrical parameters 

for the Low Mass SpaceWire cable plus a review of the existing requirements.  This 

information was compiled in a Requirements Specification Document (RSD).  Among 

these a specification for insertion losses have been added and the skew has been 

reduced.  

The preliminary design of the cable was based on this RSD and shows at this stage a 

few potential solutions.  

Depending on the forthcoming test results, the main construction changes could be : 

- the removal of the overall shield covering the four inner shielded twisted pairs 

or overall and inner shields in contact 

- the silver plated copper shields to be replaced by silver plated aluminium 

- full cable shielding and termination through bulkhead connector/backshell 

interface, unlike the current inner shields of the two signal pairs on each side 

left floating. 

- Use of non-twisted sub-miniature coaxial cables instead of shielded twisted 

pairs as a potentially very interesting and flexible solution for short lengths. 

This technology also could allow the forming of the cable into a ribbon shape. 

- Polyimide material for the outer insulation instead of PFA for improved 

irradiation behaviour 

The calculations indicate these changes should make the required mass reduction 

possible (preliminary manufacturing reached 55g/m and 32g/m for the subminiature 

coaxial cable assembly, as opposed to typically 80g/m for standard SpaceWire).   

A second objective of this project was to investigate the possibility of an existing, 

alternative matched impedance connector to the current rectangular micro-miniature 

Micro-D) connector defined in the standard.  

As a result of the survey, two types of connectors show potential for a SpaceWire 

application: 

- one developped by an Axon competitor with NASA (4-way twinax) 

- one developped by Axon with CNES (AXOMACH) 

Other configurations of the microminiature connectors (circular or with additional 

EMI protection) are also under consideration. And a nanominiature potential 

alternative (albeit without matched impedance) is being investigated.  

As the project progressed, an interesting potential innovation in the cable properties 

was identified. The idea was to explore the feasibility of using a slightly conductive 
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material as an outer insulation of the cable to support applications exposed to space 

and therefore requiring improved eletrostatic discharge (ESD) performance. 

An investigation revealed that this matter goes beyond the frame of the current Low 

Mass SpaceWire project, and it was agreed with ESA that it should be potentially 

considered as a separate project by itself. 

3 MANUFACTURE AND TESTS 

At the time of writing this short paper, the manufacture of four different Low Mass 

SpaceWire candidate cables was still on-going.  

The quite radical changes in the design imposed some optimisation to the existing 

manufacturing processes.  But the few issues encountered during the first production 

have now all been overcome and processes mastered. 

The four cable samples in manufacture shall serve as test vehicles to undergo the 

Qualification Test Plan (QTP) recorded in a Test Specification Document and 

validated by ESA. 

The tests concerned will cover the physical, electrical and mechanical aspects 

required for the Low Mass SpaceWire.  

Moreover an innovative test from ESA for conductive susceptibility measurement 

will be included. The purpose of this test is to characterize the robustness of a Low 

Mass SpaceWire cable assembly against external EMI disturbances.  The procedure 

was proposed by ESA along with a suggested test equipment scenario.  Some test 

components were manufactured in partnership between Axon and Astrium in France. 

4 SPACEWIRE SPECIFICATIONS UPDATE 

Once the tests are completed and the conclusions drawn from the results, in 

collaboration with ESA and one of the original authors of the existing SpaceWire 

standard (Steve Parkes), Axon has to prepare: 

• a SpaceWire Cable specification and a PID 

a draft, revised issue of the  ESCC3902/003 standard [2] (just the cable only 

specification of the Low Mass SpaceWire (not terminated to connectors))   was 

created during the development phase to help the future ECSS update mentioned 

previously. This specification retains the 2 existing conductor solutions (AWG26 and 

AWG28) and includes some new lightweight variants. 

• a SpaceWire Standardisation document 

 The intention is to update the sections relating to the cable specification in the 

SpaceWire standard ECSS-ST-50-12 eventually. 
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5 CONCLUSION 

Despite the significant challenge launched by ESA to reduce by half the mass of the 

existing SpaceWire cable, the development phase has shown that, in theory, it is 

achievable using new or modified designs.  

Furthermore, the new media proposed will be better featured and have a higher 

margin of performance in relation to the proposed new wording of the standard. 
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ABSTRACT 
This paper will focus on the following three areas of the SpW physical layer: 

 

What are the pros and cons of discrete vs. integrated implementation of EIA/TIA 
644 LVDS transceivers in flight units? 

A trade-off between the two possible implementations of SpW transceivers in on-

board equipment will be presented.  The advantages or disadvantages of an 

implementation using discrete LVDS transceivers external to the ASIC/ FPGA versus 

an integrated LVDS transceiver solution embedded in the ASIC/FPGA will be looked 

at closely. Key criteria considered are: application (inside or intra units), fault voltage 

susceptibility, robustness against ESD, redundancy and cross strapping aspects, risks 

and associated effects in case of failures etc. 

 

How are fail safe requirements defined in ECSS-E-ST-50-12 verified? 
The verification of the fail safe requirements defined in section 6.2 of the ECSS-E-

ST050-12C is analyzed in particular for implementations where the LVDS 

transceivers are embedded in an ASIC/FPGA. 

 

How does common mode voltage drift affect communication integrity?  
Results from tests related to signal and communication integrity in presence of a 

common mode voltage difference between units will be presented. The two LVDS 

transceiver options, embedded vs. discrete transceivers, as discussed above, will 

conclude the paper. The tests results include SpaceWire components with embedded 

LVDS transceivers and discrete (external) LVDS transceivers with both nominal and 

extended common mode voltage ranges. 
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Introduction 
The SpW physical layer is based on differential signal transmission. 

ANSI/EIA/TIA-644a LVDS is the technology used for the physical layer. LVDS as 

differential transmission mode presents many advantages over single ended signaling 

by allowing high data rate, low power consumption, immunity to noise and low EMI, 

but on the other side it requires extra care to be taken in the design to preserve the 

symmetry of the differential signal, to keep the impedance matching and to deliver at 

the receiving end the required quality of the signal. In the beginning mostly discrete 

circuits from various manufacturers has been used. Nowadays with increased 

complexity of SpW based designs like router or SoC, the trend is to integrate LVDS 

transceivers in the ASIC. The same is also true for the FPGA circuits, and the most 

recent include LVDS transceivers. This option at first glance seems attractive mainly 

to save area on the PCB. Interoperability between different implementations requires 

compliance to ANSI/TIA/EIA-664a in the development of the circuit and to follow 

recommended practices and design guidelines in the design of the application (PCB), 

the objective is to preserve the integrity of the signal. In this paper our interest will 

focus mainly on integrated LVDS transceivers in particular those embedded in the 

Atmel SpaceWire 10X router. The performances of embedded transceivers will be 

compared to those of the discrete circuits. In the first part of the paper the main 

advantages to use integrated drivers versus discrete will be outlined. In the second 

part and starting from SpW standard failsafe requirements, it is addressed how to 

proceed for verification in the case of integrated transceivers and finally in the last 

part how common mode drift will affect the signal integrity. 

 

1-Pros and cons of discrete versus integrated implementation of LVDS 
transceivers in flight units 
 

The trade-offs between the two possible implementation of LVDS transceivers in 

on-board equipment is presented in the current paragraph (embedded LVDS drivers in 

FPGA/ASIC and discrete LVDS transceivers).We will focus on the following 

criteria’s: 

  General signal consideration 

-Signal integrity, power-thermal, ESD etc, 

 And more specific to space 

 -Redundancy and cross-trapping and risk associated in case of failure 

 

1-PCB issues: 

When placing LVDS drivers on PCB the recommended stub maximum lengths is 2.5 

cm. It is still possible to use stub with trace lengths longer than 2.5 cm, but 

transmission can suffer from problems like ringing, overshoot, undershoot, stair step 

waveforms crosstalk and reflections. If an LVDS transceiver is integrated into an 

FPGA/ASIC the possibilities of placement on the PCB and close to the backplane 

connector are limited and depend on several factors among them: 

- The I/O density in the FPGA 

- Size of the board i.e. distance between component and connector 

- PCB layers 

- Component placement density 

-     Signal rate i.e. transition time of the rising and falling edges of the signal. 
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These factors have a direct an impact on the signal integrity. High density of 

embedded I/O and component on the board can make the PCB design more difficult 

and more complex in particular if we want to preserve the signal quality. However 

embedded signal drivers free up space to implement other components and enable 

also to overcome the CMOS connection length limiting factor 

Discrete I/O enables the placement of drivers on the PCB for optimised distance to the 

connectors and the board designer will have less hassle about impedance matching 

along the transmission tracks. In case embedded drivers is the only solution, LVDS 

repeater can be used to overcome the limitation  

 

2-The I/O load capacitance of an FPGA can be higher than for a discrete I/O 

(approximately double) A higher capacitance tend to lower the transmission line 

impedance, and narrow the available noise margin  (example in the 

SN65LVDS31circuit the input capacitance is 3 pF, and for Actel serie RTAX-S/SL 

Radiation-Tolerant FPGAs the input capacitance is 10 pF) 

 

3-Power: using discrete I/O buffers, which are dissipating devices, helps dissipate 

heat to keep the ASIC/FPGA cooler (Atmel router consume 3.6 w, at 200Mbits/s with 

all ports active). We can add flexibility when selecting discrete LVDS drivers due to 

the fact that drivers with appropriate power supply can be selected. 

 

4-ESD: Discrete I/O have often higher tolerance against ESD (10kV) than 

FPGA/ASIC I/O (2-2.5 kV) 

 

5-Environmental noise: the receiver is usually connected to a harness which can 

collect noise and static electricity from the environment and discrete drivers may 

enable to isolate the FPGA/ASIC from this noise 

 

6-Gain from the ASIC rad-tolerant design which is not always the case for discrete 

circuit 

 

7-Discrete I/O devices often use larger technology (example 0.35 um) than 

ASIC/FPGA which make them more robust to high voltage and current and more 

immune to noise and EMI. But ASIC/FPGA have more resources (in terms of 

available transistors) to make additional protection in the design  

 

8- Cross-strapping and error propagation 

In the ECSS-E-ST-50-14C it is stated regarding cross-trapping: 

 
In case of signal cross‐strapping, no single failure of either interface circuit shall propagate to 

the other one  

 

Two cases should be considered:  warm redundancy and cold redundancy. In warm 

redundancy and in operation the LVDS driver is always active and the cable can be 

considered never disconnected from the driver and the receiver input is never shorted 

together. In cold redundancy the link is not always active and when the driver output 

is in high impedance the receiver can be considered disconnected, when the 

transmission line is not shielded (case PCB traces ) it can act like antenna and collect 

noise, in the case of a shielded cable the risk is lowered. Discrete circuits offer more 

flexibility than ASIC/FPGA as it is always possible to power-off or disable the 
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redundant link. Even in case of failure of the LVDS transceiver the error has little 

chance to propagate beyond the transceiver to reach other stages of the system. A 

failure of an embedded transceiver could expose the whole ASIC/FPGA to the risk of 

being damaged  
 

 

 

 

 

TB 

 
 
 
 

 
2-How are fail safe requirements defined in ECSS-E-ST-50-12 verified?  

The paragraph 6.2 (Failsafe operation of LVDS) of the ECSS-E-ST-50-12 [1] state 

the following: 
 

A  When any of the following fault conditions occur, the receiver outputs 

shall not oscillate and shall be locked to high logic level provided that 

a noise threshold of 10mV is not exceeded at the receiver input. 

1. Driver not powered. 

2. Driver disabled. 

3. Driver not connected to receiver  

4. Receiver inputs open circuit (i.e. cable or wire in cable 

disconnected). 

5. Receiver inputs shorted together 

B  When the driver is not powered its output should be high impedance 

i.e. > 100 k. 

C  When the receiver is not powered its input should be high impedance 

i.e. > 100 k. 
 
For embedded LVDS transceivers [6,8] it is difficult to test the case a) because the 

receiver output are not accessible for measurement and is connected directly to the 

SpW codec. If we inject continuously one of the sequence outlined below: 

- Start the SpW link - short together the receiver input - restart the SpW link. 

- Start the SpW link - disconnect receiver inputs –  restart the SpW link. 

The exchanged packets between the two endpoint of the link can be recorded and 

analysed later. Stored packet will help to detect any impact of the faulty operations on 

the receiver inputs side. 

In theorie to detect receiver oscillation the power supply consumption could be 

monitored for slight variations.     

Figure 1: Full cross-strapping of nominal and redundant on-board units. 

N N 

R R 
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Simulation using PSpice and IBIS models is an alternative way that can be used to 

analyse fail safe conditions and to verify the data sheet specs. 

 The starting sequence of the SpW protocol seems robust enough to cope with the 

faulty condition mentioned in the SpW standard because it constitute a reel barrier 

against these faulty conditions and it seems to supersedes the fail-safety of LVDS 

drivers. A continuous stream of error free characters (NULL and application data) is 

the absolute condition to maintain the link alive. In the event of spurious transitions 

on a transceiver the likelihood of this being determined as valid data is very small due 

to the odd parity scheme, causing the link to disconnect if not obeyed, and the fact 

that the data has to match certain values to be accepted by the node. The latter case is 

especially true when higher level protocols are used.    
 

3-How does common mode voltage drift affect 
communication integrity?  

 

The illustrated test set-up in figure 2 is a SpW connection channel between an Atmel 

router using embedded MH1-RT LVDS transceivers and an SMCS116 [13] 

evaluation board using the Aeroflex LVDS transceivers for it physical layer 
 

We have performed common mode variation test using DC signal as well AC 

signal and monitoring the signal integrity through SpW startup sequence 

(disconnections, parity errors).  The common of Atmel router SpW interface has been 

subjected to a voltage variation.  

For the DC test we noticed that common mode difference that +/- 1V is 

conceivable and has not impact on data integrity on the SpaceWire link. Further tests 

revealed that common mode voltage shifts up to 1.4V did not cause data corruption 

with subsequent disconnect. 

For The AC conducted susceptibility test a sinusoidal waveform with a 

maximum amplitude of 1 V ( 2 V pkpk) in a frequency range of 50kHZ – 100MHz 

has been injected and the SpW link has been monitored for degradation of 

performances at each test frequency. The SpW communication link was operated at 

two different data rates: 10 Mbit/s and 100 Mbit/s and has been kept active during the 

whole test. The results are summarized in the table 1, we can notice that there was no 

perturbation of the connection for the injected disturbance signal at frequencies lower 

than 100MHz but at 100 MHz the shield start to loose its effectiveness and from 

certain level of signal amplitude errors start to appear on the SpW link. The shield 

seems appropriate to remove any intrusion of common mode fluctuations. 
 
 
 
 
 
 
 
 
 
 
  Frequency  (MHz) Test results 
0.05 Ok no disconnection 
0.1 Ok no disconnection 
0.3 Ok no disconnection 
1 Ok no disconnection 
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3 Ok no disconnection 
10 Ok no disconnection 
30 Ok no disconnection 
100 Ok  up to slightly lower than 

the max level of 1V 
 
Table 1: Summary of results from AC common mode test 
 

SMCS116SpW (AT7912F)
w. Aeroflex UT54LV31 & 32

Signal 
Generator
SMA 100

SpaceWire Router 10X 
(AT7910E)

Development board

Power Supply 1 Power Supply 2

SpW Cable, 
10m

50kHz – 100MHz 
modulation

broadband 
amplifier

AR50WD1000 

F-130A
BCI 

PROBE
<100MHz

F-16
Monitoring 

probe
20MHz – 100MHz

Star Dundee 
SpW Router 

USB
USB

Control 
and 

monitoring

 

Figure 2: EMC AC Conducted susceptibility test. 

 

 

Figure 3: Oscilloscope plots from DC common mode voltage shift. 

 
 C1 = Input A of Aeroflex Receiver (Strobe of Port 7), 

C2 = Differential Voltage at Aeroflex Receiver  
Inputs (A-B).Delta V from 0 up to 1.4 V (.2,.8,1, 1.2, 1.4 
V) have  
been over-imposed.. No errors (disconnection or 
parity) occurs  
until the DeltaV reaches 1.5 V 

 

C1 = Input A of Aeroflex Receiver (Strobe of Port 7), 
C2 = Differential Voltage at Aeroflex Receiver  
Inputs (A-B). 
Delta V from 0 down to -1.4 V (-.4,-.6, -.8, -1, -1.2 V) 
have been over-imposed. 
No errors (disconnection or parity) occurs until 
the DeltaV reaches -1.4 V !!! 
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Conclusion  
 

The LVDS standard TIA-EIA-644 requirements are defined with sufficient 

margins that even if fully compliance is not achieved, the LVDS transceivers is able 

to deliver and decode signals with the required quality level. 

Embedded transceivers and discrete circuits have pros and cons, the selection 

is application dependant, signal integrity is an important metric but at the end it is up 

to the designer to perform the trade-off.   
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ABSTRACT 
The Magnetospheric Multiscale mission (MMS) was the first Goddard Space Flight 

Center (GSFC) project to adopt Remote Memory Access Protocol (RMAP) over 

SpaceWire.  Adopting RMAP on several SpaceWire-enabled boards of the mission 

reduces the effort required of board and FPGA designers to implement the SpaceWire 

interface.  It also simplifies the flight software because fewer SpaceWire protocols 

need to be supported.  This paper describes the features of RMAP that GSFC 

implemented, discusses development and testing issues encountered, and summarizes 

the end results of implementing RMAP over SpaceWire on MMS. 

1 THE ADVANTAGE OF RMAP 
Like any network, SpaceWire has layers of communication.  Figure 1 below shows 

the layers implemented on MMS, in accordance with [1].  RMAP resides in the packet 

layer. 

 
Figure 1 

The advantage of implementing RMAP on a board that is considered a target, 

peripheral, or end point is illustrated in Figure 2 below.  While the User Logic block 

is design-specific, all other blocks are provided to the board/FPGA designers as 

reference designs which require no development.  This is a significant advantage over 

past designs where the board/FPGA designers needed to dive deeper into the lower 

layers in order to properly design, debug, and test the SpaceWire interface.   
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Figure 2 

1.1 HIDING THE PACKET LAYER 

With RMAP as the packet layer, the user logic connects to a simple 

address/data/control bus and maps the functionality and control of the board into an 

address space that can be accessed by the network host.  Handling packet parsing, 

validation, error handling, and recovery is done by the RMAP Target IP core and 

doesn‟t need to be thoroughly understood by the board designer. 

1.2 REINVENTING THE WHEEL 

Since each RMAP-enabled board is given the same reference blocks for their 

SpaceWire interfaces, the design only needs to be reviewed once.  The software 

interface to all the RMAP enabled boards can use a common element that handles 

RMAP packets.  The hardware and flight software reference designs can be reused 

from mission to mission without having to „reinvent the wheel‟ for each one. 

2 RMAP FEATURES IMPLEMENTED 
The RMAP standard [2] spells out the partial implementation of the RMAP standard.  

This section discusses the features of RMAP standard that were implemented by the 

GSFC RMAP Target IP core along with some non-standard features that were found 

to be useful. 

Read and Write Commands – The GSFC RMAP target supports all variations of 

read and write commands.  The verified write commands are limited to a length of 4 

data bytes.  This is long enough for critical 32-bit registers to be safely written to and 

doesn‟t require a large internal buffer to hold data.  The RMW command was not 

implemented in the GSFC RMAP target core because the MMS mission only had one 

RMAP initiator, thus, obviating the need for the RMW command. 

Event Signalling – Reference [3] provides a description of the event signalling 

feature which was later left out of reference [2].  With this feature, a read command 

triggers a user-defined event which must complete before the response is generated 

and returned to the requestor.  This feature was used by MMS to request and capture 

„freshly‟ sampled analog telemetry.  The read command would trigger an ADC 

conversion event.  Upon completion, the result was returned to the requestor so that 

stale data is never used. 

Bypass Port – For RMAP-enabled target devices that wish to support additional 

SpaceWire packet formats, the GSFC RMAP target core implements a bypass port 

that diverts non-RMAP packets past the RMAP target core.  The bypass port is 

bidirectional and uses the logical address in the packet header to determine how to 

route packets. 

SpaceWire Device Register Interface – The GSFC RMAP target core has a special 

register interface that can be connected the SpaceWire IP Core which establishes 

communication over the SpaceWire link/cable.  This allows the network host to use 

RMAP commands to read SpaceWire status and configure the SpaceWire operation of 

that device. 
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Back-end Timeout – The GSFC RMAP target core was written such that access to 

the user‟s address space hand-shake with the user‟s logic to know when the read/write 

transaction had completed.  Response packets can then be generated.  However, if the 

user‟s logic never ends the transaction, the RMAP core would wait forever and 

effectively lock-up.  To avoid this scenario, the RMAP core has a programmable 

timeout counter.  If the RMAP core encounters a timeout while waiting for the user 

logic to respond, the transaction is aborted and an error status is returned to the 

RMAP initiator/host, if requested. 

3 DEVELOPMENT AND TESTING ISSUES 
The GSFC RMAP target core was developed and tested as an in-house effort.  This 

section describes some of the challenges and issues that were overcome. 

3.1 CRC ALGORITHM CONFUSION 

The RMAP format contains two CRC fields, one for the header and one for the data.  

To assist with calculating the CRC fields properly, reference [3] contained an 

appendix with sample VHDL and C code that calculates the CRC.  The sample code 

provided contained errors; so the first implementation of the GSFC RMAP target core 

did not generate the CRC field correctly.  This error in reference [3] was corrected in 

reference [2], however, the error was not discovered in the GSFC core until it was 

used with third party software that generated the CRC differently. 

3.2 LESSONS LEARNED 

With so many users of the GSFC RMAP IP core, it became evident that the 

specification documentation for the core had to be very detailed and clearly written.  

There were many instances where users required the specification to be updated to 

contain the information they needed such as data field byte order, transaction 

latencies, and handling of multiple event signalling transactions. 

3.3 COMPLIANCE 

Another NASA mission, Astro-H, used the GSFC RMAP IP core to interface to a 

component built by JAXA.  Astro-H performed RMAP standard compliance testing 

on the GSFC RMAP IP core and found it to be 100% compliant with the mandatory 

functionality. 

4 RESULTS 
Implementing standardized interfaces often comes with unnecessary overhead that 

makes a design less optimal in resource usage.  This cost is incurred in the hopes that 

it is outweighed by the advantages that it buys.  Therefore, it is important to assess the 

benefits of using RMAP on MMS. 

4.1 REUSE 

In terms of reuse, the concept of using RMAP on target devices that can be fully 

controlled by address mapped logic was very successful.  Not only has MMS taken 

advantage of this, but multiple other GSFC missions are now using the RMAP target 

IP core and it is anticipated that many future GSFC missions will also adopt it.  The 
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IP core was used on multiple FPGAs by multiple agencies without requiring 

individual modification.  Even elements of the verification environment were reused 

from one test bench to another. 

4.2 SIMPLIFICATION 

Sharing a reference circuit design and FPGA IP core worked out very well and made 

the effort of designing a SpaceWire RMAP-enabled board less complex.  Each board 

designer received a sample test bench tailored for RMAP-enabled boards.  This test 

bench was used as a starting point for board/FPGA designers to use when exercising 

their user (board-specific) logic. 

4.3 STANDARDIZATION 

The use of RMAP enabled the MMS flight software to standardize on how SpaceWire 

nodes are controlled.  This reduces software complexity and increases reliability.  

Designing a RMAP target IP core that is standard compliant was a task of reasonable 

effort that has paid dividends many times over.  The standardization of the SpaceWire 

protocol has been also been an advantage in selecting and using lab test equipment 

with multiple RMAP-enabled devices. 

4.4 SUFFICIENCY OF RMAP 

Although the adoption of RMAP was a positive experience on MMS, it was 

determined that RMAP alone is not enough to meet the architectural needs of MMS.  

The reason for this is that RMAP requires that target nodes do not „speak‟ unless 

„spoken‟ to.  For this reason, it was necessary to implement another SpaceWire packet 

protocol that allows for target nodes to freely forward data as it becomes available.  

Although potential RMAP solutions were considered, they were ruled out due to the 

complexity of fault detection and recovery. 
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ABSTRACT 

The 1553 to SpaceWire Bridge allows devices, which are compliant to MIL-STD-
1553[2], to access and communicate on a SpaceWire (SpW) bus.  This bridge allows 
existing instruments to be used within a system where the main data bus has been 
updated to SpaceWire.  MIL-STD-1553B messages are decoded and translated into 
ECSS-E-ST-50-12C[4] compliant messages and communicated over the SpW bus.  
The bridge device also translates SpW messages into 1553 messages for full duplex 
data transfer. 

1 SPACEWIRE TO 1553 BRIDGE ARCHITECTURE 

For SpaceWire to be designed into future missions a bridge from SpaceWire to 1553 
and vice-versa is necessary.   This bridge requires a large buffer memory to handle the 
1MHz 1553 operating frequency verses the relatively high operational frequency of 
SpaceWire of 2 to 400Mbps as defined in SpaceWire Standard ECSS-E-ST-50-12C.  
The 1553 to SpW Bridge consumes a small percentage of available SpW bandwidth. 

A notional block diagram is presented in Figure 1.  The concept of the bridge is to 
allow older instruments to be integrated into a new system where the backplane has 
been updated to SpaceWire.  The integral blocks of the 1553 to SpW Bridge include: 

• SpaceWire Physical Interface 
• A and B 1553 channels 
• 1553 control bits 
• SpW and 1553 message decode 
• Required buffer memory 

 
The bridge provides one full duplex ECSS-E-ST-50-12C compliant node interface.  
This node contains transmit and receive FIFOs used to buffer data being sent within 
the SpW network. The transmit FIFO takes translated data from the 1553 interface 
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and transmits it to an external node. Conversely the SpW receive FIFO accepts data 
from an external node and passes it to the buffer memory and message decode, then to 
the 1553 interface.  
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Figure 1.  Notional Block Diagram 

2 MESSAGE DECODE 
The SpW to 1553 Bridge is capable of translating and transferring data to and from 
the 1553 interface as a Remote Terminal (RT) which comprises the electronics 
necessary to transfer data between the 1553 data bus and the external node.  The Bridge 
also translates and transfers data from a Bus Controller (BC) which sends commands 
that direct the flow of data on the 1553 data bus.   
 
There are a few key differences between 1553 and SpW data transfers, see Table 1. 
 

Table 1. 1553 and SpW Protocol Differences 

Parameter 1553 SpaceWire 
Data Rate 1 MHz up to 400Mbps 
Word Length 20 bits User Defined 
Data Bits / Word 16 bits User Defined 
Message Length Maximum of 32 data words User Defined 
Transmission Technique Half-duplex Full-Duplex 
Protocol Command/response User Defined 
Bus Control Single or Multiple Point-to-Point 

 
 
The Bridge will take 1553 messages using the command and response format and 
transfer the 1553 messages to a RMAP ECSS-S-ST-50-52C command[5].  The 
information transfer formats of MIL-STD-1553 specifically the BC-RT and RT-BC 
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commands are mapped to RMAP Write and Read commands.  The 1553 20-Bit 
command words contain information such as Sync, RT address, Transmit/Receive, 
Subaddress/Mode, Word Count, and Parity.  The 20bit Status words contain Sync, RT 
address, error information, Service Request, Command Received, Acceptance, 
Terminal Flag, and Parity.   
 
A BC-RT command coming from the MIL-STD-1553B instrument to the SpaceWire 
bus is decoded as illustrated in figures 2A and B below. 
 

Receive 
Command Data Word Data Word Data Word Status Word

Response Time  
Figure 2A. MIL-STD-1553 BC-RT Information Transfer Format 

 

Target Logical Address Protocol Identifier
0x01

Packet type, Command, Source 
Path Address Length Key

Source Logical Addresses Transaction Identifier MSB Transaction Identifier LSB Extended Write Address

Write Address 
MSB Write Address Write Address Write Address 

LSB
Data Length

MSB Data Length Data Length
LSB Header CRC

DATA DATA DATA DATA

DATA DATA DATA DATA

DATA Data CRC EOP

Target SpW Address --- Target SpW Address

Reply Address Reply Address Reply Address Reply Address

Reply Address Reply Address Reply Address Reply Address

Reply Address Reply Address Reply Address Reply Address

 
 

Figure 2B. RMAP Write Command 

3 EXAMPLE 
Assume a 1553 instrument wanted to send the following BC-RT messages, 
referencing figure 3 and the Aeroflex 1553 Product Handbook.  The Bridge device 
would ensure that the COMMAND WORD, minus the SYNC and Parity bits, are 
placed in the first data bit of a RMAP Write command.  Depending on the overall 
network topology the RMAP packet will look similar to the figure 4. 

Please note that the data length bytes in the RMAP Write command (Figure 2B) have 
been set to accommodate for the 48-bit (0x30) 1553 BC-RT information transfer.   

Converting from binary 1553 messages to Hex SpW RMAP commands: (minus the 
SYNC and parity bits) 

• Command Word: 00001000 00100010 = 0x08 0x22  
• Data Word 1: 01101101 10100010 = 0x6D 0xA2  
• Data Word 2: 00100001 00100000 = 0x21 0x20    
• Status Word: not part of the RMAP Write packet, this bit stream will be part 

of a Write Reply command from the RT to the BC 
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Figure 3. 1553 BC-RT  

 

Target Logical Address Protocol Identifier
0x01

Packet type, Command, Source 
Path Address Length Key

Source Logical Addresses Transaction Identifier MSB Transaction Identifier LSB Extended Write Address

Write Address 
MSB Write Address Write Address Write Address 

LSB

0x00 0x00 0x30 Header CRC

0x08 0x22 0x6D

EOP

Target SpW Address --- Target SpW Address

Reply Address Reply Address Reply Address Reply Address

Reply Address Reply Address Reply Address Reply Address

Reply Address Reply Address Reply Address Reply Address

0xA2

0x21 0x20

 
Figure 4. SpW RMAP Write 

4 CONCLUSION 

The 1553[2] to SpW[4] Bridge will allow devices/instruments compliant to MIL-
STD-1553 to access and communicate on a SpaceWire bus.  Even with the differences 
between the two data bus standards, RMAP[5] commands can be used to bridge 
information from a SpaceWire bus to a 1553 bus.  This Bridge device provides a 
solution that translates between 1553 and the SpaceWire busses. 
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ABSTRACT 
The Solar Probe Plus (SPP) mission will explore the Sun’s corona, one of the last 

unexplored regions of the solar system. The spacecraft will carry a complement of 

instruments closer to the Sun than any spacecraft has ever ventured. The mission 

concept calls for a minimum perihelion of 9.5 solar radii over an extended campaign 

of in-situ and simultaneous remote observations. 

To meet the power, mass, fault management and electromagnetic interference 

constraints of the mission, the SPP spacecraft architecture uses SpaceWire as the 

primary data communication interface. SpaceWire has been widely used for payload 

data-handling on more than 30 space missions and includes many desirable features, 

such as integrated time code distribution, more than adequate through put, and a 

flexible network configuration that supports the Solar Probe avionics architecture. 

This paper describes the Solar Probe Plus SpaceWire architecture in detail with a 

focus on the development of a transaction protocol and schedule that meets the 

deterministic requirements for the Solar Probe Plus avionics control functions. 

1 THE SOLAR PROBE PLUS MISSION 
The Solar Probe Plus (SPP) mission targets the fundamental processes and dynamics 

that characterize the Sun’s corona and outwardly expanding solar wind and energetic 

particles. Physics of the corona and inner heliosphere connect the activity of the Sun 

to the environment and technological infrastructure of the Earth. For more than 50 

years, the questions of why the solar corona is so much hotter than the photosphere, 

and how the solar wind is accelerated have puzzled scientists. Remote and global 

observations have made dramatic discoveries of the phenomenology but still no 

consistent, physics-based, first-principles approach can explain coronal temperature 

inversion or solar wind origin. The answers to these questions can only be obtained 

through local, in-situ measurements of the solar wind down in the corona. 

The SPP mission explores the inner region of the heliosphere in great detail 

through in-situ and remote sensing observations of the magnetic field, plasma, and 

accelerated particles in that region. SPP travels much closer to the Sun than any other 

spacecraft in order to repeatedly obtain in-situ and remotely sensed coronal magnetic 

field, plasma and energetic particle observations in the region of the Sun that 

generates the solar wind, between a minimum perihelion of 9.5 solar radii (Rs) and at 

least out through 55 Rs. The perihelion, over the solar equator, must be within the 

corona so that the spacecraft passes through the location where acceleration processes 

are theorized to occur. The direct plasma, magnetic field, and energetic particle 

observations from SPP will allow testing of and discrimination among the broad range 

of theories and models that describe the Sun’s coronal magnetic field, the heating and 
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acceleration of the solar wind, and the generation, acceleration, and propagation of 

energetic particles. By making direct, in-situ measurements of the region where the 

solar wind is created and where some of the most hazardous solar energetic particles 

are energized, Solar Probe Plus will make fundamental contributions to our ability to 

characterize and forecast the dynamics of the heliosphere and its radiation 

environment, an environment in which future space explorers will live and work.  

The primary science goal of the Solar Probe Plus mission is to determine the 

structure and dynamics of the Sun’s coronal magnetic field, understand how the solar 

corona and wind are heated and accelerated, and determine what mechanisms 

accelerate and transport energetic particles. The SPP mission will achieve this by 

identifying and quantifying the basic plasma physical processes at the heart of the 

heliosphere. The primary SPP mission science goal defines three overarching science 

objectives as follows: 

 Trace the flow of energy that heats and accelerates the solar corona and solar wind. 

 Determine the structure and dynamics of the plasma and magnetic fields at the 

sources of the solar wind.  

 Explore mechanisms that accelerate and transport energetic particles. 

NASA selected five science investigations to achieve the answers to these long 

posed questions. The Fields Experiment (FIELDS) will make direct measurements of 

electric and magnetic fields and waves, Poynting flux, absolute plasma density and 

electron temperature, spacecraft floating potential and density fluctuations, and radio 

emissions. The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation  

will count the most abundant particles in the solar wind -- electrons, protons and 

helium ions -- and measure their properties such as velocity, density, and temperature. 

The Integrated Science Investigation of the Sun (ISIS) makes observations of 

energetic electrons, protons and heavy ions that are accelerated to high energies (10s 

of keV to ~100 MeV) in the Sun's atmosphere and inner heliosphere, and correlates 

them with solar wind and coronal structures. The Wide-field Imager for Solar PRobe 

(WISPR) will take images of the solar corona and inner heliosphere. The telescope 

will also provide images of the solar wind, shocks and other structures as they 

approach and pass the spacecraft. This investigation complements the other 

instruments on the spacecraft providing direct measurements by imaging the plasma 

the other instruments sample. In addition to the instrument payload, NASA also 

selected an Observatory Scientist (OS) investigation - Heliospheric origins with Solar 

Probe Plus (HeliOSPP) - to address the SPP science objectives using the SPP system 

of measurements. The OS provides theoretical input and independent advice to 

maximize the scientific return from the mission. 

The observational campaign consists of 24 perihelion passes inside of 35 RS over 

~7 years with gradually decreasing perihelia. The very first orbit will bring SPP closer 

to the Sun than any other mission has ever been. 19 perihelia will be within 20 RS and 

yield 961 hours of observations. The final three perihelia will be at 9.5 RS, within the 

region where the crucial acceleration processes are theorized to occur. Over the course 

of these observation, Solar Probe Plus will spend a total of 961 hours inside 20 RS, 

434 hours inside 15 RS, and 30 hours inside 10 RS. Because of the mission’s timing 

towards the end of one solar cycle and the peak of the next,  the solar wind will be 

sampled in all of its various modalities - slow, fast, variable, transient - as it evolves 

with rising solar activity toward an increasingly complex structure. 

2  THE SOLAR PROBE PLUS SPACECRAFT  
The Solar Probe Plus spacecraft, shown below to the left, is three-axis-stabilized. 

Stabilization and attitude control are effected through reaction wheels with thrusters 

used for momentum dumping. The most prominent feature is a large, flat, ceramic-
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coated carbon-carbon shield, the Thermal Protection System (TPS), which is 

necessitated by the near Sun environment. At minimum perihelion the solar flux will 

be roughly 512 times that which is encountered in Earth orbit. The TPS protects the 

instruments and spacecraft from exposure to the flux. The only components that 

extend outside the TPS umbra during the solar encounter are the solar arrays, the 

FIELDS instrument’s antennas and SWEAP’s Faraday Cup. 

The solar arrays stay within the TPS’s penumbra, and thus 

are partially protected, while the antennas and the cup are 

both fully exposed. 

Since the solar arrays are necessarily exposed to a higher 

than typical solar flux during encounter, an active cooling 

system is required. This cooling system consists of water 

cooled solar array substrates and a mechanical pump loop 

which transfers heat from the solar arrays to radiators located 

under the TPS. Active cooling requires mass and consumes 

power, and thus the arrays must be minimally exposed, 

which in turn limits power.  

3 SOLAR PROBE AVIONICS 
The Solar Probe Plus avionics design is driven by several critical factors: low mass, 

low power and the need to keep the thermal protection shield pointed towards the sun, 

particularly during perihelion science operations. During this period solar pressure 

torque (due to the offset between the center of pressure and center of mass) tends to 

offpoint the TPS from the sun, which would expose the spacecraft to the full solar 

flux. Attitude control is very important and must be maintained and reestablished 

quickly even through a severe fault that would induce a processor reset or permanent 

failure. 

 

Figure 1: Solar Probe Plus Avionics and SpaceWire Network [4] 

For this reason, a hot spare processor was desired and a three processor 

configuration was chosen: a Prime, a Hot Spare, and a Warm Spare. This 

configuration is shown in figure 1, labeled the Avionics Redundant Processor Module. 
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One of the three single board computers (SBC) serves as the primary C&DH and 

G&C processor (the SBC-Prime) and the other two serve as the hot and warm spares. 

The SBC-Prime drives one of two redundant Avionics strings consisting of a 

SpaceWire router, a spacecraft interface card (SCIF), a solid state recorder (SSR), and 

a thruster / actuator control card (TAC). The other string is normally powered off. The 

transponders (part of the Telecommunications subsystem) and the SSRs are cross 

strapped so that either one can be reached from the other side. This allows these two 

components to be powered on and used regardless of which redundant string is being 

used. The two strings are labeled Avionics Redundant Electronics Module (Side-A 

and Side-B) in figure 1. 

Although a data interconnect such as 1553 could have been used to link the SBCs 

and the two strings, SpaceWire was chosen instead for two reasons. First, 

measurements made on previous 1553 bus implementations have detected emissions 

that would interfere with SPP science magnetometer measurements. Second, 1553 

does not have adequate bandwidth for all data transfers; additional point-to-point 

serial links would have been required to off load the 1553 bus for SPP. 

4 SPACEWIRE-D 
Because of low tolerance for magnetic contamination SpaceWire was selected as the 

primary data interface for the major spacecraft components. SpaceWire has been used 

on more than 30 missions for payload data handling [3], and at about 4 Mbps, the 

over-all data throughput requirements for Solar Probe are not very demanding. A 

relatively low signaling rate of 20 to 30 MHz was deemed sufficient to handle this 

volume and desirable in order to simplify FPGA development. However, SpaceWire 

does not directly address the deterministic delivery of information within responsive 

time constraints for avionics control applications. As the principle avionics data 

interconnect, this became the driving requirement for the avionics and data handling 

network. In order to meet this requirement SpaceWire-D, a deterministic data 

handling protocol for SpaceWire (D for Deterministic), was considered. 

In their paper SpaceWire-D, Parkes, et. al. provide a succinct summary of the 

characteristics that make deterministic data delivery over SpaceWire problematic [3]. 

SpaceWire networks employ an asynchronous data delivery protocol with varying 

packet sizes and worm-hole routing. With worm-hole routing, the leading bytes of a 

SpaceWire packet determines its route through the network using path or logical 

addressing. As a packet arrives and the addressing information is determined by the 

router, the packet is switched to the output port right away. The size of the packet is 

unknown until the end of packet is signaled at the end of the data stream. Storing and 

forwarding of packets is not a feature of SpaceWire routers. While this reduces the 

amount of buffer memory required for a router and simplifies its implementation, if an 

output port is already in use by another packet, the incoming packet is left distributed 

across the network path from the router back to the source for an indeterminate 

amount of time.  

On the receiving end, a node may not be ready to accept the full packet and, once 

again, the packet may be blocked along its full path and prevent the use of network 

resources efficiently and deterministically. In order to ensure deterministic data 

delivery and throughput, SpaceWire traffic must be carefully controlled and the basic, 

standard SpaceWire implementation does not allow for this to be easily done. 

SpaceWire-D is a proposed protocol standard for deterministic data delivery over 

SpaceWire being developed under the auspices of the European Space Agency. It is a 

higher level protocol layered over standard SpaceWire utilizing the Remote Memory 

Access Protocol (RMAP) and the SpaceWire time code distribution facility. Since it 

makes use only of standard SpaceWire elements without requiring any changes at 
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lower levels, it can be implemented as part of any standard SpaceWire network using 

any standard SpaceWire components. 

To control the network interactions and prevent conflicting use of network 

resources, SpaceWire-D utilizes the technique of time-division multiplexing. 

SpaceWire’s time code signaling capability is used to synchronize network 

interactions by establishing a 64 time-slot schedule. In the simplest case, within each 

slot one specific node (the initiator) is given full control of the network, and all other 

nodes remain passive. The initiator uses the RMAP protocol to initiate and complete 

one read or one write to the target. Since there are no conflicting transactions on the 

network, any arbitrary node may be the target. 

A more complex and efficient schedule may be developed by allowing multiple 

initiators within a particular time slot as long as they confine interactions to a subset 

of targets that cannot create conflicting transactions on the network. It is also possible 

to allow for transactions that span more than one time slot, as long as the schedule can 

be accommodated without conflicts. 

The SpaceWire-D protocol provides a robust, general purpose means of assuring 

deterministic quality of service within a standard SpaceWire network. However, in 

considering it for the Solar Probe Plus spacecraft, several concerns were noted. The 

protocol requires strict partitioning of data into uniform segments to keep each 

transfer within a relatively short and uniform time division. The current standard 

recommends a maximum of 256 bytes. This would require the development of a 

segmentation service over the SpaceWire-D level to partition and reassemble 

application data. In some cases, such as FPGA based devices that utilize ―memory 

mapped‖ control registers, this may prove problematic. The recommended size of the 

data units would lead to a relatively short time slot duration which would result in 

interrupt frequencies on the order of tens of thousands per second. This was 

considered too burdensome. Because of these considerations, it was decided to use the 

basic principles underlying the SpaceWire-D protocol, but to use a less restrictive and 

more application specific strategy that would mitigate the concerns. 

5 SOLAR PROBE PLUS ADAPTATION OF SPACEWIRE-D CONCEPTS 
The basic mechanisms underlying the SpaceWire-D protocol were adapted for use on 

the Solar Probe Plus spacecraft in order to provide deterministic data delivery for the 

avionics control applications along with sufficient throughput for data handling 

applications. The SpaceWire time code distribution function is used to synchronize 

data transfers over the network and the RMAP protocol is employed to allow explicit 

control over the transaction sequences. Transactions are sequenced in order to 

prioritize the critical avionics control functions. Relatively small, uniform transaction 

sizes are used, but application transactions generally are not segmented. A simple 

schedule is used with only one initiator, which has complete control over the entire 

network. While some minor exceptions are allowed to these practices, adoption of 

them allows the spacecraft transactions to proceed deterministically and responsively 

without conflict. 

 

 Figure 2: 50 Hz / 20 ms Control Frame Transaction Divisions 
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Transactions are divided into several classes: 50 Hz guidance and control, 1 Hz 

command and telemetry, writing to mass storage (both solid state recorders A and B), 

reading from mass storage (either solid state recorder A or B), and sending telemetry 

frames to the transponder. These transaction classes are illustrated in figure 2, which 

shows how they are distributed within a 50 Hz / 20 ms control frame. 

Each class is roughly the equivalent of the ―slots‖ or ―channels‖ employed by 

SpaceWire-D. Each has a characteristic target or set of targets. There are, however, 

significant differences. The SpaceWire time codes are used to generate 50 Hz 

interrupts at 20 ms intervals – subdividing the 50 Hz interval is not done. This keeps 

the interrupt loading low. The divisions within the 50 Hz frame are maintained 

sequentially, but are not allocated to rigorous time divisions and do not have to 

conform to rigorous size constraints. Actual execution of a transaction may be 

optional, such as the case when there is nothing to write to the SSR. In this case, the 

schedule advances to the next transaction without delay – thus sending a telemetry 

frame to the transponder, if needed, may ―replace‖ reading and writing to the solid 

state recorders when there is no need for storage operations. 

The ability to flexibly advance the transaction schedule within the 50 Hz frame is 

possible because, unlike the more general SpaceWire-D, there is one and only one 

transaction initiator on the entire network, the primary single board computer (SBC-P) 

running the C&DH application. SpaceWire-D (when adhering to a simple schedule) 

assigns each slot to any one of a number of transaction initiators and the assigned 

initiator may then communicate with any target on the network. This allows, within 

the constraints of the schedule, direct transfers between any two nodes on the 

network. But because the SBC-P is the only initiator in the SPP configuration, all 

transactions must pass through the SBC-P. Direct node-to-node transactions that do 

not pass through the SBC-P are therefore not allowed; they must be implemented as 

two discrete transactions with the SBC-P serving as the intermediary. This restriction 

did not create any problems for SPP, since virtually all transactions pass through the 

SBC-P as a matter of course. 

In a sense, this makes the SBC-P the ―bus controller‖ of a ―virtual spacecraft bus‖ 

implemented over SpaceWire. Only the ―bus controller‖ needs to have explicit 

knowledge of the schedule. All other nodes simply respond to transactions initiated by 

the ―bus controller‖. Since the ―bus controller‖ can skip transactions that are optional 

under various operating modes, only one schedule is needed regardless of current 

activity. It also simplifies the implementation by eliminating the need to distribute the 

schedule across several components. 

As with SpaceWire-D, the RMAP protocol is generally used for transfers over the 

SpaceWire network. This has several advantages. RMAP is a robust and reliable 

protocol that can be implemented in hardware. Several implementations are 

commercially available. It provides positive verification of successful transaction 

completion. Three basic operations are available: read, write and read-modify-write. 

The read and write operations allow the ―bus controller‖ to initiate transfers in either 

direction. The read-modify-write operation, which is useful for bit operations on 

control registers, is generally not used. 

The SPP network must accommodate a range of devices, both with and without 

processors. In order to maintain a uniform approach and implementation across these 

devices, a simple ―common buffer transfer‖ method has been adopted. This consists 

of two attributes, a buffer size and the buffer itself. For the write operation the 

initiator knows the buffer size a priori and transmission of the size is intrinsic to the 

RMAP protocol. When needed, the size may be included as the first word in the 

transmitted information, so that it is available to the receiver without any modification 
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or special interaction with the RMAP protocol. For the read operation, the size of the 

information to be read is not known a priori, and thus two read operations are 

performed, one to obtain the size of the buffer and the other for the buffer itself. Since 

these conventions are fairly simple, ad hoc modifications for particular transactions 

are feasible, for instance, when dealing with a more complicated mass storage device 

or a transponder. The read and the write buffers are completely separate memory 

areas; thus for any one component, two buffers are necessary, one for reading and one 

for writing. 

Four general categories of transactions have been established each consisting of 

one or more common buffer transfers. These are the 50 Hz G&C transactions, the 1 

Hz command and telemetry transactions, the SSR read and write transactions, and the 

transponder telemetry frame transactions. 

The guidance and control (G&C) avionics application has priority over all other 

applications’ transactions. The G&C processing uses a 50 Hz control loop schedule 

which determined the SPP 20 ms processing cycle. At the beginning of each 20 ms 

―frame,‖ sensor data is transferred over the space wire network and is used to 

determine the spacecraft attitude and correct for any deviation by issuing a command 

to actuate the reaction wheels or thrusters. All of the available sensor data must be 

collected from the SCIF component within four milliseconds at the beginning of the 

20 ms control frame and the actuator commands must be received by the TAC 1 ms 

before the end of the frame. This leaves 15 ms available for the calculation of the 

actuator command. Our current best estimate is that transfer of the G&C data takes 

less than 2 ms and G&C processing takes 7.5 ms, which results in a very comfortable 

margin. 

The 1 Hz transactions transfer spacecraft status (such as current mission elapsed 

time) and commands to specific spacecraft components and receive from each 

component engineering telemetry. Thus the SBC-P ―bus controller‖ visits the read and 

the write buffers for each active component in each second, once to write status and 

commands and once to read telemetry. There may be more than one component 

resident on a particular SpaceWire node; in this case separate sets of transfer buffers 

are used for each component.  

There are approximately 25 separate, active components on the spacecraft; since 

two 1 Hz operations are performed for each, this gives about 50 transactions, which 

fits well with the 50 Hz -―bus schedule‖ established for G&C performance. However, 

several of these transactions, specifically those that return science data from the 

instruments, are much larger than the others. In order to keep the 1 Hz transaction slot 

more or less uniform in duration from one frame to the next, the longer transactions 

have been arbitrarily segmented and the shorter transactions have been combined to 

roughly balance the longer segments. Thus each of the 1 Hz transaction slots may 

optionally contain several transactions, currently one to three per slot. As the 

telemetry from each component becomes more defined, this schedule will be altered 

to keep the 1 Hz transactions balanced across the 50 frames. 

The frequency of the SSR read and write transactions is dependent on the 

circumstance and operational mode of the spacecraft. As science and engineering data 

is received by the SBC-P from the instruments and spacecraft components, it is 

queued for transfer to the SSR. When enough data has accumulated, it is written 

redundantly to both SSRs. In a like manner, during downlink a queue of telemetry 

frames is maintained by the SBC-P, which are sent to the transponder. As this queue 

is depleted, more data is read from one of the two redundant SSRs and used to format 

more telemetry frames for transfer. Since the rate at which science and telemetry is 

collected, and the rate at which data is downlinked are variable, the rate at which these 
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transactions occur is also variable. However, these rates never exceed the capacity 

provided by performing up to two SSR writes and one SSR read per 50 Hz frame. 

During downlink, the SBC-P is responsible for sending telemetry frames to the 

transponder at a rate sufficient to keep up with the (variable) transmission rate. At the 

highest transmission rate (1 Mbps) this requires sending an average of a little over two 

telemetry frames per 50 Hz division. The schedule allows up to four telemetry frames 

to be sent per division. Typically, two to three frames are sent per division, at the 

highest rate.  

Because the transponder’s transmission rate may vary independently and without 

the knowledge of the SBC-P, the transponder sends a frame request message to the 

SBC-P asynchronously to the transaction schedule. This is the only exception to the 

rule that the SBC-P initiates all transfers. In order to keep frame requests relatively 

infrequent, several frames are requested at once, based on a low-water mark for the 

number of frames remaining to be transmitted. The low water mark is three frames 

remaining and the number of frames requested is four, giving a seven frame circular 

buffer in the transponder. At the highest transmission rate, this allows a frame request 

to be easily satisfied within the 50 Hz division following its receipt. The 

asynchronous request allows dynamically adjusted transmission rates to be easily 

accommodated with loose coupling between the SBC-P ―bus controller‖ and the 

transponder. 

6 DISCRETE EVENT MODEL 

In order to verify and help design the ―virtual bus schedule‖ 

for the network, a discrete event model, displayed to the left, 

was developed using the OmNet++ open-source simulator. A 

router component was created that models the characteristic 

SpaceWire worm-hole routing. SpaceWire and RMAP 

protocol overheads and scheduling inefficiencies are 

accounted for dynamically, with more realistic results than 

could be obtained through a static, analytical process. 

Various operational modes (e.g., data collection during 

encounter or downlinking science from the mass storage) 

may be run, and can be combined and shuffled into various 

―what if‖ scenarios. Link rates, data rates and response times 

may be altered to perform margin analysis and optimization. Iterative modeling 

helped to develop and validate the initial detailed transaction schedule, and will aid in 

further refining it as the Solar Probe Plus design progresses and more definitive 

estimates of telemetry and performance are developed. The model will be useful for 

designing and refining system and integration tests, and will help us understand and 

predict spacecraft behavior in advance. 

7 CONCLUSION 
The Solar Probe Plus mission utilizes SpaceWire as its principle on-board data 

transfer interconnect. While many missions have used SpaceWire for payload data-

handling, Solar Probe Plus also uses it for its avionics applications, in which timely, 

deterministic data delivery is important. Using the basic SpaceWire-D concepts of 

time divisions based on the SpaceWire time codes and using RMAP as a transport 

layer protocol, a ―virtual spacecraft bus‖ was developed that allowed the primary 

C&DH processor to serve as the ―bus controller‖ and schedule transactions in order to 

achieve the required response times and throughput in a deterministic manner. A 

discrete event model that realistically simulates the protocols and the transaction 

schedule was used to validate and refine the concept, and will be used as the design 

and development work progresses.  
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ABSTRACT 
The Joint Architecture Standard (JAS) is a joint project between Los Alamos National 

Laboratory and Sandia National Laboratories to provide a common processing and 

communication infrastructure upon which to more quickly develop payload sensing 

and processing capabilities.  JAS offers a flexible, scalable, and reliable solution to 

space-based processing for our customer’s applications.  This standardized 

architecture is a modular design that allows for rapid prototyping and provides faster 

system integration and testing that reduces development and integration time and 

costs.  The adaptable architecture meets a wide range of performance requirements 

including: throughput speeds; reliability; Size, Weight and Power (SWaP) reduction; 

and mechanical and electrical interfaces. The architecture also allows for evolving 

design changes while minimizing impacts to established interfaces. 

The primary capability enabling technologies in JAS are packet-switched network 

connectivity and reconfigurable computing. The fundamental technology of packet-

switched networks in JAS are serial interconnects.  Because JAS has a broad range of 

data rate requirements and has the added challenge of providing reliable command, 

control and data handling in a space environment, this architecture has employed two 

network tiers connected using Consultative Committee for Space Data Systems 

(CCSDS) and European Cooperation for Space Standardization (ECSS) 

communication protocol standards.  One of these tiers is driven by high performance 

gigabit-per-second class communication for high bandwidth sensors and data 

processing.  The other tier is driven by reliable command and control that can also 

support moderate data transfer rates.  SpaceWire is an excellent candidate and is the 

serial interconnect of choice for the latter tier. 

BACKGROUND 
The JAS hardware architecture defines several standard hardware nodes connected 

through a minimal number of serial and discrete interconnects.  Each of these nodes 

provides a fundamental capability such that a set of them can be combined to form the 

basis of a payload data processing system.   
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The JAS node types are 

shown in Figure 1.  The 

Configuration and Host 

Interface Node (CH) provides 

the interface between the 

payload and Host Platform.  

This node contains a 

radiation-hardened processor 

to allow it to reliably boot and 

operate when power is 

applied to the payload.  It 

runs the application software 

used for configuring, 

controlling and monitoring 

the payload and provides the 

interfaces to connect the 

payload to the ground system.  

The Non-volatile Mass 

Storage Node (NV) contains 

non-volatile memory for 

storing applications and data.  

The SDRAM Mass Memory 

Node (SD) contains a large 

amount of fast and dense memory.  It provides a temporary storage capability for 

processing nodes to manipulate payload data as well as being a communication buffer 

between nodes.  The Reconfigurable Processing Node (RP) and Reconfigurable 

Sensor Interface Node (RS) contain a large reconfigurable logic device, such as the 

Xilinx Virtex 5, that can be configured to run hardware applications or a soft-core 

CPU that runs software applications.  They are general purpose, high performance 

processing nodes intended to process payload data.  The network interface node (NI) 

provides network connectivity for slower sensors and lower performance critical 

processing.  The RS and NI nodes contain an I/O interface that allows the 

development of program-specific interface boards to connect to payload hardware 

devices.  The intent of these nodes is to provide an interface to sensors and perform 

any necessary pre-processing of their data prior to passing it to other RP, CH or NI 

nodes for final processing and downlink.   

The number and type of nodes to use in a JAS based payload are determined by 

system requirements.  Complex custom backplanes are eliminated by having a 

minimal number of physical interconnects between nodes which allows this node-

based architecture to scale to most applications.  SpaceWire can be used for routing 

payload command and state-of-health data as well as moderate bandwidth mission 

data.  For high bandwidth requirements, additional networks based on Peripheral 

Component Interconnect Express (PCIe), Serial RapidIO (SRIO) or custom fast serial 

can be used. 

Each JAS node contains a field-programmable gate array (FPGA) that provides a set 

of common functions to the node.  This FPGA is referred to as the System Monitoring 

and Communications (SMAC) device.  As shown in Figure 2, the SMAC provides a 

standard set of physical interfaces for communicating with devices both on and off the 

 

Figure 1: JAS Node Architecture 
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node.  It includes a scalable 

SpaceWire network router 

with at least 5 ports and a 

suite of serial and parallel 

I/O interfaces.   

The SMAC runs a suite of 

firmware intellectual prop-

erty (IP) that provides a 

standard set of services.  

SpaceWire communication 

is provided by router and 

endpoint cores designed by 

NASA Goddard.  A Remote 

Memory Access Protocol 

(RMAP) core provides a 

common interface to read 

and write to memory-mapped peripherals connected to the SMAC.  Standardizing on 

RMAP as a communication protocol reduces the number of protocols that must be 

supported to communicate with hardware peripherals connected to JAS-based 

payloads.  In addition to the I/O interfaces, RMAP is also used to communicate with 

other standard devices on JAS nodes such as Point-of-Load (POL) power converters 

and EEPROM storage devices containing Intelligent Platform Management Interface 

(IPMI)-based node identification records. This storage format defines items like node 

capabilities, product and firmware versions, and a unique device identifier. By 

accessing this information over the SpaceWire network using RMAP, the 

configuration host node can gather detailed information about each node using a 

standard protocol.  

The SMAC may contain additional features as well. A SpaceWire broadcast 

capability can be used by any endpoint to deliver a single SpaceWire message to a 

variable number of other nodes in an efficient manner.  This broadcast capability can 

be used in conjunction with SpaceWire time-codes to achieve coarse-grained time 

synchronization between nodes without the use of discrete signals. RMAP-accessible 

SelectMAP and JTAG interfaces provide remote configuration and debugging of 

Xilinx FPGAs over SpaceWire. This library of services will continue to grow as JAS 

evolves and the SMAC is a versatile and critical component in standardizing the JAS 

architecture. 

JAS COMMUNICATION 
PROTOCOLS 
There are a number of 

communication proto-

cols being used on a 

JAS Spacewire net-

work.  Table 1 shows a 

list of these protocols 

and their Protocol ID 

(PID) values.  The 

RMAP and RDDP 

 

Figure 2: System Monitor and Communications Device 

Protocol Name Value 

Remote Memory Access Protocol (RMAP) 1 

Reliable Data Delivery Protocol (RDDP) 238 

JAS Packet Protocol (JPP) 240 

Goddard Memory Access Protocol (GMAP) 241 

JAS RDDP (JRDDP) 242 

Time Protocol 243 

Broadcast 245 

Broadcast 246 

Table 1: SpaceWire Network Protocols 

98



protocols are being used from the defined set of ECSS SpaceWire standard protocols 

[3]. The others were developed for JAS and assigned values in the user-defined range.   

Software applications built on JAS will use a service oriented architecture based on 

the CCSDS Spacecraft Onboard Interface Services (SOIS) standard [4]. This standard 

specifies a layered architecture for communicating with devices and applications over 

serial data links. A representation of the CCSDS SOIS architecture showing the JAS 

data links and protocols is shown in Figure 3. Services can be implemented as 

hardware (FPGAs) or as software based on the needs of the application. 

 

SpaceWire is used by JAS for payload command and control as well as low-to-

moderate rate mission data routing.  Applications will use one of three fundamental 

communication protocols for sending data over SpaceWire: the Remote Memory 

Access Protocol (RMAP); the JAS Reliable Data Delivery Protocol (JRDDP); or the 

JAS Packet Protocol (JPP).  Other SpaceWire protocols are used for specific JAS 

functions such as router configuration or broadcasting time between the nodes.   

RMAP is used to access remote memory based devices across a SpaceWire data link. 

This protocol is implements the standard managed by the ECSS committee [5]. The 

protocol itself supports three primary operations: read, write and read-modify-write. 

While this is not a reliable delivery protocol in that it will not retransmit the 

commands if there is an error, it does support the ability to notify the sender that the 

operation was successful. It has the capability of supporting write operations that both 

verify the data prior to writing it as well as acknowledge that the data was written. 

The JAS Reliable Data Delivery Protocol (JRDDP) is a reliable packet transmission 

protocol used for guaranteed data delivery between two applications over a 

SpaceWire data link.  It is based on the RDDP protocol created by NASA for the 

GOES-R program and has been modified to make it more flexible so it can meet the 
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Figure 3: CCSDS SOIS with JAS Protocols 
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needs of JAS payloads [6].  JRDDP consists of essentially two parts, a sender and a 

receiver.  The sender accepts data from a user application, segments the data into 

smaller pieces in accordance with user-defined Maximum Transmission Unit (MTU) 

of SpaceWire, packetizes it for transmission, and then sends it over the data link.  

Transmission includes a closed-loop acknowledgement packet that is returned to the 

sender to confirm correct delivery of the packet to the remote application.  The 

receiver accepts SpaceWire packets read from the network and reassembles them to 

create the original data message.  Once reassembled, the data is delivered to the 

receiving application in the identical form as originally sent.  If any errors occur in 

this transmission, timers will expire on the transmission side, and the sender will try 

and resend the data for a user-definable number of times.   

The JAS Packet Protocol (JPP) provides the capability to send a JAS data packet over 

a SpaceWire data link. It is a best-effort protocol that provides little error checking 

and no retransmission capabilities. As such, JPP requires little processing overhead 

which also makes it easy to implement in hardware or for testing purposes. JPP 

supports sending a single JAS packet within a single SpaceWire packet.  The 

maximum JAS packet size is 64Kbytes.  Since JAS packets contain a Cyclic 

Redundancy Check (CRC) as part of their definition, this CRC can be used to check 

the integrity of the JAS packet by receiving applications.  The CRC combined with a 

packet sequence counter, provide the tools necessary for reliable data transfer. In the 

future, if JAS continues to use this protocol, a segmentation capability will be added 

for the case that a maximum SpaceWire MTU size is enforced. 

The Goddard Memory Access Protocol (GMAP) is used specifically to configure the 

Goddard SpaceWire routers, and the GMAP packet format expands on the SpaceWire 

defined packet. There are three GMAP functions: GMAP Write, GMAP Read, and 

GMAP Read Response.  When sending a GMAP Read request to a Goddard router, 

the GMAP protocol inserts a variable length reply address field into the packet which 

the router copies byte-for-byte to the address field of the Read Response packet.  The 

router will also insert a SpaceWire protocol ID into the response packet as well as the 

final return address byte.  The return address and protocol ID allow the Read 

Response packet to be routed to the node that originated the read request and 

processed by GMAP protocol service.  GMAP writes occur without any response 

from the router so there are no additional capabilities in the router to support this 

function.   

The Time Protocol is used to send an absolute time message from one node to another 

within a payload.  Typically, a single node will maintain the reference time and 

broadcast it out to all other nodes.  This protocol is intended to be used along with 

SpaceWire timecode packets which are used as the low-latency epoch for telling the 

receiving nodes that the previously delivered time is valid.  This protocol is also 

intended to be used with the broadcast protocol to enable a coarse-grained time 

distribution solution for payloads.  Discrete hardware signals between nodes can also 

be used to implement a time distribution solution if more precise timing is required. 

The Broadcast Protocol provides the capability for a single node to send a SpaceWire 

packet to any number of nodes in the system.  It uses two different SpaceWire 

protocol IDs to accomplish this.  The combination of the two packet types handles the 

broadcasting of the packet to all SpaceWire routers and endpoints while eliminating 

any duplicate deliveries. 
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JAS provides standard computing and data services for a wide range of sensor 

systems from small, simple networks to large, complex networks consisting of dozens 

of nodes. To support this flexibility, the network is divided into subnets at each router 

and a two-byte SpaceWire regional address is utilized.  The first address byte delivers 

a packet to a specific router, and the second byte delivers the packet to a specific 

endpoint or application attached to that router.  By knowing the topology of the 

network, routing tables can be established which will delete the first regional address 

byte from the SpaceWire packets intended for its neighbors, leaving only the 

application logical address when the packet reaches the intended router.  This regional 

addressing scheme allows remote nodes to communicate with all other nodes using 

only standard SpaceWire routing, but without the need to assign separate logical 

addresses for each unique endpoint, which would quickly overrun the available 

logical address space. 

To establish the topology and routing tables, JAS implements two options.  The first 

option is a manual process and requires a priori knowledge of the network. Details of 

the topology, which includes the physical addressing paths to each router, and the 

individual routing tables, can be uplinked to the CH node.  Using physical addressing 

along with either the GMAP or RMAP protocol, the CH node loads all the routing 

tables. The second option uses a network discovery algorithm which, by using 

physical addressing and polling each port of a router, establishes the topology.  Then, 

a routing algorithm establishes the routing tables.  This auto-discovery method allows 

for a quick way to establish the SpaceWire network as nodes are added or deleted 

giving the system a level of plug-and-play capability. 

JAS DATA FORMATS 
The JAS architecture is designed to be a collection of nodes interconnected through a 

peer-to-peer network topology based on SpaceWire.  Transferring data across the 

network requires a packetized data format.  A logical choice was to use a data format 

based on the CCSDS Space Packet Protocol Standard [1] and ECSS Packet Utilization 

Standard (PUS) [2].  A combination of these standards were used to create the JAS 

command and telemetry packet formats (JAS Packets) shown in Figure 4 and Figure 

5.  The structure of JAS packets are identical to those defined for a CCSDS/PUS 

packet with the 

optional fields defined 

or additional fields 

added as needed by 

JAS.  The source and 

destination Application 

Identifiers (APIDs) are 

used to describe the 

generating and 

receiving entities for 

the packet.  The 

Transaction_ID can be 

used as a sequence 

counter by applications 

that wish to maintain a 

list of outstanding 
 

Figure 4: JAS Command Packet 
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command requests in 

which a telemetry 

response is expected.  

The last two important 

fields are the Service 

Type and Service 

Subtype fields.  These 

are used to identify the 

packet data contents 

and follow the services 

that are described in 

the PUS specification.  

The only other 

modification to the 

standards was to 

replace the PUS packet 

version number with 

the JAS packet version number in the secondary header.  We needed a method to 

track changes to the JAS packet format and we had no intentions of changing it even 

if there are future changes to the PUS standard. 

JAS SERVICES 
Using JAS packets as the data format for communicating between applications across 

a SpaceWire network, a set of services were defined to identify the data contents and 

format.  The JAS packet services are based on the PUS service concept.  There are a 

set of standard services described within PUS and these can be used if appropriate but 

they are targeted primarily for communication between the payload and ground 

system.  A set of additional on-board services is needed for communication between 

payload applications.  Table 2 shows a subset of these additional services, defined for 

JAS, along with a brief description of each.  The service numbers were chosen based 

on the user-definable range expressed within the PUS specification.  Within each 

service, subtypes were also defined as needed.  For example, Table 3 shows two 

service subtypes defined for the File Access Service.  These subtypes correspond to a 

command packet for requesting the contents of a remote file system and the associated 

telemetry packet that contains the 

response.  

JAS services provide a 

straightforward interface to 

develop applications and provide 

for a set of standard services as 

well as the capability to create sets 

of mission specific services.  At 

the current stage of JAS 

development, these services are 

still evolving as the functional 

aspects of the nodes evolve.  The 

intent is that there will be fixed set 

of services targeted to JAS 

 

Figure 5: JAS Telemetry Packet 

Service 

Number 
Description 

128 Device Access Service 

129 File Access Service 

130 Platform Management Service 

131 Time Management Service 

132 Sensor X Service 

133 Sensor Y Service 

134 Test Service 

Table 2: JAS Packet Services 
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common functions, such as the file system service, and there will be a reusable set of 

services for program-specific applications. 

 

CONCLUSION 
To date, networks ranging from two standalone nodes, a configuration host node and a 

network interface node, to a network of a dozen nodes including multiple 

reconfigurable processing nodes in a VPX chassis have been demonstrated.   Nodes 

from both Los Alamos and Sandia have been combined and interconnected with 

SpaceWire for the command and control network.  SpaceWire nodes can both be 

directed from either simulated ground control or networked CH nodes. The rich 

protocol support and extensibility has made SpaceWire an excellent candidate for 

reliable communication and is the serial interconnect of choice for reliable command 

and control at moderate data transfer rates.  
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File Access Service

Service 

Type

Service 

Subtype

Subtype Description Cmd Tlm Service Parameters Data Types and Description

129 1 File System Directory 

Listing Request

X File_System_ID File_System_ID is an unsigned integer that identifies the

file system. It is assumed there is only the root directory in

the file systems for JAS so a directory identifier is not

required

129 2 File System Directory 

Listing Report

X File_System_ID,

Directory_List

File_System_ID is an unsigned integer that identifies the

file system. Directory_List is a null-terminated string

which is contains a list of each file and attributes. Each

file is a record separated by a '|' (pipe) character and ends

with a '\n' (newline) character. The fields and format of a

single entry would look like

"file_name|size|modification_time|create_time\n".  

Table 3: File Service Subtypes 
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ABSTRACT 

Future space missions require high-performance on-board processing capabilities and 
a high degree of flexibility. State of the art radiation tolerant SRAM-based FPGAs 
with large gate count provide an attractive solution for in-flight dynamic 
reconfigurability. With these devices an advanced System-on-Chip (SoC) can be 
implemented. However, the system reliability and qualification has to be guaranteed 
in the harsh space environment. Previous papers introduced [1] SoCWire as a fault 
tolerant high-speed SpaceWire based Network-on-Chip (NoC) solution, and [2] the 
Dynamic Reconfigurable Processing Module (DRPM), a hardware platform within 
which the SoCWire on-chip communication network is applied. In this paper the new 
SoCWire Protocol (SoCP) implementation for such a SoCWire network is presented. 
The protocol is inspired by RMAP, but adapted to the requirements for on-chip data 
processing chains and considerably simplified to limit resource consumption. 

1 INTRODUCTION 

Currently, the Dynamic Reconfigurable Processing Module (DRPM), a flexible 
processing system which provides full support for in-flight dynamic partial 
reconfiguration of hardware, is in development. This work is done under ESA 
contract [3] in collaboration with Astrium Limited. For control and monitoring tasks 
of such a module a program running on a standard processor is sufficient, since these 
tasks imply only a low amount of data and are relatively infrequent, e.g. interpret and 
react to telecommands, collect the module status on a regular basis, and provide a 
housekeeping report. With a software upload these tasks can also easily be adapted. 
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Quite different is the situation with the huge amounts of data generated by payload 
instruments. Since the resolution of sensors providing e.g. image or spectrometer data 
has increased rapidly over years and downlink bandwidth is still limited, this data has 
to be processed in real-time, which exceeds the processing capabilities of all available 
space qualified CPUs. Using FPGAs with dedicated logic to implement specific 
hardware processing cores has become common practice in the space business. 
Particularly SRAM based FPGAs provide, with their reconfiguration capabilities, new 
power and resource efficient ways to implement hardware processing cores. Of course 
extra measures against radiation induced single events have to be taken into account 
with SRAM based FPGAs, but various mitigation strategies are known to solve this 
for specific applications. With several processing cores in a chain a macro processing 
pipeline can be created. 

Data frames can be passed through these blocks and the functionality of the 
processing blocks can be adapted during runtime. For the transmission of the data 
frames between the sensor interfaces, the processing blocks and the data memories, a 
network-on-chip infrastructure is used which effectively passes the data through the 
network. Such a network based approach provides a safe way to isolate a processing 
block, which is under reconfiguration, from the rest of the system, which may be still 
in operation. In several papers, e.g. [1], we have shown that SoCWire is an effective 
and viable solution for this problem. The pure SoCWire network enables the data 
transmission between several SoCWire nodes within the on-chip network providing 
the lower communication system layers up to packet level. In reconfigurable 
applications, further protocol is required to define a set of transactions for the higher 
level communication between the different nodes. Since every node in the network 
needs a handler for this protocol, its FPGA resource utilization should be minimal to 
leave space for the actual processing cores. 

2 DYNAMIC RECONFIGURABLE PROCESSING MODULE 

Primary objective of the DRPM study is to provide a development environment, 
which will demonstrate the feasibility of reconfigurable FPGA technology for flight 
programmes. Therefore, the module is primarily equipped with devices and interfaces, 
for which space qualified versions are available. 

 
Figure 1 DRPM architecture 
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2.1 GENERAL DRPM ARCHITECTURE 

The DRPM architecture shown in Figure 1 is a modular concept and consists of at 
least three components: (i) System Controller, (ii) SpaceWire Router and (iii) 
Dynamically reconfigurable FPGA (DFPGA) module. The function of the SpaceWire 
router is to interconnect all sub modules and provide expandability to additional 
DFPGAs or additional DRPMs. With this modular concept processing capacity can 
simply be extended by adding further processing modules or hardware redundancy 
can simply be achieved by adding additional DFPGAs. The System Controller 
controls and supervises the overall DRPM. For these tasks it features a fault-tolerant 
LEON based CPU, the SpaceWire RTC ASIC (AT7913E). This CPU already 
incorporates SpaceWire based RMAP (Remote Memory Access Protocol) interfaces 
for communication with the Spacecraft. Attached to this processor is a high-capacity 
non-volatile memory for secure storage of all basic and partial configuration bit files 
required for the DFPGA(s). 

2.2 DFPGA ARCHITECTURE 

The DFPGA (Figure 2) is the actual processing unit within the DRPM architecture. 
Therefore it has one or two Reconfigurable FPGAs (RFPGAs) and a Configuration 
Controller for overall flow control and managing of the RFPGAs’ configuration. This 
configuration management not only has to provide the currently required 
configuration bitfiles, but also has to take care of SEU (Single Event Upset) 
accumulation within the SRAM based FPGAs and to mitigate these effects. The 
Configuration Controller features a LEON3 processor, several low and medium rate 
interfaces, interface to a large local reliable data memory, and a data and 
configuration interface to the RFPGAs. The data interface to each RFPGA is 
implemented with a 16bit SoCWire network interface. 

 
Figure 2 DFPGA architecture 

The RFPGA is a module equipped with a reconfigurable Xilinx Virtex 4 FPGA 
device, local buffer memory, and high speed interfaces. The dedicated logic of the 
Virtex 4 is divided into a small static area and one or several dynamic areas, called 
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Partial Reconfigurable Areas (PRAs), which host the dynamically interchangeable 
Partial Reconfigurable Modules (PRMs). A SoCWire switch within the static area 
connects to the different PRMs, to the high speed interfaces and to the SoCWire 
interface between Configuration Controller and RFPGA. 

3 SOCWIRE 

Whereas the different subunits of the DRPM architecture are interconnected by a 
classical SpaceWire network, the SpaceWire based System-on-Chip Wire (SoCWire) 
network architecture is used on the SRAM based FPGA to interconnect several on-
chip processing cores and for interfacing the RFPGAs to the Configuration Controller. 
The interconnection to the off-chip SpaceWire network is supported by specific 
SpaceWire to SoCWire bridges. SoCWire has been developed as a NoC architecture 
which is able to connect PRMs to a host system with the capability to isolate these 
PRMs logically and physically from the host system [1], [2]. Unlike ESA’s 
SpaceWire standard [4], SoCWire uses a synchronous parallel interface instead of an 
asynchronous serial interface since it is intended to work in a synchronous on-chip 
environment. Beside the parallel data lines, there are additional lines for a parity bit, a 
data control flag and a valid signal. The achievable data rates in the SoCWire network 
depend on the application and the available FPGA resources. 

A SoCWire link is always a point to point connection of two CODECs with receiver 
and transmitter interface. The simplest SoCWire connection consists of two nodes, see 
Figure 3(a). SoCWire switches with a configurable number of ports can be 
instantiated to create a complete network. To keep the switch small in terms of logic 
resources, a simple path addressing scheme and a simple round robin scheduling 
algorithm are implemented.  

 
Figure 3 SoCWire network options (a) node to node, and (b) network based on switches 

As pointed out in Figure 3(b), the data transfer in a SoCWire network is controlled 
and supervised by a host system. Typically the host system consists of a LEON 
processor. As a bridge between the AMBA based processor bus and the SoCWire 
network, the AHB SoCWire Bridge (AHB2SOCW) was developed [5]. To provide 
high data rates with low processor involvement, the AHB master of the bridge is 
controlled by two Direct Memory Access (DMA) engines. The bridge supports 16bit 
and 32bit SoCWire networks, whereas two 16bit words are combined into one 32bit 
word to support the LEON3 native AMBA data width and achieve the highest 
performance in combination with the DMA controller. 
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4 SOCWIRE PROTOCOL (SOCP) 

Interconnected SoCWire CODECs represent the physical link within a SoCWire 
network with protocols defined up to the packet level. With this level data 
transmission between two nodes is possible, but a node also has to know how to 
interpret the meaning of the received data packets. For our network application a more 
generic support by typical transactions is needed, which are defined in SoCP. 

4.1 REQUIREMENTS 

The typical SoCWire network is shown in Figure 3(b). A processor driven host 
system controls and manages the data transfer between the nodes and itself. In a 
scientific instrument, for example, one node would be an interface to an image sensor 
and the second node would be a processing module providing e.g. some filter 
functionality, implemented in dedicated hardware. The image sensor has to know 
where in the network the filter is located and that it is allowed to send the acquired 
sensor data to the filter module. After the specific data processing by the filter 
module, it will send the processed data to the host processor, which will finally buffer 
and format the data for transmission via the spacecraft interface to ground. 

Since the specific processing nodes are hardware implementations, the protocol 
handler has to be implemented in hardware as well. Furthermore, since every node 
requires its own protocol handler instantiation, also the logic resources for it are 
required multiple times. Therefore, the hardware protocol handler’s resource usage 
should be as minimal as possible to leave space for the actual PRMs. 

To support this requirement the following limitations and constraints apply to the 
SoCP implementation: (i) the number of switches in a network path is limited to three, 
(ii) port 0 of a switch must be the route to the host system, (iii) data width of the 
SoCWire network is either 16 or 32bit and (iv) the maximum number of ports in a 
SoCWire switch is limited to 16. 

4.2 IMPLEMENTATION 

The SoCP handler is placed between SoCWire CODEC and processing core. These 
three units form a single node in a SoCWire network and are realized within the 
DRPM context as PRMs (Figure 4). SoCP has to reply to requests, supply the 
processing core with data, and provide registers to set and read parameters from the 
processing core. The command and reply format is inspired by the Remote Memory 
Access Protocol (RMAP) for SpaceWire networks [6]. Like RMAP, SoCP is used to 
configure a network and to control and supervise nodes. But whereas RMAP is also 
used for remote memory accesses to SpaceWire nodes, the processing nodes within a 
SoCWire network typically process the data on consecutive data blocks. One 
processed data block is in the context of a macro pipeline directly transmitted to 
subsequent processing nodes. 

The hardware implementation of the SoCP also supports a limited number of 
configurable user registers. With these registers it is possible to adjust parameters of 
the processing core during runtime, which avoids the need of reconfiguring the PRM 
for each change of a parameter. Additionally the processing core can provide some 
status information, which the processor could query. 
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Figure 4 PRM/Node in a SoCWire network 

Table 1 shows the transaction types defined in SoCP. Process and Reply packets are 
created and consumed by the host system. A packet is sent to a node, processed by it 
and sent back to the processor. A variant of this transaction type is that there may be 
nodes that are bridges to external interfaces, e.g. SpaceWire or SelectMAP Xilinx 
configuration interfaces. The data to be transmitted is then consumed by the node’s 
sending process, but a reply is given to indicate the processor that the transmission 
was successful. The SocP does not support autonomous error handling, so e.g. an retry 
mechanism for missing packets would have to be implemented in the software 
protocol handler running on the host system. 

Transaction Type Description 
Process and Reply Packet generated by host system, processed by a node with reply 

sent back to host system 

Write Register and Reply Write a register (Reply is sent by node) 

Read Register and Reply Read a register (Reply is sent by node) 

Streaming Data Transmission Streaming data from a source to a destination node 

Plug and Play Init Message Initialization message sent by a node 

Table 1 SoCP transaction types 

The transactions Write Register and Read Register are intended to support the 
processing core with parameters or allow the processing core to provide some status 
information. Each core has some fixed registers, up to four optional read, and up to 
four optional write user registers. The width of the registers depends on the 
configured SoCWire width, i.e. 16 or 32bit. Streaming Data Transmission is the 
transaction for use cases as already described in the example above. A data packet 
from a node is directly passed to another processing node. Since the source node 
needs to know where it has to send the data, i.e. where the destination node in the 
SoCWire network is located, a set of 3 forward addresses is stored within the SoCP 
core fixed register set. These registers have to be set up by the host system in advance, 
since the host system is in charge of the current configuration status of the required 
PRMs and their location within the network. After the destination node has processed 
the payload data, it will forward the data further to the addresses stored in its register 
set. The transaction type Plug and Play Init Message is intended to inform the host 
system of a successful reconfiguration of a PRM. Once the new PRM starts running 
and the SoCWire connection is established the SoCP core generates a message which 
will be sent via pre-defined routing to the host system. 

The two main packet definitions for the transactions are depicted in Figure 5. The 
packets start with up to three addresses. These are the SoCWire path addresses which 
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define the route of the packet from source to destination node. Each time the packet 
passes a SoCWire switch on its way through the network, the heading address is 
deleted. Packets reaching the target node start with the Hardware ID of the node. 
Therefore, the number of address fields required for a request packet depends on the 
number of switches en route. Since the host system is always accessible through port 
0, all reply packets to the host system must have three address fields filled with zero 
regardless of the number of switches they have to pass. The SoCP handler running on 
the host system’s processor (in software) has to remove potential zero words. The 
Hardware ID is unique for every node and has to be set up by a generic value during 
the instantiation of the IP core. The host system then inserts the Hardware ID of the 
target node, which processes the data only when it has verified the ID successfully. 
The target’s reply packets will contain the same ID, so that the software protocol 
handler knows from which node the reply packet comes from. In case of streaming 
data packets, the source node of the packet stream has to send the destination 
Hardware ID, which needs to be set up in advance by the host system.  

 
Figure 5 Packet definitions for Process Request/Reply and Stream (a), and for Register 

Read/Write Request/Reply (b) 

The Transaction/Packet Counter is a sequence counter incremented with every packet 
sent by the host system or by the source node of a Streaming packet. The target node 
will use the same value within the Reply packet, so that the host system can finally 
identify to which Request the Reply belongs to or whether a sequence of Streaming 
packets is correct. The Transaction Type identifies the type of packet (see Table 1). 
With a reply also some error conditions will be reported to the host system within this 
field. Compared to the RMAP terminology the Transaction/Packet Counter 
corresponds to the Transaction ID and the Transaction Type corresponds to the 
Instruction ID [6]. After the Transaction Type either up to 2064 data bytes are sent in 
case of Process and Streaming packets (see Figure 5a), or a Register Address followed 
by the Register Data is sent in case of Register packets (see Figure 5b). Finally, every 
packet is terminated by an EOP token, complying to SpaceWire. 

Error detection on protocol level is realized via parity bits in the Hardware ID, 
Transaction/Packet Counter, Transaction Type and Register Address field. Within 
each of these fields bit 15 is the parity bit. The Register Data is protected by an 
inverted copy of the register value to be read or written. Routing errors are detected 
by verifying the Hardware ID. Only when the Hardware ID of the target node is 
identical with ID in the packet, the data will be processed. Process and Streaming data 
cannot be protected by the SoCP core, since this would require large buffers within 
the core, which contradicts the low resource usage requirement. If error detection is 
required, then the processing core itself has to take care of this. 
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4.3 RESOURCES 

Since the SoCP hardware handler is implemented for every node in a SoCWire 
network, it is important that its resource consumption is minimal. Table 2 shows the 
amount of resources used by the current SoCP implementation on different space 
grade FPGA devices. For comparison the required resources for a SoCWire CODEC 
IP core are also listed in this table. Both cores were configured to 16bit data width and 
the SoCP IP core’s optional user registers were disabled. These figures represent the 
device utilization without TMR (Triple Modular Redundancy) applied.  

 SoCP IP Core SoCWire CODEC IP core wo/ RAM 
Device Cells/Slices Utilization[%] Cells/Slices Utilization[%] 
XQR4VSX55 115 0.47 272 1.11 

XQR4VLX200 115 0.13 272 0.31 

XQ5VFX130T 67 0.33 160 0.78 

RTAX2000S/SL 269 0.83(*) 754 2.34(*) 

RT3PE3000L 368 0.49 932 1.24 
(*) All flip-flops employ TMR 

Table 2 SoCP FPGA resource utilization 

5 CONCLUSION 

With the DRPM architecture an effective and viable implementation of a 
reconfigurable hardware for future space mission has been presented. The SpaceWire 
based on-chip communication architecture SoCWire provides a fault-tolerant, high 
speed infrastructure for the exchange of data packets between processing nodes, 
interfaces and host system. With SoCP an efficient protocol implementation, tailored 
to the specific needs of a SoCWire network has been introduced and it has been 
shown, that the resource utilization of the SoCP IP core is very small. 
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ABSTRACT 
Many applications sharing a SpaceWire network require synchronized system time and 

SpaceWire can be employed to distribute system time. However, in its current form general 

system time distribution capability is lacking. In this paper we present a system time distribution 

approach that employs a broadcast extension to the SpaceWire protocol. Broadcast messages 

distribute specific time values while SpaceWire Time-Codes clock-in or trigger the specific time 

contained within the broadcast. The broadcast approach is effective in minimizing network 

resource usage by distributing the broadcast-time message in a partial-parallel method. 

Additionally, for the objective of identifying the timing precision and jitter for specific network 

architectures and network states, high-fidelity models were developed to quantify the timing 

variations and to analyze overall SpaceWire networked system performance.  

1. INTRODUCTION 
The European Space Agency (ESA) in collaboration with other international space agencies 

supports a serial data link standard to enable the transfer of large amounts of data onboard 

satellites. The standard named SpaceWire and defined in [1], is a satellite communication 

network based in part on the IEEE 1355 standard of communications. A SpaceWire network is 

typically comprised of a number of links, nodes and routers. SpaceWire routers are necessary 

since a SpaceWire node will only support a few links and thus can only be directly connected to 

a limited number of nodes. Routers also reduce the number of point-to-point links and enable 

redundant paths in case of link failures. The current standard describes a mechanism that can 

enable modern satellite systems to transfer large amounts of data on board the satellite. However, 

the standard currently lacks a time distribution capability to enable time synchronization among 

the various applications on the SpaceWire network [1].  

Additionally, a high-fidelity modeling and simulation capability to perform analysis of 

SpaceWire networked systems is lacking. This analysis capability should provide precise time 
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synchronization results under various proposed network architectures. This analysis capability 

should also provide results as the architecture under study dynamically changes when faults 

occur and redundant paths are utilized. To meet these analysis objectives we created high-fidelity 

model representations of SpaceWire nodes, links, and routers that can be configured to represent 

any proposed network architecture. 

In this paper, we present a time distribution mechanism that can be implemented in a SpaceWire 

network that employs the standard SpaceWire Time-Code function along with a custom 

SpaceWire broadcast capability. Together, the Time-Code function and broadcast capability 

enable a means to distribute time to the various applications utilizing the SpaceWire network.  

Our approach required that the general broadcast extension be a layer upon the existing 

SpaceWire standard. That is it would be compatible with the existing protocol and not 

necessitate the modification of existing intellectual property or the revision of the existing 

SpaceWire standard. Rather, the objective was to extend the standard to include the new 

capability. Our approach met this objective. 

2. SYSTEM TIME DISTRIBUTION WITH SPACEWIRE BROADCAST EXTENSION 
The current SpaceWire standard lacks both a general time distribution function and broadcast 

function. Multiple solutions have been proposed each with their own benefits and deficiencies 

[2][4]. To this end, we designed a time distribution function that utilizes a SpaceWire broadcast 

capability. The time distribution function is designed to work in concert, be network efficient, 

and fully backward compatible with the current SpaceWire standard. 

2.1 SYSTEM TIME DISTRIBUTION 

The time distribution function distributes what we consider to be system time. In our time 

distribution mechanism, system time refers to distributing actual time versus the SpaceWire 

standard Time-Code. The standard SpaceWire Time-Code comprises the SpaceWire ESC 

character followed by an eight-bit data character. The data character contains 6-bits of system 

time and two control flags. A time-master node asserts a periodic “tick” and immediately sends 

out a Time-Code with the 6-bit time field incremented prior to transmission [3]. This Time-Code 

mechanism is limited to a 6-bit resolution and increments each network device’s internal time 

counter from the current Time-Code value to the next. The counter, which is intended to prevent 

looping retransmission of the Time-Code and not necessarily to carry a time value, rolls from its 

maximum value of 63 to zero because of its 6-bit field size limit.  

Our time distribution approach accomplishes synchronization of system time. This is done by the 

time-master node sending a system wide broadcast containing what the system time will be at the 

next Time-Code “tick.” The broadcast message is transmitted a predetermined time period prior 

to the transmission of the Time-Code. The predetermined time period is an estimated value that 

is equal to the worst-case time for the broadcast message to propagate throughout the network. 
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The time-master node transmits a Time-Code tick indicating to the network that the time 

described in the previous time message is now current. Thus, the various network applications 

have access to an unambiguous system time.  

Unambiguous system time is a 32-bit integer representation and it is broadcast to all nodes in the 

network. When the endpoints receive a SpaceWire Time-Code the broadcasted system time 

message is accepted as the current time after having been validated by combinational logic. The 

time endpoint evaluates whether it is synchronized with the rest of the SpaceWire network with 

every received SpaceWire Time-Code “tick.” If the endpoint believes itself to be synchronized 

with the rest of the endpoints in the SpaceWire network, it considers itself to be “locked” and 

asserts a corresponding signal.  

The endpoint determines if it is “locked” in the following way:  After every “tick,” the expected 

value of the next system time message is calculated. The calculated value is considered to be the 

value of the current system time message plus one. If the next received system time message 

matches the expected value, the endpoint concludes that it is synchronized with the rest of the 

network.  

If the next received time message does not match the expected value, or no system time message 

is received by the next “tick,” then the endpoint assumes that a synchronization error has 

occurred, indicates that it’s no longer “locked,” and will simply increment its system time as a 

“best guess.” If the time message arrives late, it will not interfere with operation so long as the 

subsequent time message arrives on time, as the new message will override the late message.  

In our approach it takes two correct time message/tick pairs to achieve a synchronization “lock.” 

It is a known issue that if a series of two or more time messages are consistently late by a tick 

period (or a consistent multiple of the tick period), then the timekeeper will erroneously indicate 

a lock and synchronize to the late packets as they appear identical to a correct time message/tick 

sequence. Expanding the number of previous packets considered when calculating the expected 

time value would reduce the likelihood of such a situation at the cost of increasing the number of 

correct packets it takes to achieve a “lock.” 

2.2 BROADCAST 

Our time distribution function employs a hybrid broadcast approach derived from work 

described in [4]. The approach was modified with the goal of distributing system time, be 

compatible with existing SpaceWire hardware, and not suffer from loops or broadcast storms. 

The approach creates a “broadcast server” to be hosted by each router in the network. Our 

implementation of this approach has two main configurable aspects: which local ports will 

receive broadcasts and a list of the logical addresses of all other broadcast servers in the network.  

A packet intended for broadcast is transmitted to the local “broadcast server,” which then 

forwards the packet to all other broadcast servers in the network. Once this is completed every 

115



 

broadcast server in the network will forward the packet to the appropriate local ports on its 

respective router. The broadcast servers use several techniques at the protocol level to guarantee 

that no loops, infinite broadcast storms, or spurious re-broadcasts occur. The broadcast 

mechanism used for our SpaceWire Broadcast Server (SpWBS) includes several stages:  

Local-to-Server Stage - A SpWBS receives a Local-to-Server type packet containing the 

broadcast message 

Server-to-Server Stage - The initiating SpWBS sends a Server-to-Server type packet containing 

the broadcast message to every other enabled SpWBS in the network. 

Server-to-Local Stage - Once a SpWBS receives a Server-to-Server stage packet or the initiating 

SpWBS finishes the Server-to-Server stage transmission it sends Local-to-Server type packets 

with the broadcast message to every enabled and connected local port. 

This broadcast approach has efficiencies in that it partially distributes bandwidth utilization 

across the network and obtains parallelization of the Server-to-Local stage of broadcast. The 

approach requires that every router with nodes receiving broadcast messages have an attached 

SpWBS and it requires an additional header byte to distinguish between Local-to-Server, Server-

to-Local, and Server-to-Server type messages.  

The SpWBS broadcast approach includes mechanisms to prevents broadcast storms. All local 

ports and broadcast server addresses are disabled by default and must be explicitly enabled by 

server configuration. A configuration error that results in a Server-to-Local packet to be received 

by another SpWBS will be detected by identification of an incorrect header byte and prevented 

from further broadcast. 

3. MODEL DEVELOPMENT 
Our SpaceWire model development is done in the OPNET Modeler network simulation 

environment [5]. OPNET Modeler includes an extensive model library of network devices; 

however, OPNET Modeler does not include SpaceWire models in its standard model library. 

Fortunately, OPNET Modeler includes the capability for users to develop nodes based on custom 

protocols. To analyze the performance of our time distribution mechanism detailed SpaceWire 

models are developed. 

The models include many features of the SpaceWire standard including the functionality at the 

various communication stack levels in both the end nodes and wormhole router. The models 

faithfully implement the disassembly of application layer data and the reassembly of the 

resulting NChars at the destination node. Additionally, processes such as the startup sequence, 

flow control, Time-Code process, and realistic representation of various buffering and queuing 

functions. 
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A modeling objective was to have representative models of the various SpaceWire modules and 

protocols to support system design activities in all phases of a project. This modeling would 

range from custom protocol extension analysis to assessing SpaceWire architectures and their 

operation under stressful scenario conditions resulting from link and node failures. In pursuit of 

this objective, we developed models to be modular. The modular approach enables the 

combination of end nodes and routers in various architectures. Figure 1 illustrates an example 

SpaceWire network and one of the nodes in the example network. In this example, each node is 

comprised of three specific modules; an application node, a wormhole router, and a broadcast 

server. The SpaceWire router is the connection point that combines the various applications 

nodes and broadcast servers. 

 

Figure 1: Example SpaceWire network topology.  

Figure 2 illustrates a description of the custom SpaceWire node model and a single process 

model as developed in OPNET Modeler. On the left side of Figure 2 is the SpaceWire 

application node model that includes the protocols used in each layer of the SpaceWire 

communication stack. The node model includes various application types that access the 

network. Specifically, a state-of-health (SOH) application that periodically shares state of health 

(SOH) details. A standard application layer can be a data producer, such as a sensor, or a data 

consumer, such as a telemetry downlink, or a broadcast application that creates messages 

intended for broadcast.  

Each of the square blocks in a node model represent a single or multiple process model state 

machines and implements the protocol of interest. Figure 2 (right side) illustrates an example 

process model. The process model illustrated in Figure 2 is a root process that can spawn child 

processes. Child processes are particularly applicable in modeling the wormhole router. The root 

process spawns a child process for each data flow through the wormhole router. In many cases 

multiple child process are in various states as they represent multiple simultaneous data flows 

through the router. 
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Figure 2: SpaceWire application node model (left) and an example process model (right).  

OPNET Modeler includes rich mechanisms to create network traffic. In our time synchronization 

analysis, we are able to clearly identify when messages supporting system time distribution are 

created and when they arrive at their intended target. Additional application layer traffic can be 

generated to represent actual data files being transported through the network as NChars. Thus, 

Time-Code traffic is created and introduced into the network along with typical application layer 

traffic and its impact on delaying Time-Code messages. 

4. SYSTEM TIME DISTRIBUTION PRECISION ANALYSIS WITH HIGH-FIDELITY SPACEWIRE 
MODEL 

To demonstrate our time synchronization analysis capability we created a SpaceWire network 

comprised of 12 nodes, routers, and broadcast servers as shown in Figure 1. The architecture, 

constructed in OPNET Modeler, uses the various custom nodes and process modules. In this 

demonstration case Node 10 is considered the time master and thus originates both the Time-

Codes and the system-time broadcast messages. Employing our time distribution mechanism, 

Node 10 will create a broadcast message immediately following a Time-Code transmission. The 

broadcast message will be transmitted to the broadcast server associated with the router shared 

by the broadcast server and Node 10 (i.e., Node 1010). This broadcast message contains the time 

that the next transmitted Time-Code will clock into the various network slave nodes. Since 

Time-Codes are not delayed by full application layer file transfers the broadcast will not arrive at 

a slave node prior to the previously sent Time-Code. However, there is no guarantee that the 

broadcast message will arrive at the slave nodes prior to the arrival of the following Time-Code 

transmission. In cases, where the following Time-Code arrives at the slave node prior to the 

broadcast time message the system is said to have lost synchronization “lock.” We examine the 

network in Figure 1 for time synchronization precision.  

5. RESULTS AND DISCUSSION 
The network in Figure 1 with Node 10 producing both the Time-Codes and the broadcast 

messages is assessed for time distribution delay variation. In this analysis, we record the receipt 

of a broadcast message and the time the broadcast message time value is clocked into the slave 
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node’s clock. The node’s time is then compared with a global absolute time. The difference of 

the absolute time and node clock time is recorded and plotted in Figure 3 as a probability density 

function (PDF).  

 

Figure 3: Resulting PDF of the time synchronization error when network is lightly loaded (red 

trace) and heavily loaded (blue trace). Note the Y-axis should normalized by dividing by 50E6.  

Figure 3 describes a time synchronization error averaging approximately 7.0 µsec. The plot has 

three regions centered at approximately 5.5 µsec, 7.3 µsec, and 9.0 µsec. Each region describes 

the variation in time synchronization based on the number of hops to forward the Time-Code. 

Each additional hop adds more variation and thus leads to more spreading of the plot as you 

move from left to right on the time axis. The variation between the lightly loaded network (red 

trace) and the heavily loaded network (blue trace) results from additional NChars on the network 

that may delay the transmission of a Time-Code. The variation is not significant since a NULL 

can cause a delay of up to an 8-bit transmission time whereas an NChar can cause a delay of up 

to a ten-bit transmission time. In the demonstration network, the SpaceWire links operate at 10 

Mbps. Also note that the Time-Code period was 6 msec. and maximum application-layer file size 

was less than 60 Kbits and thus were easily within range so the network would not loose time 

synchronization lock. We elaborate on synchronization lock in Section 6. 

6. FUTURE WORK AND CONCLUSIONS 
Our approach’s time synchronization resolution is limited by the frequency of Time-Code 

transmissions. The frequency of Time-Code transmissions is limited by the requirement of 

sufficient time for the broadcast system time message to propagate throughout the network. We 

believe it is possible to decouple the need for a one-to-one correlation of system time messages 

and Time-Code transmissions to obtain an improved synchronization error. However, the 

theoretical upper limit of system time synchronization precision is limited by the latency and 

jitter inherent in SpaceWire Time-Code function. Time-Code enhancement techniques [7] could 

be incorporated into our time distribution approach to improve time synchronization. 
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Additional features will be incorporated into the OPNET Models to expand the representation of 

the SpaceWire protocol and the nodes. Specifically a model of Remote Memory Access Protocol 

(RMAP) for SpaceWire will be developed. RMAP provides a standard method of reading and 

writing to registers and memory across a SpaceWire network. This will further our analysis 

capability of application performance.  

Additionally, we have developed a Live/Virtual/Constructive capability at Sandia [6] that 

combines real devices, emulated devices, and simulated devices in a single hybrid experiment. 

We have identified use cases in our SpaceWire development activities that will benefit from 

merging our SpaceWire models into hybrid experiments to assess satellite network development 

ideas at various stages of the development. This approach is expected to support assessing the 

behavior of actual hardware prior to the availability of complete system hardware.  

We have demonstrated a viable system distribution approach that can be employed without 

modification to the SpaceWire standard. The time distribution approach has been modeled in a 

high-fidelity simulator and our analysis has identified the range of time synchronization for 

various SpaceWire network architectures. Our broadcast solution has been fully developed in 

VHDL and tested in actual custom hardware. We continue with further integration and testing in 

actual hardware in our development activity.  
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ABSTRACT 

Payload control applications typically require that SpaceWire packets are delivered to 
the destination within certain time constraints, which is difficult to achieve with an 
event based wormhole switching network such as SpaceWire. One promising solution 
is to schedule the network to avoid contention and obtain a deterministic packet 
delivery time. This paper presents a proof of concept with a hardware implementation 
of an RMAP Network Scheduler compatible with current generation of network 
devices. The VHDL model developed configures and triggers the ESA RMAP IP 
Core, depending on the scheduling table stored in the memory allocated to the 
different channels, one for each pending user message. The highly configurable 
design supports segmentation and priorities, and is tolerant to network errors that 
could lead to temporally network congestion when using current generation of 
SpaceWire routers. 

1 INTRODUCTION 

SpaceWire [1] was designed to support payload data-handling applications using 
point-to-point links or networks. Data transfer is asynchronous and need not be 
deterministic. However, for spacecraft control applications, both payload and platform 
control, it is often required that data is delivered within certain time constraints. One 
promising solution is to schedule the network using time division multiplexing. With 
scheduling, there is no network contention and packet delivery time is deterministic. 
Is it then possible to obtain latency and throughput guarantees for the user data. The 
required periodic synchronization signal is easily provided using SpaceWire Time-
Code (TC) characters. Time is divided into discrete time intervals or time-slots (TS) 
determined by the arrival of a Time-code.   

SpaceWire uses wormhole switching, so packets are typically not buffered within the 
routers. Therefore, the scheduling is implemented at each transmitting node or 
network terminal using a local schedule table. Each local table must be configured 
following a global network scheduling, assuring that contention can not occur when 
no errors are present in the network.   
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One important question is which packet format or protocol should be used to 
encapsulate a user message. In this work the SpaceWire packets follow the Remote 
Memory Access Protocol (RMAP) specification [2]. RMAP is a transaction based 
protocol with one node, the Initiator, sending an RMAP command to read or write 
data to registers in a memory address located in another node, the Target. The use of 
RMAP has many advantages. It provides error detection using acknowledgments, it 
performs the most usual operations (read or write) with user messages of any size, and 
it is usually already implemented in typical SpaceWire systems. Besides, when the 
destination address is not a FIFO, it is safe to assume that the destination will be ready 
to handle the data of any write operation. In other words, it does not require end to 
end flow control to avoid stalling or rejecting a receiving packet.   

This paper presents a proof of concept of an RMAP Network Scheduler using current 
generation of SpaceWire network devices. It tackles both design and implementation 
issues with a focus on simplicity, efficiency and compatibility with existing 
components.  

The first sections will deal with the design challenges of a time division multiplexing 
technique, mainly: 

- The duration of a Time-Slot has to be traded off to achieve a high data rate for 
payload data and a low latency for command and control operations. 

- High priority event-based messages are difficult to schedule. 

- Errors in the network can produce timing violations in the global schedule and 
induce unexpected contention.  

The last sections deal with the actual implementation, based on the ESA RMAP IP 
Core [3] interfaced to a scheduler module developed in VHDL language. 

2 RMAP SCHEDULER 

As explained before, the basic idea of an RMAP scheduler implies that RMAP 
packets are sent at specific moments following a global synchronization that ensures 
that two different transactions do not use the same network resources at the same 
time. The simplest implementation may be the use of a local scheduler at each node 
that transmits an RMAP command just after the reception of a Time-Code. Figure 1 
shows an example with two nodes that transmit read and write RMAP commands to a 
third node using a shared link.  

 

Figure 1: Two nodes transmit read and write RMAP commands to a third node using a   
shared link. 
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Multiple transactions could take place at the same time providing that they do not use 
the same network resources, i.e. they do not produce contention. RMAP transactions 
like SpaceWire links are bidirectional so each RMAP transaction should require a 
SpaceWire link. However, two RMAP transactions of the same type could use the 
same link without causing contention if they are coming from reverse directions, but 
this should be treated with caution. 

The duration of a Time-Slot is a key parameter of this system and it must be the same 
across all the network, even if different link speeds are used. The data throughput 
increases with longer Time-Slots and the latency decreases with shorter Time-Slots. 
Besides, the maximum data length of an RMAP packet is restricted by its duration. 
This  limitation is easily solved by implementing a segmentation layer.  

For the trade off let’s assume that only one transaction is allowed to be executed in a 
single Time-Slot and we want to optimise this period for the maximum link speed, 
200 Mbps, which presents the best performance for space qualified hardware. If we 
consider that the protocol header, the network latency and the processing time cause 
an overhead of around 15-20 µs then the minimum Time-Slot could be around 62µs 
with RMAP data lengths of 512 or 768 bytes. Most command and control messages 
can fit within this RMAP data length, but most payload data messages will need to be 
segmented. Another option is to use a slot period of 125 µs with 2Kbyte segment size, 
but this increases the latency and the gains in throughput depends on the size of the 
payload message. For example, a 3Kbyte message will use two segments, one of them 
half size. Note that the segment size should be a multiple of a power of two, and the 
Time-Slot period should be a power of two division of one second (CCSDS CUC 
format compliance). 

For longer slot periods then it is recommended to allow multiple transactions per 
Time-Slot. This increases the worst case latency and the complexity of the 
implementation. The biggest advantage is that it reduces timing constraints of 
software implementations and that multiple short control messages can be sent during 
the same slot leading to an increased link utilization. Our implementation does not yet 
support multiple transactions but provides another mechanism to increase the 
maximum throughput called multi-slotting. Multi-slots provide the capability to send 
a single RMAP command using multiple consecutive slots, reducing the overall 
overhead and increasing the throughput with short Time-Slots. The biggest advantage 
is that it allows a network to use different link speeds. For example, a node connected 
to a 50Mbit/s link would use four consecutive slots that will be equivalent to a single 
slot of a node working at 200Mbit/s.   

3 RMAP SCHEDULER CHANNELS 

Network scheduling is more efficient when the data traffic is known and periodic. It is 
difficult to schedule event-based messages that require low latency, specially if they 
use little bandwidth and are rarely generated. With a simple local schedule where each 
message must be allocated to a different slot, this rare, high priority message has to be 
allocated to at least one slot. This slot will be unused most of the time. 

The solution is to implement a priority mechanism on top of the schedule table. This 
can be achieved with the introduction of the concept of priority channels within each 
node. A channel wraps a single RMAP message configuration (i.e. the header 
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including the destination) and its allocated Time-Slot numbers. It implements a 
transparent segmentation layer and provides sending status and error reporting. 
Multiple channels can be active at the same time. A channel is active when it has been 
configured with all RMAP parameters required and it has not send all its data. A long 
message may use multiple slots containing one segment of data. Each channel has a 
different priority level. Each Time-Slot the highest priority channel that is active is 
used. Once the highest priority channel finished sending its message, the lower 
priority channel is used. 

To send critical sporadic messages efficiently we configure a high priority channel to 
use the same slots that have been already allocated to a long payload message using a 
lower priority channel. The long payload message is sent using multiple segments, 
one for each slot. When the control message must be sent it will be sent in the 
following allocated slot even if the long payload message is still active. The number 
of slots required must take into account the total bandwidth required. For example we 
could have one channel for payload data that requires six slots and two channels for 
two control messages that need half slot each, requiring a total of seven slots per 
epoch. 

Our implementation requires that a channel must be reconfigured or retriggered each 
time an RMAP message is sent, except if the continuous mode is set. This allows to 
change the message rate or throughput of a particular channel and implement different 
slot allocations depending on the current epoch, increasing the efficiency of the 
system. The channel configuration can be performed by the node or by external 
network manager using RMAP. 

4 ERROR HANDLING 

Error detection is a critical feature for command and control operations so it is fully 
implemented in the proposed RMAP Network scheduler.  

The network scheduling is highly sensitive to synchronization errors. The period 
between the arrival of consecutive Time-Code codes is measured with an internal 
clock and compared with the expected value. In case of discrepancy the system does 
not trigger the sending of any packet and report the error to the user application (early 
or late Time-Code arrival). The system also automatically resynchronizes without 
further user interaction.  

The handling of transmission and reception errors also follows a fail safe approach, 
and the system goes silent to avoid error propagation. For example, if a packet is still 
being send at the end of a Time-Slot  it implies that there is congestion in the network 
produced by this or another packet. SpaceWire routers based on the SpW10X model 
will remove stalled packets after some time. With our scheduling approach it can be 
guaranteed that only the packet that caused the network error will be removed first, 
allowing the others to continue towards the destination afterwards. Hence, the 
scheduler allows a packet being sent to continue being sent in the next slot. The slot 
following this one will be kept silent and not used, to avoid error propagation to all 
the network. This is analogue to the TCP congestion control mechanism.  

Therefore, a channel is only stopped if a reply packet is not received after a 
programmable number of slots, considering that the command was not received or the 
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reply was lost. An error will be reported if there is congestion while transmitting, or if 
the RMAP reply did not arrive in the same slot, but the channel will not be 
automatically disabled. Note that if the channel is disabled, with the current 
generation of routers, any error in the network caused by a single channel could 
automatically disable multiple channels in other nodes of the network. It is preferred 
to add some extra latency and some loss of throughput than to lose multiple 
transactions across the network. This additional bandwidth can be taken into account 
at design time following an error probability model. 

An optional feature is the activation of certain channels only when another channel 
presents an error. This can be used for remote error notification or for redundancy 
mechanisms. A retrial mechanism can also be implemented by the user application by 
retriggering the channel in error. 

5 IMPLEMENTATION ARCHITECTURE  

The RMAP scheduler has been prototyped in a Xilinx Virtex II and IV FPGAs with 
the ESA RMAP IP Core. A new IP Core has been created around the ESA RMAP IP 
Core. This solution was envisaged to minimize the development time. 

The user or host application interacts with the scheduler by writing to a specific 
memory space containing the configuration for multiple RMAP channels and the 
global timing setup. The scheduler generates the RMAP information required by the 
ESA RMAP IP Core, mainly the RMAP header and data transaction pointers, for each 
segment of an RMAP message defined by the host. This segment is defined by the 
current status of the highest priority channel allocated to the next slot. When a Time-
Code is received, it triggers the sending of the scheduled RMAP packet.  

The RMAP Network Scheduler memory space (RNS configuration in Figure 2) can 
also be accessed by a remote network manager node using RMAP. So the system can 
work without a user application in the host and can be easily supervised. Figure 2 
shows the architecture described. 

 

Figure 2. RMAP Network Scheduler implementation architecture. 

In order to support error detection and the segmentation layer implemented, the lower 
byte of the transaction ID field of the RMAP packets sent is used. It contains the 
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channel identification, the sequence number and the flags start and end of message. It 
is filled automatically by the network scheduler. Because each channel implements a 
send and wait error detection scheme, only one bit for the sequence number is 
required. 

Figure 3 shows a simplified block diagram. When a Time-Code is received, its timing 
it is check by the Time Code Handler. If it is a valid Time Code, the Error Detection 
module checks if the scheduled channel and the system is not in error. Then, the 
Transaction Trigger module triggers the ESA RMAP IP Core while the Channel 
Status Updater updates the state of the channel, including the segmentation status. 
Finally, the Transaction Generator selects the channel that will be active in the next 
slot, based on the schedule table, the priority level and the status of each channel. This 
module also generates the RMAP transaction associated to the selected channel. 

 

Figure 3. RMAP Network Scheduler block diagram.  

The module can be configured at run-time with any Time-Code period and each 
channel can have a different message size and segmentation size value. 

6 RESULTS 

The implementation presents a very fast activation upon the arrival of a Time-Code. 
Specifically, the latency between a valid Time-Code and the subsequent activation of 
the RMAP module is just ~300 ns. The response time from the arrival of a Time-Code 
to the sending of the 1st segment (including RMAP IP core delay) is 3 µsec.  

Table 1. Resource summary of the RMAP and the RMAP Network Scheduler IP Cores 
in a Virtex IV (LX100). 

Logic Utilization 
RMAP IP 

Core 
RMAP IP Core + 

Network Scheduler 
∆ 

Slice Flip-Flops 3002 3868 + 29 % 

4-input LUTS 8722 10498 + 20 % 

Occupied Slices 5023 6207 + 24 % 
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Regarding the area used, in Table 1 the values obtained for the whole prototype are 
compared against the original RMAP IP Core implementation. The results show how 
the part corresponding to the newly developed module roughly requires less than a 
quarter of the original RMAP IP core resources.  

After having successfully verified the simulation stage, a set-up was designed to test 
RMAP Network Scheduler functionalities with real hardware. In Fig. 5 the test 
topology is presented. The idea behind the test is the simulation of a realistic scenario. 
A PC interacts through a SpaceWire brick with the different elements only for control 
purposes. All the system elements are connected through a SpaceWire router. There is 
an emulated mass memory element where the instrument and a payload processor  
(both featuring the Network Scheduler) can either read or write. An event logger 
simulates the registration of a high priority message. 

 

Figure 5. Topology of the test design with the Network Scheduler prototypes. 

In the set-up, the instrument sends during even slots information packets to the 
memory. The payload processor alternatively reads and writes in the memory during 
odd slots simulating a compression process, for example. When manually asserting a 
signal, the Network Scheduler activates in the instrument a high priority channel to 
the event logger which can be sent in any slot. Note that in this case the payload 
processor can still R/W from the mass memory, as they use different paths. Finally, 
when the event logger link is disconnected – simulating a network error – an error 
channel is enabled at the instrument, then sending the error information to the payload 
processor on even channels. Note that the system has different features which are 
automatically activated to respond to different situations, providing a high degree of 
intelligence to the network. The entire memory space configuration required to 
implement this set-up was programmed through a series of Python specific 
applications which have been designed ad-hoc.  

The test executed successfully, following the expected deterministic behaviour. The 
Time-Slot period was set to 50 µsecs. The link speed was set to only 100Mbit/s due to 
hardware constrains, and the segment size was set to 256 bytes. As stated, the 
response time was only 3 µsecs and there was not any NULL character inserted in the 
data stream. This means that the segment size could be slightly increased without  
requiring a longer time-slot period. 
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Figure 6 is a screenshot of a oscilloscope that illustrate the measurement of the 
latency and jitter of the high priority channel. The left side shows the assertion of the 
signal that enables the high priority channel. The right side shows a sequence of lines 
that indicate when the associated message has been received. We can see that the jitter 
is one slot period because the assertion of the signal is not synchronized with the 
Time-Slot period. The latency is higher than one slot period because the signal is 
sampled in the previous slot and the message is received some time after the next slot. 

 

Figure 6. Measurement of latency and jitter for the high priority channel.  

Another test set-up using a webcam and a computer mouse to simulate data and 
control information was presented in a SpaceWire Working Group [4]. 

7 CONCLUSIONS 

A hardware prototype of the RMAP Network Scheduler has been developed in VHDL 
using the ESA RMAP IP core. It implements scheduling, segmentation and priority 
mechanisms, which provide latency and throughput guarantees with high network 
efficiency. The prototype also incorporates flexibility to support multiple 
configurations and user cases. Furthermore, the design incorporates advanced error 
detection and notification mechanisms. When combined, these solutions deliver high 
performance scheduling and segmentation capabilities to RMAP applications with a 
small additional cost. The RMAP Network Scheduler has been successfully validated 
through simulations and implemented in Virtex II and IV FPGAs. The FPGA version 
has proved its capabilities in a realistic scenario with several RMAP devices 
interacting in real time. 
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ABSTRACT 
SpaceWire links, interface components and routing switches support today data rates 

up to 200 Mbps between two units for the use on board of satellites. This is more than 

two magnitudes higher than what can be provided by Mil Std 1553 or CAN bus. 

Despite the very high bandwidth of the links, excessive network congestion can occur 

and this might be only discovered late in the project during system integration and 

validation. In order to avoid these problems the system designer needs to have a good 

understanding of the properties of the SpaceWire network. The right set of 

requirements needs to be put not only for the SpaceWire network itself but also for the 

design of the connected units and applications. 

1 SPACEWIRE NETWORK 
SpaceWire is a bidirectional point to point link and the data transmission is regulated 

by flow control. It uses data–strobe encoding and LVDS according to ANSI/TIA/EIA-

644 as signalling level. The link starts up with a data rate of 10Mbps and is then 

switched to the operational data rate. This operational data rate can be set for each 

individual link and can be different for both directions. Whenever there is no data 

ready for transmission or if the receiving side is not ready to receive more data the 

link is kept busy by transmitting NULL characters. 

In a SpaceWire network these links connect SpaceWire nodes as sources and 

destinations of SpaceWire packets. The packets start with the path and the logical 

address of the destination node followed by the Protocol-ID and end with an End-of-

Packet marker (EOP). The next data character following the EOP is considered to be 

the first byte of the following packet. SpaceWire does not define any maximum length 

of the cargo transported between the packet header and the EOP. 

One or more routing switches are needed if more than two nodes have to be 

interconnected. The SpaceWire network is operated asynchronously as the link data 

rate is tied to the local clock of the transmitting node. There is also no synchronisation 
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between the nodes and the time of the start of a packet transmission depends only on 

the transmitting node. The arbitration needed when two packets from different source 

nodes want to access the same link to reach their destination node takes place in the 

SpaceWire routing switch. For this paper round robin arbitration is assumed. 

2 WORMHOLE SWITCHING 
The SpaceWire standard specifies the implementation of wormhole routing within the 

routing switches [1]. As soon as the header containing the destination address 

information is received the routing switch is forwarding the packet on the next link 

leading to the destination while the tail of the packet is still being received. This way 

the packet can span like a worm through several links and routing switches in the 

network or even all the way between source and destination node. While being routed 

the time to reach the destination depends on the network congestion at the routers 

which are passed on the way. Once the packet has reached the destination the 

remaining transfer time depends on the packet length and effective transfer date rate. 

The advantages of wormhole routing is that it only requires minimum buffer space in 

the routing switch keeping it simple, low power and offering minimum latency. In 

combination with the link level flow control it ensures that no packets are dropped by 

the network. Wormhole routing was previously used in Transputer systems and is 

today used in many Network-on-Chip. 

Another common switching method is called store and forward. It is for example on 

of the methods applied in the widely used in Ethernet standard IEEE 802.3. The 

routing switches have to be able to buffer incoming packets before forwarding then to 

their destination. The size of this buffer automatically sets a limit on the allowed 

packet size or requires segmentation of larger packets. Compared to wormhole 

switching much more memory needs to be implemented inside the switches. In order 

to improve the latency of the store and forward approach the virtual cut through 

method [2] has been developed. It provides similar path latency as wormhole routing 

with the difference that the packet is buffered in the switch only if the route to the 

destination is blocked. By buffering the packet this method can reduce the 

propagation of congestion in the network. This is because the buffered packet will not 

block like in the wormhole routing case multiple links in the network because its 

destination is blocked or a path on the way to the destination is busy. 

3 USE OF DIFFERENT LINK SPEEDS IN A NETWORK 
As discussed before, SpaceWire can be set to run at a wide range of different link 

speeds. At first glance this appears to be an attractive feature but it has to be applied 

with great care. In the example shown in Figure 1 the nodes 1, 2 and 3 are instruments 

which have to transmit the generated payload data to the mass memory in node 4.  

The setup in this simple example could work if the routing switch would implement 

store and forward. If wormhole switching is used as it is the case in SpaceWire it will 

certainly not provide the required bandwidth. With wormhole switching the slowest 

link in the path through the network determines the overall bandwidth of the end to 

end connection. For the period of the packet transmission the faster links are 

effectively running at the slower speed. In the example shown in Figure 1 the 

100Mbps link between the routing switch and node 4 will be used with a maximum 
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throughput of 40Mbps during the transmission of packets from node 3 and even less 

during the transmission of packets from the two other nodes. The throughput of 

40Mbps corresponds to the maximum data rate which can be transferred over a link 

running at 50Mbps. This 20% overhead is due to the parity and the data-control flag 

used in addition to the 8 data bits in the coding of a SpaceWire data character. 

Node 1
10Mbps

Node 2
4Mbps

Node 3
24Mbps

Routing 
Switch Node 4

25 M
bps

10 Mbps

50 Mbps

100 Mbps

 

Figure 1: Simple SpaceWire network with links operated at different data rates 

When assuming that the continuous payload data stream is segmented at the 

instrument nodes and that the individual segments are transmitted at the full link 

bandwidth a link occupation duty cycle can be defined as the average transmitted data 

rate divided by the actually achievable link bandwidth. According to this calculation 

the traffic from node 1 and 2 uses their links with a duty cycle of 50% each. The 

traffic from node 3 has a duty cycle of 60%. The combined traffic from node 1 and 2 

is therefore already fully occupying the capacity of the link to node 4. With the 

additional traffic from node 3 the link to node 4 would have a theoretical occupation 

of 160% which is clearly exceeding the link capacity. When the instruments are 

generating data at a higher rate than the link capacity the local buffer space will fill up 

and overflow. This overflow will then lead to a loss of instrument data. 

 
Figure 2: Link duty cycle in % for the links from nodes 1 to 3 if all links are operating at 50Mbps 

In order to cure the situation in this example sum of the link occupation duty cycles of 

the links from nodes 1 to 3 which has to be transmitted through the single link to node 
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4 must to be kept below 100%. If all the links would be operated at 50Mbps (40Mbps 

net) the sum of the link duty cycles 1 to 3 would be 25%+10%+60%=95% which 

could be a workable solution as shown in Figure 2. This is of course not the only 

solution. When changing for example the speed of the links from node 2 and 3 to 

100Mbps the sum of the link duty cycles would be 50%+5%+24%=79%. 

Unfortunately avoiding the loss of data is not just a matter of selecting the correct 

SpaceWire link speeds. This is already indicated by the conditions given in the 

beginning of this simple example. Node specifications often only address the nominal 

SpaceWire link speed and not the actual achievable data rate of the node. This data 

rate can be significantly less due to internal limitations of the hardware or software in 

the node. This effective data rate has to be taken into account when analysing the 

network congestion and throughput. 

4 DATA BUFFER SIZES 
One common application of SpaceWire is the transfer of payload data to the mass 

memory on board. When the payload is operating it can often be modelled as a 

continuous source of data at a given rate. These data have first to be buffered and 

segmented inside the node. Only once the packet containing a data segment is 

complete it can be sent out though the link at a data rate that should be close to the net 

link data rate. The properties of the data buffer inside the node is therefore of crucial 

importance. 

The size of this buffer which is required to avoid the loss of data depends on the 

product of average source data rate and the worse case latency for the end to end 

connection. It can be shown that an upper bound for the worse case latency of a 

connection can be calculated analytically for any given network [3], [4], [5]. This 

latency depends on the network topology, the interfering data connections, the 

effective link speeds and the packet sizes used. One additional factor which needs to 

be taken into account as well is the latency of the target node. The target node could 

for example be busy with some other task when the packet arrives on the SpaceWire 

link and it takes some time before the packet is ingested by this node. The overall 

maximum latency can be reduced by introducing segmentation and splitting large data 

packets into smaller segments which are transmitted independently. 

5 REQUIREMENTS AT NODE LEVEL 
All this can be calculated and must be analysed before the SpaceWire network and the 

nodes and units are specified. This can then be used to determine the requirements at 

node level concerning the SpaceWire network interface.  

The following parameters need to be specified for source nodes: 

 SpaceWire link speed, 

 Minimum effective data rate with which a packet can be sent out on the 

network, 

 Maximum average data rate the node is allowed to send out, 

 Segment or packet size, 

 Minimum source buffer size. 
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The following parameters need to be specified for target nodes: 

 SpaceWire link speed, 

 Segment or packet size, 

 Minimum effective data rate with which a single segment or packet can be 

received from the network, 

 Maximum delay time before packet is received at the effective data rate, 

 Minimum average receive data rate that can be sustained which may 

sometimes be less than the effective receive data rate. 

It can be considered a good practice to perform a network traffic simulation which 

included the properties of the nodes [6] in order to validate the specification. 

Before system integration all these requirements should be tested and verified at 

subsystem level. 

6 CONCLUSION 
When resources have to be shared in a network there is always the possibility of 

contention. If not designed carefully this may lead to a loss of data due to source 

buffer overflow. The wormhole switching used in the case of SpaceWire network is 

well researched and understood. It does not use any buffering inside the network but it 

requires buffers located in the node instead. The required size of these buffers inside 

the nodes has to be carefully analysed. Sufficient buffer space is a key property to 

avoid data loss. There are a number of parameters which need to be specified for the 

nodes in order to control the level network congestion. It is important that these 

requirements are tested and verified already at node level. In this way it can be 

avoided that excessive network congestion is only discovered after integration during 

the overall system test. 
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ABSTRACT 
This paper quantifies typical latency requirements and describes a simple technique 
that uses virtualization and priorities with dynamic, on-demand segmentation, to 
provide deterministic, low latency delivery of packets whilst allowing high utilisation 
of the network. Segmentation is low-level and invisible to the user (and to the API). 
Packets, of any size, will be delivered to the destination node as a contiguous whole, 
without interleaving and with the contents in strict order. The technique offers the 
ability to carry data with real-time and low-latency requirements, such as command 
and control (including unscheduled events), at the same time as, and completely fire-
walled from, high-bandwidth data such as that from experiments and instruments.  

1 INTRODUCTION 
This paper brings together with SpaceWire the themes of Virtualization and Time 
Triggering. Virtualization has proved to be a secure way to share resources on a 
computer, such as virtual servers. Time Triggering has become a popular means of 
providing deterministic (but often very high) latency over a bus.  

SpaceWire, as defined in [1], offers very low latency for real-time control loops and 
for housekeeping accesses, provided that such accesses are not contending with large 
data transfers, or with blockage in the network. 

We describe an enhancement to SpaceWire that provides Virtual SpaceWire 
Networks [2, 3] and thus brings the benefits of protecting users from each other and of 
isolating faults. Virtual SpaceWire Networks (VSNs) retain the exceptionally low 
latency of current SpaceWire for deterministic real-time traffic. Meanwhile, the low 
priority and bulk data transfer can use all the bandwidth that is not taken by the real-
time traffic. 

We use priority within the Virtual SpaceWire Networks to ensure that latencies and 
control loop times can be guaranteed. Each Virtual Network can have its own 
individual priority, or several Virtual Networks can share the same priority.  
 
In this paper, we acknowledge that many missions have control loops and 
housekeeping accesses that repeat at 1 second, 100ms, 10ms or shorter periods. We 
simply group the accesses in each of these sets of periods into separate Virtual 
SpaceWire Networks. 
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2 AN EXAMPLE NETWORK AND CALCULATION OF AVAILABLE THROUGHPUT 
Table 1 below shows an example set of traffic such as would be used on a satellite and 
Figure 1 shows a subset of the activity of that traffic on several Virtual SpaceWire 
Networks sharing a single physical SpaceWire link.  
 
The table and figure include traffic for a couple of 5kHz control loops which need to 
access data and process it within 200μs. We give this highest priority (priority 1). 
Priorities 2 to 5 are used for slower control loops or for regular housekeeping updates, 
at frequencies from 1kHz down to 1Hz (priorities 3 to 5 are omitted from the figure). 
The lowest priority (6) is used for bulk data, such as image data from cameras.  

3 ASSUMPTIONS 
Any calculation of performance or guarantees needs to be based on assumptions. 
We’ll make our assumptions explicit and then describe, in general terms, the way the 
numbers in the table have been calculated and what performance can be guaranteed. 
 

1. We assume a worst-case that all the traffic is shared on a single Virtual 
SpaceWire Network link. In practice, performance scales with additional links. 

 
2. We assume that the accesses are RMAP (Remote Memory Access Protocol) 

Read requests and responses. RMAP has higher overheads than some other 
protocols used on SpaceWire, so our use of RMAP here gives conservative 
results, and this analysis is in no way confined to use of the RMAP protocol. 

 
3. We assume a very worst case that all the RMAP initiators, with all the different 

frequencies, start sending their requests at the same time and so will be queued.  
 
 Frequency Number of requests in period Response Payload, Bytes 

5kHz 2 20 
1kHz 10 50 

100Hz 25 200 
10Hz 50 200 
1Hz 100 200 

 
 
 
 
 

Table 1: Set of real-time traffic used as an example 

Responses

RequestsVSN 1
Priority 1 
(highest)
VSN 2
Priority 2

VSNs 3 to 5, not shown

0 100 200 300 400 500 600 700 800 900 1000 μs

VSN 6, Priority 6 (lowest)

Responses interrupted or delayed by 
higher-priority traffic

Requests delayed or interrupted
by higher priority traffic

Large, low-priority, packets, interrupted by higher priority traffic, utilize any spare bandwidth 

Figure 1: An example of activity on a Virtual SpaceWire Network link over time 
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4. We assume that a node transmitting an RMAP request has adequate buffer 
space to receive the full response that it has requested without stalling. And we 
assume that a node transmitting a response is able to send the complete 
response without stalling.  

 
5. We assume that all the nodes are current SpaceWire standard nodes, so that a 

node can only send requests or responses to one Virtual Network. (There can 
be benefits in having nodes that support multiple Virtual Networks, which will 
be described later). 

 
6. We assume a link speed of 50Mbits/s. While this amply meets the 

requirements, even with the worst case assumptions used here, faster link 
speeds could be used to carry more data or to give even faster responses. 

 
With these assumptions, we can now look at an algorithm for calculating whether the 
latencies and processing times meet the requirements for completion within the 
relevant Period at a particular priority.  

4 ALGORITHM FOR CALCULATING REAL-TIME AND THROUGHPUT PERFORMANCE 
1. For each VSN, add up the Network delay for requests on this VSN in this 

period from the start of the first request being transmitted to the end of the last 
request reaching its target. These delays include: 

• Delay in the Initiator in transmitting the first packet 
• The transmission time for the total number of Bytes, in all the requests for 

this VSN, at the link speed of the SpaceWire link  
• An overhead on the transmission time, to allow for flow control 

characters, an occasional Time Code, and for the possible overhead of 
switching between Virtual Networks 

• The transmission time for any Nulls that the Initiator inserts into a request 
(some designs may be unable to send contiguous packets) 

• Total cable delay (although this is probably negligible) 
• Total Routing-Switch latency 

 
2. For each VSN, determine the Longest target latency of the various targets on this 

Virtual SpaceWire Network. This is the time from the end of the request packet to 
the start of the response packet. The latency should be determined from the 
manufacturer’s data sheet and confirmed by characterization with test 
equipment [4] 

 
3. For each VSN, add up the Network delay for responses on this VSN in this 

period between start of the first response being transmitted to the end of the last 
response reaching its initiator. These delays are similar to the network delays for 
requests and include: 

• Delay in the Target transmitting the first packet 
• The transmission time for the total number of Bytes, in all the responses, 

at the link speed of the SpaceWire link; note that, while most of the 
requests are the same length as each other (or very similar) the responses 
may vary in length depending on the nodes being accessed. 
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• An overhead on the transmission time, to allow for flow control 
characters, an occasional Time Code, and for the possible overhead of 
switching between Virtual Networks 

• The transmission time for any Nulls that the Target inserts into a 
transmitted request (there should not be any but some designs may not be 
able to send contiguous packets) 

• Total cable delay (although this is probably negligible) 
• Total Routing Switch latency 

 
4. For each VSN, determine the Longest processing time of the various 

controllers/initiators on this Virtual SpaceWire Network. The processing time is 
the time from the end of the response packet arriving at the initiator to the end of 
any action it needs to take as a result of the response.  

 
5. For each VSN, add up the following:  

• the Network delays for requests on all (higher or equal)-priority VSNs 
in this Period. Note that if there is a single VSN at the highest priority, 
this sum will be zero. Note also that the Network delays must account for 
all the delays at equal or higher priority during the Period of this VSN. 

• the Network delay for requests on this VSN in this Period 
• the Longest target latency 
• the Network delays for responses on all (higher or equal)-priority 

VSNs in this Period. Note that if there is a single VSN at the highest 
priority, this sum will be zero. Note also that the Network delays must 
account for all the delays at equal or higher priority during the Period of 
this VSN. 

• the Network delay for responses on this VSN in this Period  
• the Longest processing time 1 

and if this total is less than the Period, then the set of accesses can be guaranteed 
to take place within the Period.  
 

                                                 

1 It may be excessively conservative, on top of the worst case assumptions, to include the 
longest target latency and the longest processing time in the calculation. An alternative would 
be to sum the {target latency plus processing time} for each separate access, and then add the 
longest of these sums to the request and response network delays to ensure that the total is 
less than the Period. 
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5 A SPECIFIC EXAMPLE 
We’ll consider, as an example, a small subset of the 
activity shown in Figure 1, and check the behaviour 
for the highest priority Virtual SpaceWire Network. Responses

Requests

0 100 200 μs

VSN 1
Priority 1 
(highest)

For this there are two initiators and two targets with 
the initiators and targets sharing a single link 
between two routing switches. The numbers we use 
are arbitrary, but are a reasonable estimate based on products that 4Links have 
characterized. Note that the period of 200μs implies 5kHz control loops, and that 
these have relaxed constraints on the end-nodes even with a link speed of 50Mbits. 

Figure 2: Detail of activity for 
an example 5KHz control loop 

The Delay in both the Initiators in transmitting the first packet is 1μs.  
The transmission time for an RMAP Read Request is around 24 Bytes, making a total 
of 48 Bytes for the two Initiators. At 50Mbits/s, allowing for eight bits of data in ten 
bits transmitted, and for the Ends of Packet, that takes a total of 9.8μs. We’ll allow a 
10% overhead on the transmission time, to cover flow control characters and the 
possible overhead of switching between Virtual Networks. This brings the total 
transmission time to 10.8μs. 
At 50Mbits/s, these Initiators do not insert Nulls into the data stream unless they are 
starved of flow-control credit, which should not occur when the Target is waiting for a 
Request. 
Cable delay, at under 5ns per metre, and a total cable length of less than ten metres, is 
sub 50ns and so will be ignored. 
Routing Switch latency, for several switches that 4Links has measured, is around 1μs. 
With two Routing Switches, the total delay in this direction is 2μs. This makes a total 
Network delay for requests of (1+10.8+2) = 13.8μs. 

The Longest target latency depends heavily on the devices used and whether the 
protocol and response are handled in hardware or software. In this case we take, as an 
example, an RMAP target that uses a processor and software dedicated to the one 
target and that it responds in 50μs.  

The Network delay for responses is a similar calculation to that for requests. In this 
case any equivalent of the Initiator delay is included in the target latency. The 
response payload is 20Bytes and the RMAP overhead is another 20Bytes. These 
40Bytes for each of the two responses at 50Mbits/s, take 16.2μs. We again allow a 
10% overhead on this to arrive at a transmission delay of 17.8μs. There should again 
be no Nulls inserted because the initiator should not request a response that it can not 
handle. Routing Switch Latency is as for Requests, at 2μs. This makes a total 
Network delay for responses of (17.8+2) = 19.8μs 

The Longest processing time needs to be measured by test equipment or calculated 
from simulation of the software or, perhaps preferably, by both. In this example, the 
sum of the two network delays, (13.8+19.8) = 34μs plus the target latency of 50μs, is 
84μs. With the Period of 200μs, this leaves considerably more than 100μs available 
for the processing time. 
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A more complete example of these calculations is given in [5] and is summarized in 
Table 2. 

Table 2: Calculations of latencies and bandwidth for the traffic shown in Table 1 

Virtual 
Space-
Wire 

Network 
(VSN) 

Prio-
rity 

Period, 
μs 

Freq-
uency 

Number of 
requests 
in period 

(n) 

Response 
Payload, 

Bytes 

Worst case 
network 
delay for 
requests 

on this VSN 
in this 

period, μs 
(% of 

period) 

Worst case 
network 
delay for 

responses 
on this VSN 

in this 
period, μs (% 

of period) 

Shared link 
Request 
direction 
utilization 

Shared link 
Response 
direction 
utilization 

1 1 200 5kHz 2 20 13.8 (6.9%) 19.8 (9.9%) 5.4% 8.9%
2 2 1000 1kHz 10 50 57 (5.7%) 157 (15.7%) 5.4% 15.5%
3 3 10000 100Hz 25 200 138 (1.4%) 1214 (12.1%) 1.3% 12.1%
4 4 100000 10Hz 50 200 273 (0.3%) 2428 (2.4%) 0.3% 2.4%
5 5 1000000 1Hz 100 200 542 (0.1%) 4853 (0.5%) 0.1% 0.5%
    Real-Time utilization 12.5% 39.5%

6 6 Available bandwidth for (lowest priority) bulk data >80% >50%
  Total network utilization possible >90% >90%
    

6 MORE COMPLEX SPACEWIRE NETWORKS 
The calculations above were done for a single 
SpaceWire link, and obviously SpaceWire is used 
for more complex topologies, such as the ring 
shown at right. A conservative measure (again 
worst-case) of both real-time and data throughput 
performance could be gained by simply treating 
the whole ring as a single SpaceWire link. If that 
gives adequate performance, no further work is 
necessary. If more performance is needed, each 
link between routing switches can be considered 
separately — which is still a much simpler 
calculation than would be needed for a 
conventional time-triggered network. 
 

Figure 3: Ring network using 
Virtual SpaceWire Networks 

between routing switches 
 

7 REDUCING POWER AND HARNESS MASS  
Most current recommendations for SpaceWire are that all the SpaceWire links should 
run at the same speed. Otherwise, for a current SpaceWire link multiplexing traffic 
between many nodes (as in the main example above), the throughput on the shared 
link drops to the throughput of the slowest link. Virtual SpaceWire Networks remove 
this dependency, and so permit the peripheral links to nodes or end-points to run at the 
appropriate speed for the node rather than for the whole network. Reducing link speed 
at the periphery of the network can result in substantial savings of power (and cost). 

The major saving in harness mass is from using a single (Virtual) SpaceWire network 
instead of one (SpaceWire) network for data and another network/bus for control. 
Significant additional savings in harness mass can be gained compared with current 
SpaceWire by multiplexing several slow links over one faster link. 
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8 COMPATIBILITY WITH EXISTING NODES 
All the examples shown have been with all the nodes being current SpaceWire. No 
change to hardware or software is necessary to any well designed node connected to a 
Virtual SpaceWire Network routing switch.  

9 BENEFITS OF VSN NODES 
Nodes that are accessed both for housekeeping and for large volumes of data could 
benefit from having access both to high priority traffic for the housekeeping and to 
low priority for the data. As described in [3, 4], such nodes could have a separate 
SpaceWire link for each priority, or use an extended CODEC that supports two or 
more priorities/VSNs. Nodes supporting multiple priorities must separate the two or 
more priority levels to prevent priority inversion. 

10 FAULT ISOLATION AND RECOVERY 
It is possible for a SpaceWire node to block another, by continuously transmitting 
(babbling idiot) or by failing to transmit for lack of flow-control credit or other error 
such as software stalling. Virtual SpaceWire Networks provide isolation for such 
faults: 

1. From faults at lower priority: The highest priority Virtual SpaceWire Network 
sees an empty network, and is completely isolated from faults in lower-priority 
virtual networks. In general any VSN is isolated from faults in any VSN at lower 
priority than itself. 

 
2. From faults at the same or higher priority: It might appear from (1.) that faults 

on higher priority VSNs are able to block everything at a lower priority. But, as in 
our example above, it will be normal for the real-time traffic to take a small 
proportion of the overall network bandwidth. VSN routing switches could police 
that proportion and discard data from a node that is exceeding the permitted 
percentage of bandwidth utilization for that priority level. This would leave up to 
80% of the bandwidth available to lower priorities, even in the event of a fault at 
the highest priority — bandwidth which could be used to recover from the fault. 

 
3. From faults within a single Virtual SpaceWire Network: Several existing 

routing switches perform a gatekeeper function by setting timeouts so that, if a 
node is blocked for longer than the timeout, the blocked packet is discarded. It 
can be difficult to calculate the appropriate timeout value if the minimum value to 
meet one criterion is longer than the maximum value to meet another criterion. 
This issue is much simpler to resolve when there is a separate VSN for each 
frequency of access, and the timeouts can be set appropriately for each VSN. 

 

11 CONCLUSIONS 
We have presented here a simple solution for supporting real-time requirements on a 
SpaceWire network. A link speed of 50Mbits/s is amply able to meet the requirements 
of 5kHz control loops. 
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The solution can, at the same time and with conservative (worst case) assumptions, 
offer well above 50% of the network bandwidth for volume data transfers, that may 
use very large packets, while still providing microsecond response times to real-time 
traffic.  

One of the Virtual SpaceWire Networks could be used for a time triggered protocol. 

By replacing only the routing switches in a SpaceWire network, Virtual SpaceWire 
Networks provide the following benefits for missions: 

• the simplicity in both concept and use of Virtual SpaceWire Networks, with a 
corresponding reduction in mission complexity; 

• use of a single physical network for both command/control and, separated by a 
firewall, for volume data; 

• reduction in power consumption, cable/harness mass, and thence cost 
• complete compatibility with existing SpaceWire nodes; 
• complete compatibility with (and transparency to) higher-level protocols 

(including CCSDS, SOIS and PnP) running over SpaceWire;  
• consistency with the layering of the SpaceWire standard so that no change is 

required to the ECSS SpaceWire standard; 
• greatly improved fault-isolation and recovery. 
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1 ABSTRACT 
SpaceWire is a widely used spacecraft onboard data-handling network, which 

operates at up 200 Mbits/s in current radiation tolerant technologies [1]. While ideal 

in many respects for onboard data-handling applications it does not have sufficient 

data-rate for some applications, does not provide galvanic isolation which is important 

for fault detection, isolation and recovery (FDIR), and does not provide quality of 

service (QoS) which can make application integration much simpler. Furthermore 

SpaceWire networks can suffer from blocking of packet data if they and the data 

transfers are not designed carefully. SpaceFibre [2] [3] [4] plans to address these 

problems. 

This paper first introduces virtual channels and describes how they can be used to 

overcome the network blocking problem. SpaceFibre is then introduced, which 

provides around 10 times the data rate of SpaceWire. Its virtual channels are then 

described, which support several different QoS types, targeted at specific spacecraft 

onboard communication needs. A low latency message broadcast mechanism is then 

introduced. 

2 VIRTUAL CHANNELS 
SpaceWire employs a network made up of SpaceWire links and wormhole routing 

switches. When a SpaceWire packet arrives at a wormhole routing switch the first 

character of the packet determines which port a packet should be routed to. If that 

addressed port is available (not currently being used to send another packet) the 

incoming packet will be sent out of that port straightaway. This provides very low 

latency routing, unless the output port is blocked. When the output port is being used, 

the incoming packet has to wait until the output port has finished sending its packet. 

The incoming packet is then temporarily stuck, with its tail strung out across the 

network blocking other network resources. 

The advantage of wormhole routing is that it is very simple and requires very little 

buffering in the routing switches. This was a significant consideration when 
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SpaceWire was being developed because of the limited memory space available on 

FPGAs and ASICs at that time. 

To overcome the blocking of a wormhole routing switch there are several different 

approaches that can be considered, including: packet buffering and virtual channels. 

Packet buffering, buffers a complete packet either at the input or the output of a 

routing switch. This prevents blocking in the routing switch itself but requires a large 

amount of memory for buffering. It also means that one of the advantages of 

SpaceWire, completely arbitrary packet length, is lost. 

The virtual channel concept is a well know concept for multiplexing multiple sources 

of data over a single physical data link, which can be used to solve the packet 

blocking problem and to provide QoS support [5] [6]. Data to be transferred over a 

single data link from several different data sources is separated into chunks that are 

multiplexed over the single data link and then reassembled into the different data 

streams at the other end of the link. 

One method of multiplexing the SpaceWire packets from several sources over the 

data link is to split each packet into small frames each of which contains a channel 

identifier.  Information for checking for errors (CRC and frame sequence number) can 

be added to each frame to support fault detection. The addition of a simple go-back-N 

retry mechanism can then be used provide recovery at the link level. 

A medium access controller determines which of the virtual channels is to next send 

data over the data link. This can be done using fair arbitration, priority arbitration, or 

another quality of service mechanism more closely aligned with the onboard data 

communication needs. Different quality of service mechanisms can be applied to each 

virtual channel. 

A virtual channel operates over a single link. There are two ways in which this can be 

used at the network level: as an end-to-end virtual channel, or as a virtual network [5] 

[6]. The end-to-end virtual channel has one route through a network (with possibly 

one or more additional redundant routes) and connects one node to another node, for 

example an instrument to a mass-memory unit. A virtual network allows a source 

node to send to any node on the network, for example a control processor sending 

commands to several different instruments. A SpaceFibre routing switch, routing data 

according to its destination address, which uses the same virtual channel number that 

the packet arrived on for sending it out, will naturally implement a virtual network. 

The end-to-end virtual channel concept can be used to add further FDIR capability 

into the SpaceFibre routing switches. 

3 SPACEFIBRE 
An overview of the SpaceFibre CODEC architecture is provided in Figure 1. 
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Figure 1 SpaceFibre CODEC architecture overview 

The virtual channel layer and broadcast layer are considered in this paper. A more 

detailed block diagram of these layers is presented in Figure 2. 
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Figure 2 SpaceFibre Virtual channel and Broadcast Frame Layers 

There are two different types of application interface to the SpaceFibre CODEC: the 

virtual channel interface used to send and receive SpaceWire packets, and the 

broadcast channel interface used to broadcast short messages across a SpaceFibre 

network and to receive those broadcast messages. 

The virtual channel interface to the SpaceFibre CODEC comprises a number of 

virtual channel buffers (VCBs) for sending SpaceWire packets (output VCBs) and the 

same number for receiving SpaceWire packets (input VCBs). The output VCB 
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interface is used to send SpaceWire packets. Conceptually, each output VCB has a 

FIFO type interface which can accept SpaceWire data characters and EOP markers. 

To send a SpaceWire packet over a SpaceFibre virtual channel, the SpaceWire packet 

destination address and cargo are loaded sequentially into the appropriate output 

VCB, followed by an EOP. The specific interface to the VCB is application 

dependent. Interfaces to the input VCBs are used to read SpaceWire packets that have 

been received over the corresponding SpaceFibre virtual channel. Each input VCB 

has a FIFO type interface, from which SpaceWire data characters and EOP markers 

can be read. 

The broadcast channel interface to the SpaceFibre CODEC is used for sending and 

receiving broadcast messages. These messages can be used for various functions 

including the distribution of time and synchronisation information, network 

management, and signalling events that occur in the nodes on the network. The 

broadcast interface comprises a set of registers for writing the parameters of a 

broadcast message (broadcast channel, broadcast sequence number, and the message) 

and a similar set of registers for reading received broadcast messages. 

4 VIRTUAL CHANNEL LAYER 
The virtual channel layer is responsible for quality of service and flow control over 

the SpaceFibre link. It controls the quality of service related to delivery of SpaceWire 

packets. 

4.1 VIRTUAL CHANNEL BUFFERING 

The output virtual channel buffers (VCBs) are used to buffer SpaceWire packet data 

before that data is sent over the SpaceFibre link. Data is sent in frames containing up 

to 256 SpaceWire N-Chars (data characters, EOPs or EEPs). The output VCBs permit 

this amount of data to be buffered before it is offered for transfer over the SpaceFibre 

link. Sending the data in frames and buffering data prior to framing, permits efficient 

interleaving of many SpaceWire packets travelling through different virtual channels 

over the SpaceFibre link.  

The input VCBs provide a similar function for the reception of data arriving over the 

SpaceFibre interface. An input VCB provides storage for at least one maximum size 

data frame to ensure that when it arrives there is room for all the data it contains. The 

application using the SpaceFibre CODEC can then read data from the input VCB at 

its leisure, without causing loss of data on the SpaceFibre link.  

4.2 SEGMENTATION 

Data is sent over the SpaceFibre link in a series of data frames which each contain up 

to 256 N-Chars. Data in the output virtual channel buffer is segmented for sending 

into data frames. Data from received data frames are reassembled to form the original 

data stream which is placed in the input virtual channel buffer. 

4.3 FLOW CONTROL 

To manage the flow of data from all of the virtual channels across the SpaceFibre link 

it is necessary to know which output VCBs have data to send at one end of the link, 

146



and which input VCBs have space for more data at the other end of the link. Exchange 

of this information is performed with credit based flow control: by exchanging flow 

control tokens (FCTs) for data frames. The input VCBs are monitored to determine 

when they have space for another maximum-sized data frame (up to 256 N-Chars). 

An FCT is sent to the other end of the link when a particular input VCB has space for 

another data frame.  When the FCT is received at the other end of the link it permits 

another data frame to be sent over the corresponding virtual channel.  

The potential loss of FCTs (along with data frames and broadcast frames) is handled 

by a retry layer, which ensures that FCTs cannot be lost unless the link suffers a 

permanent failure, in which case it is not possible to use that link any more. 

4.4 QUALITY OF SERVICE CONTROL 

A medium access controller determines which output VCB is allowed to send data 

over the SpaceFibre link. This depends on several things: 

 Which output VCBs have data to send; 

 Which input VCBs at the other end of the SpaceFibre link have space 

available to receive data, indicated by the reception of one or more FCTs for 

that virtual channel; 

 The arbitration or quality of service (QoS) policy in force for each virtual 

channel. 

For SpaceFibre several quality of service policies are provided: 

 Fair arbitration, where each channel has an equal opportunity to use a link; 

 Priority, where the virtual channel with the highest priority goes first; 

 Bandwidth reserved, where the virtual channel with allocated bandwidth and 

recent low utilisation of the link will go first; 

 Scheduled, where time-slots are defined by broadcast messages, and the 

virtual channel allocated to the current time-slot is permitted to send data. If 

this virtual channel has no data to send then another virtual channel may use 

this unused bandwidth opportunistically. 

When a virtual channel has data to send in its output VCB and has room for more data 

in the input VCB at the other end of the SpaceFibre link, it competes with other 

virtual channels in a similar state. The virtual channel permitted to send a frame of 

data will be the one with the most urgent need to send data according to the QoS 

policies of all the competing virtual channels. The virtual channel layer then passes a 

frame of data containing up to 256 N-Chars from the selected output VCB to the 

framing layer for sending over the SpaceFibre link.  

5 BROADCAST LAYER 
The broadcast layer is responsible for broadcasting short messages across a 

SpaceFibre network and for receiving and checking those messages.  

147



5.1 BROADCAST MESSAGES 

A broadcast message is a short message that is sent by a node to all the other nodes on 

the SpaceFibre network. Broadcast messages propagate in a similar manner to 

SpaceWire time-codes. Each broadcast message contains a broadcast sequence 

number which is incremented each time a new broadcast message is sent. When a 

broadcast message arrives at a SpaceFibre receiver it is checked for errors and its 

broadcast sequence number is validated by comparing it to the broadcast sequence 

number of the last broadcast message received with the same broadcast channel 

number. The broadcast message is valid if its broadcast sequence number is one more 

than that of the previous broadcast message received. Only valid broadcast messages 

are passed out of the SpaceFibre CODEC. A SpaceFibre router will forward the 

broadcast message out of each of its other SpaceFibre links except the one that the 

broadcast message was received on. 

5.2 BROADCAST CHANNELS 

SpaceWire permits one set of time-codes to be broadcast, although by using the two 

flags in the time-code it is possible to have four independent sequences of time-codes 

operating concurrently. SpaceFibre broadcast messages permit up to 256 independent 

sequences of broadcast messages each of which is referred to as a broadcast channel.  

Each broadcast channel has a broadcast channel identifier and its own broadcast 

sequence number. 

The broadcast channels are split into three types: 

 0-31: Network management broadcast channels. 

 32-253: Node broadcast channels, with each broadcast channel associated with 

a node that has a logical address of the same value as the broadcast channel 

number. 

 254, 255: Reserved broadcast channels. 

The network management broadcast channels are split into two sub-types 

 0-3: Time synchronisation, which are used to provide regular and fault tolerant 

distribution of system time over the SpaceFibre network. 

 4-31: Network control, which are used to support configuration, control, and 

FDIR of a SpaceFibre network. 

5.3 BROADCAST MESSAGE TYPES 

Broadcast messages also carry 8 bytes of data, the first byte of which is a broadcast 

type field which determines the meaning of the remaining 7 bytes of data. For 

example, when type = TIME, the following seven bytes contain seven bits of time 

information. A broadcast message over one of the time synchronisation channels, 

would typically be of type TIME and the seven data bytes would contain a system 

time value (un-segmented time). 

Typically a particular broadcast channel will be used by a specific node to broadcast 

information to all other nodes on the SpaceFibre network. This can be used to signal 

events that occur in that node to other nodes on the network. Each node can broadcast 

over a different broadcast channel. 
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A user application of a SpaceFibre CODEC can subscribe to receive broadcast 

messages from specific broadcast channels and of specific broadcast type. In this way 

the application will only be notified and receive those broadcast messages that it is 

interested in. 

6 CONCLUSION 
SpaceFibre can provide data rates of 2 to 5 Gbits/s over a single lane, depending on 

the SerDes device or technology used, and data rates in excess of 10 Gbits/s or more 

over multiple lanes. It can be operated over optical fibre covering distances of more 

than 100 m, or over electrical wires using current mode logic (CML) drivers. 

SpaceFibre provides galvanic isolation which is very important for fault isolation. It 

uses 8B/10B encoding and provides a complete range of quality of service (QoS). It 

supports FDIR with data frames, which contain a CRC checksums and frame 

sequence number, and a retry mechanism which automatically recovers from 

transitory errors without loss of information flowing over the link. SpaceFibre 

provides up to 256 virtual channels, and 256 broadcast channels. The broadcast 

channel provides low latency signalling capability over a SpaceFibre network, 

supporting time-distribution and event indication. 

The proposed SpaceFibre standard has a number of benefits compared to SpaceWire: 

 Virtual channels to overcome the SpaceWire router blocking problem; 

 Broadcast messages to provide low latency messaging, based on an extension 

of the SpaceWire time-code mechanism; 

 Coherent quality of service mechanisms to support deterministic data delivery 

for command and control applications and bandwidth sharing for payload 

data-handling applications; 

 FDIR support including galvanic isolation, error detection, and error recovery 

to prevent fault propagation and to provide rapid recovery from transient 

faults; 

 Lanes for higher throughput with graceful degradation and hot and cold 

redundancy support; 

 QoS in the CODEC which provides inherent robustness against a range of 

system errors, like babbling idiots. 

It achieves these benefits while remaining fully compatible with SpaceWire at the 

packet and network level, allowing ready migration of past applications to 

SpaceFibre. 

7 ACKNOWLEDGEMENTS 
The author would like to thank ESA for its support on several projects related to 

SpaceFibre: ESA contract number 17938/03/NL/LvH, call-off #2, “SpaceFibre”, ESA 

contract number 4000102641 “SpaceFibre Very High Speed Link Demonstrator”, 

ESA contract number AO/1-5975/08/NL/LvH “Next Generation Mass Memory 

149



Architecture” led by Astrium GmbH, and ESA contract number 4000102660 “High 

Processing Power Digital Signal Processor”, led by Astrium Ltd. 

8 REFERENCES 
[1] ECSS Standard ECSS-E-50-12A, “SpaceWire, Links, Nodes, Routers and 

Networks”, Issue 1, European Cooperation for Space Data Standardization, 

February 2003. 

[2] S.M. Parkes. C. McClements and M. Dunstan, “SpaceFibre Outline 

Specification”, University of Dundee, 31st Oct 2007. 

[3] S.M. Parkes. C. McClements, M. Dunstan and M. Suess, “SpaceFibre: Gbit/s 

Links For Use On board Spacecraft”, International Astronautical Congress, 

Daejeon, Korea, 2009, paper IAC-09-B2.5.8. 

[4] S.M. Parkes, “ SpaceFibre”, Draft B standard specification, to be published 

January 2012. 

[5] W.J. Dally and B. Towles, “Principles and Practices of Interconnection 

Networks”, ISBN 0-12-200751-4, Morgan Kaufmann Publishers, 2004. 

[6] J. Duato, S. Yalmachili, & L. Ni, “Interconnection Networks An Engineering 

Approach”, ISBN 1-55860-852-4, Morgan Kaufmann Publishers, 2003. 

150



RAPIDIO OVER SPACEWIRE: 
BLENDING COMPLEMENTARY PROTOCOLS  

Session: Networks and Protocols 

Long Paper 

Steve Belvin 

Honeywell International, Clearwater, Florida, USA 

E-mail: stephen.belvin@honeywell.com 

 

ABSTRACT 
SpaceWire defines a high-speed interconnect standard for on-board communications 

consisting of serial point-to-point links and switches.  The protocols used are selected 

based on the application.  Some protocols have been standardized and others are 

under study for standardization.  Many of the services desired by users are available 

from a single protocol that is part of a full-featured commercial interconnect standard.  

RapidIO defines a common transport layer protocol that is independent of the physical 

implementation and provides a transport mechanism for several logical layer 

protocols.  This paper describes the use of RapidIO common transport and logical 

layers over SpaceWire packets.  After presenting details of the approach and 

adaptations, some benefits of using RapidIO over SpaceWire networks are discussed, 

along with some observations of fundamental differences between the two protocols.  

Work planned to further the definition is also provided. 

1 INTRODUCTION 
As Space systems increase in complexity and diversity, the communications systems 

must be capable of handling more and more capacity while being flexible enough to 

carry vastly different payloads.  The integration of processing control functions, for 

instance, adds additional requirements on communications systems that can only be 

met with tighter integration with processing subsystems and flexible payload carrying 

capabilities with low processing overhead.  Communications systems must provide a 

migration path from existing communications architectures to ones that can meet the 

demands of new subsystems.  To do this, communications systems must offer a range 

of services that include, but are not limited to, support for the following. 

 Efficient bandwidth utilization.  The overhead of the packets should be low. 

 Effective bandwidth sharing.  Sharing of the network must be enforced 

through limited packet size and packet priority. 

 Varying payload sizes.  The payload requirements of channels may vary from 

very small to streaming. 

 Low latency.  The latency requirements of channels may be uncontrolled, 

deterministic or as low as possible. 
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 Reliable data delivery.  Data delivery reliability may vary from best effort to 

assured delivery.  

 Multiple communications mechanisms.  The services of the network should be 

available from multiple communications mechanisms, including simple reads 

and writes, doorbells, messages and streaming. 

SpaceWire [1] offers a versatile interconnect standard for on-board communications 

consisting of medium-speed (2 to 400 Mbps), duplex, point-to-point, serial data links 

between nodes.  Routers are used to interconnect nodes in a network.  Nodes are 

connected using a simple packet stream service and control characters are used to 

manage the flow of data.  Restrictions on the packet length and mechanisms for 

reliable delivery are not defined.  In order to introduce additional services to the 

network, users select upper level protocols with the desired services.  A protocol 

identifier is used to distinguish between the various protocols.  One standardized 

protocol offers simple reading and writing memory of a remote node, as well as 

network configuration and node control.  Another protocol encapsulates CCSDS 

packets into SpaceWire packets. 

An internationally certified interconnect standard called Serial RapidIO [2] offers 

high-speed (1.25 Gbps to 6.5 Gbps), duplex, point-to-point, serial data links between 

nodes.  Similar to SpaceWire and other switch fabric interconnects, it uses switches to 

interconnect nodes.  The standard is defined in three layers: physical, transport and 

logical.  A component from each layer must be present to communicate.  The physical 

layer defines the electrical signalling, 8B/10B coding, packet and flow control 

characters, packet transport mechanisms and link-level error management.  The 

transport layer defines the node addressing and packet priority information.  The 

logical layer defines the packets formats and how they will be used to transfer 

information.  The common transport layer supports multiple physical and logical layer 

definitions. 

With the help of an adaptation layer, the RapidIO common transport and logical 

layers may be used over SpaceWire (as a physical layer) to form a RapidIO over 

SpaceWire endpoint protocol stack.  The RapidIO adaptation layer bridges the two 

protocols without requiring alterations to either one.  The result is a method of reliably 

exchanging information between RapidIO endpoints using SpaceWire networks.  This 

paper defines an approach to combining the two interconnect standards and identifies 

features that would improve the quality and reliability of the result. 

2 COMMUNICATIONS LAYERS 
In order to understand the services users need, we take a brief look at the common 

protocol stacks used by SpaceWire and RapidIO.  The services provided by the 

SpaceWire protocols are compared with those available from RapidIO.  This provides 

the foundation for discussing the RapidIO adaptation layer features needed to support 

these services.  It also leads us into the presentation of a communications architecture 

based on the RapidIO over SpaceWire protocol stack.  The discussion that follows is 

not intended to be a complete introduction to the protocols discussed and references 

are provided for more details. 

2.1 SPACEWIRE PROTOCOL LAYERS 
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SpaceWire provides an interconnect standard in support of transferring payload data 

and control information.  The ECSS-E-ST-50-12C [1] standard provides definition of 

physical, transport and logical layers in support of a stream service using First-In, 

First-Out (FIFO) buffers at the transmitter and receiver as the typical structure for data 

buffering.  Link level flow control mechanisms are defined to avoid FIFO overflow 

errors at the receiver.  No negotiation method is provided to reserve data storage or 

processing at the receiver.  Path routing using router output ports and logical 

addressing using unique end point logical addresses are defined.  Extended logical 

addressing is defined for packets that move between network regions.  Error detection 

and reporting is defined but reliable delivery of data is not. 

Various protocols may be used to form a SpaceWire network.  A set of protocol 

standards, referred as the ECSS-E-ST-50-5x series, define some these protocols while 

others like the General Access Protocol (GAP) are defined and managed by other 

organizations.  The ECSS-E-ST-50-51C [3] standard defines a protocol identifier 

header used to identify the protocol that constructed a packet.  Two examples of these 

protocols are Remote Memory Access Protocol (RMAP) and Consultive Committee 

for Space Data Systems (CCSDS) Packet Transfer Protocol (PTP).  A diagram 

showing these two protocol layers is provided in Figure 1. 

SpaceWire

RMAPCCSDS PTP

User Application

SpaceWireSpaceWire

RMAPCCSDS PTP

User Application

 

Figure 1. SpaceWire Protocol Stack 

The RMAP defined in ECSS-E-ST-50-52C [4] is a protocol that works over 

SpaceWire to provide a mechanism for reading and writing memory of a remote node, 

as well as network configuration and node control.  Memory addresses must be 32-bit 

aligned and the length must be a multiple of four bytes.  Responses to memory read or 

write requests are optional and contain the operation status.  Partial implementation of 

RMAP operations is permitted.  Both SpaceWire and RMAP offer best effort 

delivery.  Error detection is provided but there is no defined mechanism for 

recovering lost or erroneous data.  Verification of network operations results in 

wasted bandwidth and user application processing. 

CCSDS packets may be transferred over SpaceWire networks using the CCSDS 

Packet Transfer Protocol.  As defined in ECSS-E-ST-50-53C [5], variable length 

CCSDS packets are encapsulated in a SpaceWire packet.  As with RMAP, both 

SpaceWire and CCSDS PTP do not offer specific quality of service.  The timing and 

reliability of delivery are not part of the services provided. 

2.2 RAPIDIO PROTOCOL LAYERS 

The RapidIO Common Transport Specification [6] provides logical addressing of the 

source and destination endpoints in the form of Source and Destination Identity fields.  

These fields may be either 8 or 16 bits in length.  Path routing is not supported so 
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network switches maintain routing tables.  The logical layer may consist of one or 

more protocols defined and managed as part of the overall RapidIO specification.  

Payloads range from 1 byte to 256 bytes.  Response packets are very similar to 

request packets.  Lost packets are detected through a packet timeout counter and 

retransmitted. 

Three examples of RapidIO logical layer protocols as shown in Figure 2 are the 

Input/Output (I/O) Logical Layer, the Message Passing Logical Layer and the Data 

Streaming Logical Layer.  In addition to the logical layer protocols, extensions such 

as error management and flow control are provided.  Where additional information or 

guidance is needed, it is defined in the form of annexes such as system initialization 

and session management. 

RapidIO Common Transport Layer

I/O Logical ProtocolStreaming Logical Protocol

User Application

Message Passing Protocol

 

Figure 2. RapidIO Upper Layer Protocols 

The RapidIO I/O Logical Layer Specification [7] defines packets used for performing 

read, write and read-modify-write operations that are independent of the bandwidth or 

latency of the physical layer.  Varying data sizes from very small (byte granularity) to 

Direct Memory Access (DMA) style operations are supported, with a local address of 

34, 50 or 66 bits.  Efficiencies greater than 90% are possible using 256 byte payload 

writes [8].  Partial implementation of the I/O Logical Layer is permitted. 

In multiple processing systems where access to address space is not desired, RapidIO 

defines a messaging service in hardware in the Message Passing Logical Layer 

Specification [9].  The messaging service defines messages and doorbells (which are 

equivalent to Message Signalled Interrupts).  Messages are handled by hardware 

mailboxes at the destination.  Messages up to 4-kByte are supported and, where 

payloads exceed 256 Bytes, segmentation and reassembly are supported in hardware.  

A message may consist of up to 16 packets.  Messaging supports a reliable, efficient 

means of communicating between processing systems and is commonly found in 

RapidIO networks. 

Data streaming supports data plane applications with multiple protocols that are 

sensitive to latency and less sensitive to loss.  The Data Streaming Logical 

Specification [10] supports Protocol Data Units (PDUs) of lengths from 1 byte to 64-

kByte with segmentation and reassembly in hardware.  Hundreds of traffic classes and 

thousands of data streams are supported, allowing multiple PDUs to be transferred 

between a source and destination at one time.  Data streaming is a relatively new 

logical layer definition and is not supported in legacy systems. 

2.3 RAPIDIO ADAPTATION LAYER 
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The RapidIO Adaptation Layer allows the use of RapidIO common transport and 

logical protocol layers to be used over the SpaceWire protocol layer defined in ECSS-

E-ST-50-12C [1].  With this added layer, SpaceWire networks and RapidIO networks 

may be connected to form a larger, fault-tolerant network that provides a full set of 

features and services.  In order to connect SpaceWire and RapidIO networks together, 

the RapidIO Adaptation Layer must perform the specific functions. 

Support SpaceWire Protocol Identifier.  The use of RapidIO common transport 

layer will be identified in the Protocol Identifier as defined in ECSS-E-ST-50-51C 

[3].  Protocol Identifier values are assigned by the SpaceWire Working Group. 

Network Address Mapping.  The network address must be mapped from the source 

protocol to the target protocol.  RapidIO supports logical addresses and does not 

support path addressing.  Path addressing requires every host to know the path to 

every other host.  The use of path addressing is not desired in large, extensible 

networks.  While network-unique logical addresses are preferred, path addressing is 

also supported.  Where 16-bit logical addresses are used, the SpaceWire extended 

address will be required.  Support for regional logical addressing has not been 

defined. 

Packet Delivery Handshake.  A packet handshake mechanism is used to insert 

packets into the fabric and extract them from the fabric. 

Packet Integrity Check.  A link level error checking feature is used to ensure packet 

integrity.  This involves adding a CRC at the transmit side and deleting it at the 

receive side.  Erroneous packets should be retransmitted. 

Packet and Transaction Delivery Controller.  Packet delivery ordering rules must 

be maintained based on priority, especially under exception processing such as 

retries. 

End-to-end Acknowledgement Counter.  An end-to-end level timeout counter is 

used to detect the lack of acknowledgement on the link and is treated as an 

acknowledgement error. 

Control and Status Registers.  Registers that control the functions and provide 

status are required.  These registers should support the features of the RapidIO 

physical layer to be compatible with the RapidIO registers. 

3 COMMUNICATIONS PROTOCOL STACK 
In order to design a communications architecture, multiple views are required.  One 

view is the protocol stack for a single endpoint including software drivers and the 

communications application programming interface.  The RapidIO over SpaceWire 

endpoint communications architecture is shown in Figure 3.  Since most onboard 

interconnects consist of multiple processors running both homogeneous and 

heterogeneous hardware and operating systems with synchronization mechanisms that 

manage control and data traffic, a bias toward a message passing interface is given.  

Initial support of streaming in legacy systems is expected to be using message 

passing.  As time goes on, systems will begin to fully support streaming. 
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Figure 3. Complete RapidIO over SpaceWire Protocol Stack 

3.1 RAPIDIO OVER SPACEWIRE BENEFITS 

Some of the benefits that RapidIO over SpaceWire offers embedded systems are listed 

below. 

Complementary Protocols.  The definition of RapidIO into three protocol layers, the 

independence of the common transport layer from the physical layer and the low 

protocol overhead make RapidIO a good choice for upper layer protocols.  The multi-

gigabit transmission rates, complex physical layer features and extreme environments 

of applications combine to make the effective cost of implementation of the RapidIO 

physical layer very high.  SpaceWire with its lower transmission rates and lightweight 

physical layer allow for implementations with significantly lower area.  The error 

control mechanisms of RapidIO help make up for the lack of low-level error control. 

Low protocol overhead. The low protocol overhead of RapidIO keeps network 

utilization high. 

Future Growth.  RapidIO was developed by the RapidIO Trade Association 

consisting of over 30 members from industry leaders to small companies.  RapidIO 

over SpaceWire uses the common transport layer, providing access to all logical 

layers defined by the standard. 

156



Ease of Implementation.  By keeping as many of the protocols compatible with their 

respective standards, intellectual property may be used without modification for 

nearly all of the RapidIO and SpaceWire functions. 

3.2 SUGGESTIONS FOR IMPROVED INTEGRATION 

When comparing the services offered by RapidIO and SpaceWire, the following 

differences were noted. 

 Error recovery mechanisms.  Error sources in SpaceWire networks include 

header or data errors, loss of packet and erroneous packet detection with EEP 

appended.  SpaceWire reports errors but does not have reliable delivery at the 

link level.  RapidIO supports reliable delivery at the link level by sending retry 

control symbols back to the sender on erroneous packets.  Timeout counters 

detect loss of a packet and invoke retransmission.  Note that the RapidIO 

Adaptation Layer adds the RapidIO error detection and retries for end-to-end 

reliable packet delivery.  It also provides for reporting these errors. 

 Packet Prioritization.  Links carry packets of varying priority.  RapidIO 

supports four priority levels for packet ordering and deadlock prevention.  

Switches use the priority filed to make output port arbitration decisions.  

SpaceWire does not support packet prioritization at the routers.  Packet-based 

priority supports making response packets of higher priority than request 

packets and some data streams from the same sender higher than others.  The 

RapidIO Adaptation Layer may support prioritization of packets delivered to 

the SpaceWire network for each logical flow. 

 Flow control.  RapidIO supports high level flow control using XON and 

XOFF at the logical layers to manage congestion.  Also, receiver buffer status 

feedback allows transmitters to control data flow. These services are not 

available in SpaceWire. 

 Segmentation and reassembly.  Segmentation supports many data flows.  Out-

of-order reassembly reduces network traffic by allowing selective retries.  

RapidIO message passing supports hardware based out-of-order reassembly. 

 Error management extension.  RapidIO provides an error management 

extension to the basic protocol that provides added error condition and devices 

status reporting.  This extension is useful to many onboard applications. 

 Extensions for specific applications.  RapidIO provides extensions for specific 

types of network users such as synthetic aperture radar applications. 

4 FUTURE WORK 
The RapidIO over SpaceWire protocol stack presented here focused on data and 

control communications.  It did not cover some important aspects of defining a 

complete communications solution.  Areas of further study include the following. 

 Refinement of the RapidIO Adaptation Layer functions. 

 Improved network addressing definition. 
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 Initialization and maintenance of the network. 

 Distribution of time information. 

 Communication channel types (asynchronous, connected) for API definition. 

 Support for SpaceWire Plug-and-Play. 

The current effort is focused on developing a model a SpaceWire network with an 

endpoint that includes a RapidIO protocol stack.  After refining the SysML models, 

simulation in SystemC will be used to further define the functions and incrementally 

add features of the RapidIO Adaptation Layer. 

5 REFERENCES 
1. ECSS, “Space Engineering: SpaceWire - Links, nodes, routers and networks”, 

EECS-E50-12C, 31 July 2008. 

2. RapidIO Trade Organization, “RapidIO Interconnect Specification Part 6: LP-

Serial Physical Layer Specification”, Revision 2.2, June 2011. 

3. ECSS, “Space Engineering: SpaceWire protocol identification”, EECS-E50-51C, 

5 Jan 2010. 

4. ECSS, “Space Engineering: SpaceWire - Remote memory access protocol”, 

EECS-E50-52C, 5 Jan 2010. 

5. ECSS, “Space Engineering: SpaceWire - CCSDS packet transfer protocol”, 

EECS-E50-53C, 5 Jan 2010. 

6. RapidIO Trade Organization, “RapidIO Interconnect Specification Part 3: 

Common Transport Layer Specification”, Revision 2.2, June 2011. 

7. RapidIO Trade Organization, “RapidIO Interconnect Specification Part 1: 

Input/Output Logical Layer Specification”, Revision 2.2, June 2011. 

8. RapidIO Trade Association, “RapidIO, PCIExpress and Gigabit Ethernet 

Comparison: Pros and Cons of Using Interconnects in Embedded Systems”, 

Revision 3, May, 2005. 

9. RapidIO Trade Organization, “RapidIO Interconnect Specification Part 2: 

Message Passing Logical Layer Specification”, Revision 2.2, June 2011. 

10. RapidIO Trade Organization, “RapidIO Interconnect Specification Part 10: Data 

Streaming Logical Layer Specification”, Revision 2.2, June 2011. 

158



 1 

SpaceAGE Bus: Proposed Electro-Mechanical Bus for Avionics Interconnections  
 

Session: Networks and Protocols 

Long Paper 

Glenn P. Rakow, Eric T. Gorman 

NASA Goddard Space Flight Center, Greenbelt, Maryland, USA 

Alexander B. Kisin 

MEI Technologies / NASA Goddard Space Flight Center, Greenbelt, Maryland, USA 

E-mail:   Alexander.B.Kisin@nasa.gov   Glenn.P.Rakow@nasa.gov   Eric.T.Gorman@nasa.gov 

ABSTRACT 
This paper will describe a proposal for a standard that is being solicited to national space agencies, US 

government agencies, international industry and academia for feedback in order to develop consensus 

for an intra-box electrical and mechanical Printed Wiring Board (PWB) interface.   

This PWB standard will be the building block element to develop avionics boxes and systems for a wide 

range of requirements and will show advantages over the current traditional approach.  Firstly, the 

proposed standard requires no strict connector tolerances typical of backplane designs but rather the 

boards are cabled together externally using matched impedance, shielded, blind mating connectors.  

Secondly, the standard defines a serial communication physical interface that can support many popular 

protocols.  Thirdly, the mechanical chassis design is not dependent of the number of PWBs required, as 

each PWB(s) integrates a portion of the overall mechanical box chassis design.  Fourthly, the PWBs are 

inherently EMI and thermally compatible with each other as isolation exists in these realms allowing 

random integration of different cards within a box without the need for additional box level 

qualification.  And lastly, the standard defines a common module (or HUB) that provides all the typical 

common functions for a suite of PWB modules in an avionics box to reduce the overhead if each PWB 

had to provide their own.  These functions include the intra-box communications HUB, inter-box 

communications interfaces, primary power isolation and secondary power switching to the cards within 

the box; and the computational capabilities. 

It is expected that suppliers of hardware built to this specification will allow avionics systems to be more 

rapidly architected and constructed to support centralized and distributed Integrated Modular 

Architecture (IMA) applications, allowing the leveraging of products across the entire aerospace 

community.  This architecture will also support the distribution of software tasks across multiple 

processors if desired.  The proposed standard is applicable to 90% of space missions and is targeted to 

habitable, as well to all classes of robotic spacecraft; the only class where this standard may not be 

useful are nano-satellite applications where high level of integration for optimization is required. 

1   INTRODUCTION 
The SpaceAGE Bus is intended to specify a standard method of integrating Printed Wiring Board 

(PWB) level building block modules into avionics boxes, i.e. focus on intra-box interfaces only.  The 

box-to-box or inter-box interfaces for the system level defines the architecture and any architecture can 

be supported with the SpaceAGE Bus building blocks, similar to Lego’s building different structures. 
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The SpaceAGE Bus was closely designed with spacecraft software architects to provide many unique 

benefits, including distribution of software, based upon the NASA/GSFC component based software 

design, core Flight Executive (cFE) using a Hypervisor on the HUB (common module) processing 

resources to time-space partition NODE related software functions.  This approach has been developed 

to support the Distributed Integrated Modular Avionics (DIMA) architecture. 

The SpaceAGE Bus defines intra-box (backplane) interfaces and not protocols, which allows the 

bridging of different protocols at one point (HUB) without significantly affecting the design.  Interfaces 

are complete for a broad range of intra-box applications and minimized through serial communication 

and single voltage distribution. 

Great attention was spent upon the mechanical aspects to reduce tolerances and provide flexibility in 

module height.  Elimination of unique backplane designs and mechanical chassis that drive Non 

Recurring Engineering (NRE) through development and integration were met, as well as providing for 

isolation between modules both thermally and for EMI. 

2   INTRA-BOX ELECTRICAL INTERCONNECTS 
Currently a majority of space avionics data buses for CPU based Control and Data Handling systems 

(C&DH) are just commercial standards, which utilize parallel half duplex data buses (VME, cPCI, etc.), 

and low voltage power distribution.  For space systems where Space, Weight and Power (SWaP) and 

efficient use of resources are important, better backplane implementations are possible.   

Disadvantages of the current backplane implementations include: inability for concurrent bus 

operations; power cross talk among loads; high Common Mode Voltage (CMV) for single ended 

signals; incompatibility for reuse with other systems because of user defined signals; limited distances 

between boards and limitations of board height, which greatly effects connector real estate; difficulty in 

fault isolation between modules; and difficulty in EMI shielding.   

A classical diagram of parallel bus is shown in Figure 1 below. 

              
Figure 1 – Classical C&DH Bus Architecture        Figure 2 – SpaceAGE Bus C&DH Architecture 

3   SPACEAGE BUS OVERVIEW 
The SpaceAGE Bus will provide a low SWaP alternative to classical intra-box (backplane) buses used in 

today Spacecraft (S/C) avionics.  It will eliminate shared parallel buses and low voltage distribution, and 

instead will provide each load with a dedicated high speed (Gigabit) serial full duplex differential 

Isolated 
Power

Converters

Load 
Card 1

Classical C&DH Architecture

Prime 28V Bus Voltage
Shared secondary voltages bus

CPU 
Card

Load 
Card 7

Shared parallel multi-drop half-duplex
data bus

160



 

 

interconnect, and will distribute a single higher voltage (as compared to digital) to reduce load currents 

and system CMV.  The ability to isolate power between modules will greatly reduce internal system 

crosstalk.   

A suggested SpaceAGE Bus diagram is shown in above Figure 2. 

3.1   MODULE TYPES 
The whole system is designed using a star-like architecture: central part, called HUB, and peripheral 

part, called NODE.  Each module will contain 1 or 2 of 6U 160mm size cards, dependent upon 

application, which through a trade study was found to be generically the optimal size for space 

electronics. 

Theoretically, the SpaceAGE Bus does not restrict number of PWBs per module, but if more real estate 

is necessary, the use of a daughter card is the most straightforward implementation.  Also the modules 

height (thickness) is not specified to accommodate connector real estate and tall components. 

All PWBs are integrated into their module’s card frame, which has direct thermal heat path to base plate.  

As an option, the card frame has the ability to be 100% EMI shielded.  Only the intra-box interconnects, 

HUB-NODE and HUB-HUB are defined by the SpaceAGE Bus, which occupy one side of the modules 

card frame and each module has 2 sides for user defined interfaces. 

3.2   HUB DESCRIPTION 
The HUB contains the common functions for each avionics box, i.e., backplane and the common 

external box interfaces.  Depending upon the redundancy requirement there may be 1 or 2 HUBs per 

avionics box.  Specifically, the HUB provides the following functions: primary data processing 

capabilities (micro-controller or micro-processor), intra-box (backplane via hub) and external links 

(vehicle control bus) communications, power distribution for each NODE’s internal functions, analog 

telemetry conversion for itself and all NODEs, and finally, clock synchronization and distribution.  In 

general, it has 2 PWBs, one digital that resembles a Single Board Computer (SBC), and one analog for 

power distribution and analog conversion.  It will be packaged in a dual PWB enclosure and consume 

between 5 - 20W depending performance. 

3.3   NODE DESCRIPTION 
The Node contains user specific functions required by the avionics box.  The collection of nodes 

together with at least one HUB comprises an avionics box.  Electrically, the SpaceAGE Bus defines for 

the NODE, the quantity and type of intra-box connectors. Mechanically, it defines the NODE’s height 

and depth (board area), while width (height) dimension is flexible.  All NODE intra-box interfaces are to 

the HUB.  If NODE-to-NODE communications is required, the communications is switched via the 

HUB. 

Power for a NODE other than power necessary for conversion to internal voltages is provided as an 

external user interface into the NODE, i.e., power switched by the NODE for pyro initiation, heater, or 

valves, etc., is provided from external source directly to NODEs user interface. 

Although not specified by the SpaceAGE Bus, it is envisioned that the NODE modules will be 

partitioned along subsystem boundaries and contain multiple functions for a particular subsystem.  For 

example if a distributed avionics system is architected, the SpaceAGE Bus may be used to implement a 

Remote Interface Unit (RIU).  In a distributed avionics system, the RIUs would be placed close to the 
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effectors and sensors to which they interface in order to reduce harness mass.  Instead of dedicating one 

(1) single subsystem functionality within a avionics box, a more efficient use of resources would be to 

allow different subsystem NODE modules to reside in the same avionics box thus reducing the overhead 

of HUB modules.  This isolation of NODEs on subsystem boundaries is carried over to the software 

where a time-space partition (hypervisor) may run on the HUBs micro-controller (or processor) to 

protect the different subsystem functions from each other.  This will especially be important for 

integration of the NODEs within a SpaceAGE Bus, especially if the number and type of NODE modules 

is not a priori known.      The average power consumption of each NODE will vary greatly depending 

upon its function, e.g., memory versus heater driver, but the average power for the digital functions of 

the NODE is limited by the current carrying capacity of SpaceAGE power service, which is de-rated to 

1.5 Ampere at between 16V to 40V bus voltages.   

3.4   REDUNDANCY CONFIGURATIONS 
Unlike commonly used commercial busses adapted for space applications, where redundancy is not 

inherently designed in, the SpaceAGE Bus is designed with redundancy architecture in mind.  Two (2) 

types of hardware redundancy can be implemented at the box level: a) complete dual redundancy, where 

2 independent strings of HUB/NODEs networks never intersect within each other, i.e., 2 HUBs per box 

and each NODE consists of 2 totally isolated identical entities; and b) cross redundant network also 

consisting of 2 HUBs and dual entity NODEs, with the addition of both HUBs talking to each other 

through crossed communication links and exchange clocks (Figures 2 and 3).  A variation of cross 

redundant network is where the 2 HUBs are cross strapped to a single NODE where graceful 

degradation is acceptable.  Both above intra-box redundancy schemes will require dual identical intra-

box connectors per NODE. 

Even for dual redundancy mode where HUBs are not cross-strapped to the other side’s NODEs, cross-

strapping between HUBs can be implemented because of the electrical, thermal and EMI isolation 

between HUBs: a failure of one side of a NODE will not jeopardize the mission because its mirror 

image entity will be able to communicate with its own HUB which will send all required information to 

a peer HUB which serves failed NODE. If redundancy is not required, then NODE may contain only 1 

connector served by a dedicated HUB, thus reducing total cost, weight and power consumption. 

3.5   INTRA-BOX NETWORK ARCHITECTURE 

   
 
Figure 3 – SpaceAGE Bus HUB-to-HUB and HUB-to-NODE Connections 
 

Complete network architecture will consist of the following signal domains (see Figure 3 and Appendix 

A for more details): 
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a) Power: The HUB will distribute 16-40Vdc power to the NODE for digital power regulation.  

The connector supports the ability to cross-strap power to redundant NODEs.  The voltage was selected 

to be higher than digital voltages to reduce the current and provide greater tolerance to ripple. 

The distributed voltage to each NODE can be isolated or non-isolated.  If isolated, the DC/DC converter 

resides at each NODE.  If non-isolated voltage is distributed to the NODEs (isolation at HUB) then 

switching Point-of-Load (PoL) and linear converters reside at the NODE. Consideration for current 

loops and CMV needs to be taken into account for the particular implementation.  The initial prototype 

for the SpaceAGE Bus will use isolated DC/DC converters on each module. 

Power distribution switches will be able to power up or down each NODE independently depending on 

operational requirements.  The power capability supported is 1.5 A de-rated per NODE at 16-40V, but it 

is expected based upon the card frame thermal design that the power should not exceed 30W.  If S/C bus 

uses higher voltages (e.g., 120V, etc.), there are several ways to handle this scenario.  Either provide the 

isolating converter in the HUB, or provide a step-down converter external to the HUB.  

b) Communication: Each HUB/NODE link consists of full duplex serial interfaces based on 

applicable user defined protocols.  Only the physical layer is defined, which is 2 unidirectional 

differential signals in each direction.  This scheme requires clock and data to be line encoded on the 

same signal, e.g., 8b/10b or Manchester, etc.  However, synchronous clocked protocols are also 

allowed, using HUB clock. 

The advantage of this approach is that it does not require all NODEs to conform to the highest 

conceivable signaling rate for the worst case application, so NODE application may be optimized.  For 

example, if the NODE is just for driving valve solenoid coils, heaters, or gathering telemetry, etc. 

which is a low data rate application, then 1 Mbps Manchester encoding is sufficient.  If another NODE 

is a memory module for data recorder that is connected to a Gigabit rate instrument then, an 8b/10b line 

encoding would probably be used with a protocol such as Gigabit Ethernet, Rapid IO or SpaceWire II 

as possible examples.  The important point is the bridging between different communication protocols 

between NODEs (and to the external interface as well) is done at the HUB switch, which will most 

likely be implemented in a reprogrammable FPGA. It is expected that the communication interface will 

be capable of supporting Gigabit rates (up to 3.25 Gbps) with a defined number of services for lower 

rate interfaces, possible configurable as to the mix.  It is expected that 1-2 Gbps LVDS interfaces will 

be supported (configurable via jumpers and re-programming). 

c) Clock: The clock signals are sourced from the HUB to each NODE.  Two (2) types of system 

clocks are defined by the SpaceAGE Bus.  The first is a NODE non-dedicated clock with a frequency 

and function that is defined by the NODE end user.  Examples for this clock may include 

communication clock between HUB and NODE, which can be used in conjunction with the 

communication interface (data signal); events synchronization clock, combination of both, etc. The 

clock frequency should not exceed 200 MHz. Because this clock function is user defined, it even can be 
used as an additional communication link from HUB to NODE. 

The second, clock is a single frequency used to synchronize the NODE switching power converters.  To 

reduce total EMI noise levels, converters for other NODEs can also be synchronized to this frequency.   

This synchronization frequency is common for all NODEs and will be defined by system requirements, 

depending on selected power converters.  It is expected to vary from 200 to 800 KHz. 

d) Analog Telemetry: All existing spaceflight adapted buses do not provide this function as 

standard, however it is required on the majority of S/C, thus forcing designers to create special 
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telemetry cards and uniquely customizing non-defined pins of standard commercial buses, while 

providing a low protection against environmental digital noise.  The SpaceAGE Bus will have a 

solution for this by providing a standard differential analog interface.  Each HUB will contain a filtered 

multichannel data acquisition converter system.  It is expected to easily achieve an accuracy of 0.1% 

for most telemetry signals.  Each NODE will get a single dedicated HUB telemetry channel.  In its turn, 

each NODE shall contain either simple analog signal conditioner with built-in channel analog 

multiplexers, where each channel will be controlled by HUB-to-NODE command; or, if no NODE 

analog circuitry is desired, just a single thermistor (e.g. AD590): to report NODE’s temperature.  

However, if NODE requires a full featured analog telemetry system with its own A/D and D/A 

converters, etc. – the SpaceAGE Bus architecture does not prohibit this either.  

It is expected but not required that each HUB will provide a comprehensive range of internal telemetry, 

including measurements of each NODE’s input bus voltage and consumption current.   

e) Auxiliary: Three (3) types of auxiliary signals are provided by the SpaceAGE Bus, these include 

Reset, Sense, and Power Fail.   

The Reset signal is sourced by the HUB to each NODE to perform a warm reset.  The HUB may reset 

each individual NODE either by a certain operational condition (e.g., lack of time based NODE 

responses), or by an external command.   

The Sense signal is sourced from each NODE to the HUB(s).  The functionality of a Sense signal is as 

follows: the SpaceAGE Bus is designed to allow hot plugging and unplugging of any HUB or NODE 

without jeopardizing adjacent SpaceAGE Bus NODE or HUB module.  This is achieved by 

implementing sense switches which will be mechanically engaged or disengaged by HUB/NODE 

special assembly torque bolt; this will “tell” the HUB’s avionics to apply or cut power and other 

electrical links to a NODE module, which is already plugged and secured in its allocated slot, or about 

to be unplugged from its slot.  This feature will be very desirable for human handling where avionics 

interchangeability may require continuous operation of other bus modules, as well as for integration 

and test (I&T) phase of avionics assembly process: to eliminate human errors by handling “hot” units. 

The Power Fail signal is sourced from the HUB to each NODE and will notify the NODE that the 

input power is about to “die” in TBD μS and that NODE has to prepare itself for this situation.  

Because HUB may contain a non-volatile memory, each NODE may send HUB its important 

information for secure safekeeping. 

3.6   HUBS CROSS CONNECTIONS 
As previously mentioned, 2 HUBs may be used if a cross redundant architecture is required.  Both 

HUBs will talk to each other using the HUB’s manufacturer defined full duplex synchronous serial 

LVDS based protocol with data rates up to 200Mbps.  This is considered to be a backbone 

communication link and is not end user re-programmable. 

In addition, one of the HUBs, designated as Master, may supply its Sync clocks to a Slave HUB 

(defined by an externally placed harness jumper), so a whole C&DH assembly will be synchronized to 

one clock frequency and have single clock source for DC/DC converters.  Both HUBs will also be able 

to reset each other either by functionally defined condition (e.g., lack of communication for a TBD 

period of time from an adjacent HUB), or by an external command. 

A suggested routing of all interfaces is shown in Appendix B of this document. 
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3.7   CONNECTORS 
The SpaceAGE Bus uses external harness for intra-box signal interfaces, instead of the more traditional 

PCW based backplane. This approach allows for quick design of avionics boxes from module building 

blocks because of the elimination of Non Recurring Engineering (NRE) cost associated with traditional 

design of backplanes, mechanical chassis and software to streamline integration.  It eliminates additional 

volume and weight which is always associated with backplane PWB and take away distance between 

cards constraints.  By using 100% EMI shielded metal shell connectors with protected pins inserts, thus 

creating a true Faraday chamber around harness, the need of an overall EMI box shield is eliminated too.  

As a base approach a ruggedized D-sub quadraxial connectors from Sabritec Inc. were selected. 

     
The suggested connectors are quadraxial cable connectors containing two 100 

Ohms impedance matched pairs per insert with the shield carried through the 

insert, which provides a continuous EMI shield for all signals.  

In addition, by using AWG24 wires and having high isolation between pins, these inserts will also 

satisfy voltage and current distribution requirements for up to 50Vdc with 1.5A per pin after derating.  

Two (2) types of connectors will be used; 4 position quadraxial inserts (shown) for the NODE and 16 

quadraxial inserts for the HUB. 

3.8   HUB PORTS 
a) Intra-box ports: Each HUB will contain 2 intra-box connectors with 16 quadraxial inserts each, 

for a total of 32 inserts: 28 of them to create 7 groups for a dedicated interface for up to 7 NODEs.  The 

remaining 4 will be used for cross connections with a redundant peer HUB if redundancy is required.  

Cross HUB connections will be used for HUB high reliability operations.  All unused NODE interfaces 

will be disabled by HUB.   

b) External ports: Each HUB will contain the user defined connectors for the vehicle control bus 

used for spacecraft command and control.  This interface is not defined by the SpaceAGE Bus.  It will 

also contain the S/C power interface for module internal power (not pass through power). 

c) Debug ports: It is recommended that each HUB contain a single debug connector (located on 

top of HUB unit), which will allow on-board FPGA testing and internal memory up/downloads.   

       Table 1. Proposed HUB Ports 

3.9   NODE PORTS 
 Each NODE will contain at least 1 back side connector with 4 quadraxial inserts for single redundancy 

scheme; for double redundancy 2 connectors are required.  Each connector will provide NODE with all 

required links with one of the HUBs.  All user specified connectors (of any kind) may occupy empty 

area on top or front of a NODE module.   

Back (SpaceAGE bus) Front (S/C links) Top (mostly for debug)

Number of ports 8: 7 NODEs + 1 Peer HUB 6: 4 + 2 SpaceWire 2

Physical Interface Buffered LVDS or AC coupled CML SerDes Buffered LVDS

Duplex Full Full Full

Speed range 1Kbps to 3.125Gbps (up to 100Mbps for SpW) 10Kbps to 100Mbps

Additional Sync clock Yes No No

Protocols Any type sync or async Any async + SpW Async + 10M Ethernet

In-flight re-configuration Yes (except Peer HUB) Yes (except SpW) Yes (if used for flight)

State when not used Hi-Z Hi-Z Hi-Z

Multidrop network use No Possible (to 400Mbps) No
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4   MECHANICAL OVERVIEW 

4.1   GENERAL 
The SpaceAGE mechanical design is aimed at reducing the Non-Recurring Engineering (NRE) costs of 

design through elimination of a unique PWB based backplane and mechanical chassis designs.  It 

therefore allows modules to be assembled without prior knowledge of number and type.  It also provides 

thermal isolation between modules and optional EMI isolation between modules. 

The SpaceAGE chassis is comprised of individual Aluminum 6061 modules containing PWBs of 

Eurocard form factor 6U (160mm x 233mm) that are individually packaged and are fastened to a 

backplate assembly and to each other (Figure 4). 

                                   

Figure 4 – SpaceAGE Assembly & Coordinate System        Figure 5 – Module w/2 PCBs Assembly 

4.2   MODULE MECHANICAL DESIGN  
Based on design and volume requirements the user can select a module that can house either one (1) or 

two (2) 6U 160mm PWBs. Each module contains an integrated stiffener design that provides structural 

rigidity as well as an additional heat path. The module contains additional space between the PWB 

mounting area and the outer wall, which allows additional room for either a flex PWB or floating lead 

connectors and the required wire harness. Modules that contain 2 PWBs have an integrated stiffener that 

is thicker. This allows PWBs to be bolted to both sides of the stiffener. All PWBs allow double sided 

component assembly. PWB assembly of the double module can be seen in above Figure 5. 

The PWBs are mechanically fastened to the integrated stiffener using steel fasteners. The mechanical 

interface control drawing (MICD) for each PWB will be standardized and will contain the overall PWB 

dimensions, fasteners locations, hole sizes, component height restrictions, and p keep out areas. Each 

Module has the same form factor and is constrained in the X and Y coordinates. The Z coordinate is 

unconstrained. This allows the user to size each module in the Z direction based on PWB requirements 

and component height. It is recommended that modules be incremented in ¼ inch step in the Z direction. 

Figure 5 shows the integrated stiffener where the PCB is fastened to the module. The open space around 

the PWB allows extra room for connectors and when wiring floating I/O connections. In modules that 

house 2 PWBs, this extra space can be used to house cross-over cables or connectors that will allow 

communication between cards inside of the module so the user doesn’t have to sacrifice external 

connector panel space.     

The top and the front panel are reserved for user connectors.  The user connector selection and their 

locations is user defined.  The user is responsible for controlling the locations of these connectors and 

capturing this information in their own MICD.  The intra-box connector locations are standardized and 

will be controlled in the module level MICD. Users may not place their connectors on the back side of 

the module. This area is reserved for the interface to the intra-box (backplane) assembly. Figure 6 below 

shows the location of the intra-box connectors.    
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Figure 6 – Module Connector Location                                     Figure 7 – Backplate Assembly 

4.3   BACKPLANE MECHANICAL DESIGN  
The backplate mechanical assembly is only necessary if the individual modules require easy removal, as 

it holds the mating connectors so the modules can be extracted and inserted without disturbing the intra-

box wiring harness.  The backplate Z coordinate length (module height) is not standardized and is to be 

designed based on user requirements. The X and Y coordinates are standardized and will be controlled 

on the backplate assembly MICD. The backplate connector locations are determined by the users’ 

requirements. The height or Y coordinate of the connector is constrained. The Z coordinate location is 

user defined and is to be placed where needed. The back plate assembly consists of the back plate and 

the two end covers of the SpaceAGE assembly. Once the back plate and gussets are assembled the 

backplate assembly is populated with the interface connectors and they are wired with the wire harness. 

Figure 7 above shows the backplate assembly. 

HUB and NODE module assemblies can be inserted into the backplate assembly during box level 

integration and testing as needed and or as they become available. NODE or HUB assemblies mate 

blindly with the backplate connectors. These connectors have outer shells that are keyed as well as guide 

pins to assist with mating. The connectors in the backplane assembly are mounted with floating bushings 

that allow the connectors to float and successfully blind mate with the module connectors without spark 

“scooping”. Once the module is inserted into the backplate and properly mated, the module is 

mechanically fastened to the back plate assembly using captive fasteners that are installed on the 

backplane assembly. The modules also attach to each other as they are designed to interlock. This allows 

for a stiffer structure as well as an EMI barrier. Figure 8 shows the NODE and HUB modules inserted 

into the backplate assembly.  

     Figure 8 – SpaceAGE Assembly: Backplate and Modules 

4.4   THERMAL AND STRESS ANALYSES  
Each module is thermally independent and has a direct heat path to the spacecraft interface. This is an 

advantage over standard card locks and wedge locks as the direct heat path offers lower thermal 

impedance and where removal of the card breaks the thermal path (wedge locks) requiring 

requalification. Each module can be treated as its own thermal structure and can be analyzed and 

qualified independently of the other modules. 

A preliminary stress analyses shows that SpaceAGE Bus assembly can successfully survive an ascend 

on any space launch vehicle. 
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Appendix A: Suggested SpaceAGE Bus Interconnections Between HUB and NODEs, and Between 2 HUBs. 

 

Appendix B: NODE Ports Redundant Cross Connections Diagram.
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ABSTRACT 
The ArTeMiS submillimetric camera will observe simultaneously the sky at 450, 350 
and 200 µm using 3 different focal planes. The 3 focal planes are made of thousands 
of pixels sampling completely the field of view by using the same technology 
processes than those used for the Herschel-PACS space-born imager. This camera 
will be mounted in the Cassegrain cabin of APEX, a 12 m antenna located on the 
Chajnantor plateau, Chile. The control and readout of the camera is achieved by the 
warm electronics acquisition system comprising 10 BOLERO (Bolometer electronic 
readout box) units and a COYOTTE camera control unit. The BOLERO electronics 
being derived from the Herschel-PACS readout electronics various parts of the 
existing design have been re-used. In particularly the data and command exchange 
between the BOLERO units and the quick-look and archiving workstation is relying 
on 10 SpaceWire links.  
In this paper we present the implementation of IRIG-B standards in the ArTeMiS 
camera. We show this is achievable by adding support of the ESA ‘Time Code 
Formats’ as specified in CCSDS 301.0-b-3 Blue book’ to our existing SpaceWire IP. 

INTRODUCTION 
Early tests performed on a prototype of the camera raised some unexpected 
synchronisation problems with the APEX facility software. This is mainly due to data 
buffers in the BOLERO electronics, which induce unpredictable delays to occur 
between the detector readout and effective frame acquisition by the acquisition 
computer. Then it has been decided to implement a GPS dating of the ArTeMiS 
images thanks to an IRIG-B signal available on APEX facility. Since the telescope 
uses this standard for absolute dating of all its instruments and in particularly the 
equipment, which is in charge of its motion during observation, it will be possible to 
correct the images of the sky from the drift induced by this movement.  

THE TIME TAGGING IN ARTEMIS 
Figure 1 depicts the data architecture of the ArTeMiS instrument. The 10 SpaceWire 
links are interfacing with the acquisition computer by means either of 3 SpaceWire-

170



PCIe acquisition boards either of 
only one SpaceWire-PCIe 
acquisition boards and 2x 8 to 1 
router boards. A specific board 
also hosted by the acquisition 
computer receives the IRIG_B 
signal. This board decodes the 
incoming signal and distributes the 
time code format to the SpaceWire 
acquisition boards that are in turn 
forwarding the dating to the 10 
camera units thanks to our 
extension.  

THE IRIG-B STANDARD 
The inter-range instrumentation group time codes, commonly known as IRIG time 
codes consist in a family of rate-scaled serial time codes with formats containing up to 
four coded expressions or words. All time codes contain control functions that are 
reserved for encoding various controls, identification, and other special purpose 
functions. The latest version of the Standard is IRIG Standard 200-04. Depending on 
the resolution to be achieved various time codes are defined (alphabetic designation 
from A, B, D, E, G and H) with time frame ranging from 0.01 s to 1 mm. In turn the 
bit rate expressed in pulse per second (pps) is ranging between 1 pps and 100 pps. The 
time code is associated to various low-level encoding / transmission options such as 
the modulation frequency and mode (pulse width, amplitude modulated sine wave, 
Manchester). The ARTEMIS instrument implements only the most commonly used 
standard: the IRIG-B. The time frame for the IRIG-B standard is 1 second, meaning 
that one data frame of time information is transmitted every second. The 74-bit time 

code contains 30 bits of BCD 
(binary coded decimal) time-of-year 
information in days, hours, minutes 
and seconds, 17 bits of SB (straight 
binary) seconds-of-day, 9 bits for 
year information and 18 bits for 
control functions as shown in figure 
2. The frame rate is 1.0 second with 
resolutions of 10 ms (dc level shift) 
and 1 ms (modulated 1 kHz carrier).  

THE CCSDS TIME CODE FORMATS  
Similarly to the IRIG time codes the CCSDS has defined various time codes in order 
to achieve time tagging on-board satellite. This time codes are specified in [1] where 
four formats are defined. All the formats are composed of two fields; the P-field, 
which specifies options for the time code, and T-field, which contains the time code. 
The following table sums-up three of the CCSDS time code formats: the CUC for 
CCSDS Unsegmented Time Code, the CDS for CCSDS Day Segmented Time Code 
and the CCS for CCSDS Calendar Segmented Time Code. Thanks to the available 
options these formats are extremely flexible and depending on the requirements in 
term of resolution and dynamic range it is possible to exactly trim the suitable 

Figure 1 ArTeMIS data architecture 

Figure 2 IRIG-B protocol 
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formats. In particularly the CCS format is identical to IRIG-B when setting the P-field 
to 0x3A and therefore the date is composed of the following fields: year - day of year 
– hours – minutes – seconds - tenth of milliseconds. For that reason and in order to 
extend the possible application of our development we decided to implement full 
support to CCSDS time code format rather than limiting our development to the IRIG-
B time code only. 

THE SPACEWIRE TIME CODE 
The SpaceWire standard specifies the TIME-CODE character to propagate the time 
across a network [2]. The TIME-CODE is an 8-bit character whose transmission is 
triggered by the assertion of the TICK-IN input of the SpaceWire transmitter. Two 
heading bits being reserved to define the type the TIME-CODE can therefore be used 
to propagate 6-bit time information across a network. Currently the TIME-CODE 
transmission request occurs asynchronously with respect to the transmitted character 
stream. However thanks to priority arbitration inside the transmitter the TIME-CODE 
is inserted within the data flow with a limited jitter of 13 clock periods [2][3]. When 
received the TIME-CODE is extracted from the data flow and made available in a 
specific FIFO-less output port of the receiver while a TICK-OUT signal is asserted. 
According to the standard specification routers broadcast the TIME-CODE to the next 
stages of the SpaceWire network. 

TIME OVER SPACEWIRE 
Considering the SpaceWire capability 
related to TIME-CODE and in order to 
meet the requirement of the ArTeMIS 
instrument we have designed a small 
extension to our SpaceWire codec to 
support IRIG-B formatted time 
distribution across our instrument. By taking advantage of similarities between this 
time code format and the time code format specified by the CCSDS the 
implementation we propose is able to accommodate both formats. The next table 
defines the TIME-CODE we have defined. The two most significant bits are set to 11 
to indicate the specific format, which 
will follow. This code is defined 
arbitrarily and could be modified 
according to SpaceWire standard 
constrains. Then bits 5 and 4 are used 
to define the significance of the 
TimeCode field. This identifier sets to 
00 indicates the TimeCode field is 
carrying the jitter correction as 
proposed in [3]. When set to 01 it 
indicates the TimeCode is carrying one 
of the time ‘digit’ (one of 26) and a 
subTop. When set 11 it indicates the 
TimeCode corresponds to the time 
synchronisation used to latch the 
previously received TimeCode. This is 
similar to PPS signal as distributed on 

Figure 3 CCSDS implementation 

172



board a satellite and used along with time messages to synchronise sub-system local 
times with the reference time of the platform. Additionally an identifier set to 01 
indicates the TimeCode is a subTop only. This subTop is used to provide the remote 
sub-systems with a time base signal. Typically it can be transmitted once every ten 
millisecond. Since the transmission of a full time message requires only of few tenth 
of TimeCode characters every second the ‘subTop only’ code permits to provide the 
remote sub-system with a continuous time base signal. Next the four least significant 
bits may be used to carry the CCSDS time code. Since only four bits are available the 
incoming time code bytes are split into half byte characters. Then the transmission of 
the 1-byte long P-field and 13-byte long time code corresponds to the transfer of 28x 
TIME-CODE characters over the SpaceWire links (see table below). Figure 3 
represents the functional architecture of the updated SpaceWire interface.  

 

CONCLUSION 
This method defines a high-level CCSD time management and allows transmitting 
time independently from the user application data traffic. The supports of various 
CCSDS format allow fulfilling of mission specific needs. It takes full advantage of 
SpaceWire TIME-CODE broadcasting capability. To support this time management, 
two VHDL IP cores have been written: ‘Time Frame Generator’ and ‘Time Frame 
Decoder’. This IPs can be adapted to any SpaceWire codec as they use only the 
standard interface. For very demanding application the time jitter correction will be 
added to all Time-Code transmission which solves the problem of latency, jitter and 
drift. 

Reference documents: 
 [1] Time Code Format - 'CCSDS 301.0-b-3 Blue book' – January 2002 

[2] Steve Parkes “The Operation and Uses of the SpaceWire Time-Code”, International 
SpaceWire Seminar, ESTEC Noordwijk, The Netherlands, November 2003.  

[3] F. Pinsard and C. Cara “High resolution time synchronization over SpaceWire 
links”, Aerospace Conference 2008, IEEEAC paper#1158, 
10.1109/AERO.2008.4526462 
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ABSTRACT 
The GR712RC System-on-Chip (SoC) is a dual core LEON3FT system suitable for 
advanced high reliability space avionics. Fault tolerance features from Aeroflex 
Gaisler’s GRLIB IP library and an implementation using Ramon Chips RadSafe cell 
library enables superior radiation hardness. 

The GR712RC device has been designed to provide high processing power by 
including two LEON3FT 32-bit SPARC V8 processors, each with its own high-
performance IEEE754 compliant floating-point-unit and SPARC reference memory 
management unit. This high processing power is combined with a large number of 
serial interfaces, ranging from high-speed links for data transfers to low-speed control 
buses for commanding and status acquisition 

1. ARCHITECTURE 

The GR712RC device comprises the following functions [2]: 

 2 x LEON3FT processor cores with MMU and GRFPU 
 Branch prediction and on-the-fly error correction resulting in 30% 

performance increase compared to regular LEON3FT 
 4x4 kBytes instruction cache and 4x4 kBytes data cache 
 On-chip Debug Unit with instruction and AHB trace buffers 

 PROM/SRAM/SDRAM fault tolerant memory controller (using BCH or 
Reed-Solomon) 

 256 kBytes on chip fault tolerant RAM 
 6 x SpaceWire links (2 with RMAP support) 
 6 x UARTs 
 6 x General Purpose Timers (2 with time latch capability) 
 Multi processor Interrupt Controller with support for 31 interrupts 
 2 x 32 bits General Purpose I/O  
 JTAG debug link 
 10/100 Ethernet MAC with RMII interface 
 MIL-STD-1553B BC/RT/BM controller 
 2 x CAN 2.0 and one SatCAN controller 
 CCSDS Telecommand decoder and Telemetry encoder 
 SPI controller 
 I2C controller 
 SLINK controller 
 ASCS16 controller 
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 Clock gating unit 
 I/O switch matrix 

The variation in interfaces allows different systems to be implemented using the same 
device type, which simplifies parts qualification and procurement. It also brings cost 
reductions to software development since the core functionality can be reused from 
application to application, only changing the drivers for the interfaces. 
 
Due to the high amount of peripherals and a limited number of pins there is an I/O 
switch matrix that controls which peripheral is connected to each pin. 
 
The clock-gating unit can turn off the clock for each major peripheral, thus lowering 
power consumption considerably. The processor clock is automatically turned off 
when a processor is in power down mode. The FPU is clock gated when floating point 
operation is disabled or when the corresponding processor is powered down. 

2. DEVICE CHARACTERISTICS 

The device will be manufactured by Tower Semiconductors Ltd. using standard 180 
nm CMOS process and packaged in 240-pin 0.5 mm pitch CQFP and PQFP.  

The following characteristics are expected [1]: 
• Core voltage 1.8V +/- 10%, I/O voltage 3.3V +/- 10% 
• 55ºC to +125ºC temperature range 
• TID: 300 krad (Si) (RHA Class F according to PRF-38535 Sect. 3.4.3) 
• SEL: LET > 106 MeV/cm2/mg 
• SEU: Cross section < 20um2 
• Maximum clock frequency 125 MHz 
• Optional 2x internal frequency multiplication by all-digital DLL 

 

 

Figure 1: GR712RC die in a 240 pin ceramic quad flat package 
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Figure 2. GR712RC block diagram 

3. GR712RC DEVLOPMENT BOARD 

In order to provide a platform for customers to begin developments using the 
GR712RC device, Aeroflex Gaisler provides a GR712RC development board. The 
board comprises a custom designed PCB in Compact PCI 6U format which can be 
used either stand-alone or inserted into a CPCI rack.  

 

Figure 3. GR712RC development board 

The board has interfaces for all peripherals and 8 MByte of SRAM (with checkbits), 8 
MByte of FLASH, and a standard SDRAM SODIMM socket. 

Each pin in the I/O switch matrix is configured with a jumper. The various 
configurations of interfaces are presented in the next section. All the standard 
interfaces are conveniently located on the front side of the board, allowing easy access 
to a CPCI front-panel. 
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4. VERIFICATION RESULTS 

The measured performance of the GR712RC device at 125 MHz system clock 
frequency is 300 Dhrystone MIPS. The measured speed of the SpaceWire links is 
above 250 Mbps in room temperature. These values may be adjusted after the full 
qualification. 

The GR712RC development board has been used during the verification of the 
SpaceWire performance of the device. The performance of all SpaceWire links 
operating at full speed has been assessed during the verification of the GR712RC 
devices, without any degradation in performance for example that could be due to a 
potential congestion on the on-chip AMBA bus.  

The 192 kByte on-chip memory located on the AMBA bus has proven sufficient in 
size for implementing transmit- and receive-buffers handled by the SpaceWire 
software drives. This allows the GR712RC to implement in software a SpaceWire 
router with six SpaceWire ports. The performance of a single LEON3FT core is 
sufficient for this router implementation, not necessitating the use of the second core 
which allows it to be used for entirely different tasks, for example implementing the 
TCP/IP software stack for communication over the Ethernet 10/100 interface.  

Although a SpaceWire / Ethernet software bridge has not been implemented as part of 
the current verification of GR712RC, a similar implementation has been done in the 
GRESB SpaceWire / Ethernet bridge using a single LEON3 core operating at 40 MHz 
which provides approximately 20 Mbit/s sustained throughput through the Ethernet 
side. A prediction is that it should be possible to support the maximum 100 Mbit/s 
Ethernet throughput using the spare LEON3FT core.  

The GR712RC is implemented on the 180 nm Tower technology using the RadSafe 
radiation-hard-by-design library from Ramon Chip. The GR712RC has undergone 
radiation testing, it is latch-up free, and it is fully protected against single event upsets 
in registers and memory, and tolerates a high total ionizing dose.  

5. CONCLUSIONS 

The GR712RC device brings multi-processing to avionics and payload applications, 
increasing the processing performance compared to existing solutions, without 
consuming board real estate or demanding complex memory implementations. 

The GR712RC development board has been designed to support initially stand alone 
operation, but also to fit into the future RASTA (Reference Avionics System Test-
bench Activity) architecture where inter-board communication is realized through 
SpaceWire links. 

6. REFERENCES 

[1]  Dual-CoreLEON3-FT SPARC V8 Processor, GR712RC, Preliminary Data 
Sheet, Aeroflex Gaisler, www.gaisler.com  

[2]  Dual-Core LEON3-FT SPARC V8 Processor, GR712RC, User’s Manual, 
Aeroflex Gaisler, www.gaisler.com 
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ABSTRACT 
Aeroflex Gaisler has developed several rad-hard SpaceWire router standard products 
based on Actel RTAX and RT ProASIC FPGAs. The largest of these components has 
eight SpaceWire and two FIFO ports where the number of ports (10x) is restricted by 
area limitations in t he F PGA. S everal p lanned m issions r equire more than e ight 
SpaceWire ports which the current standard products do not fulfil. There are also no 
components available from other manufacturers with a higher number o f SpaceWire 
ports. T he s olution de scribed in t his pa per cas cades t wo ten p ort r outers us ing the 
FIFO ports resulting in a total of 16 SpaceWire ports. Where previous solutions of this 
type have required external glue-logic, this one only needs one configuration pin to be 
strapped at reset. 

1 INTRODUCTION 
While more and more customers require up to 16 ports in SpaceWire routers there are 
only up t o e ight ports available in current c omponents o n t he w orld market. The 
largest router component ava ilable from Aeroflex Gaisler has eight SpaceWire ports 
and two FIFO ports [1]. It is based on the GRSPWROUTER IP Core [2] that supports 
up to 31 ports but, due to area limitations in the used Actel RTAX FPGA de vices, is 
limited to ten ports in total.  

This p aper de scribes t he s olution o f cascading two ten po rt r outers co mpared t o 
moving up to a larger FPGA to achieve a 16-port router. 

2 SINGLE FPGA SOLUTION 
The Aeroflex G aisler 10 -port router i s implemented i n an R TAX2000 de vice. One 
solution for achieving a 16-port router in a single FPGA approach would be to move 
up to a larger RTAX4000 device. This could easily be done since it would essentially 
only require reconfiguration of the GRSPWROUTER IP core which supports up to 31 
ports.  

The r eason for t his solution usually not being feasible is the lack of an inexpensive 
non-rad-hard pr ototyping de vice making s ystem prototyping a nd validation d ifficult 
and costly. This in addition to the fact that the RTAX4000 is a lso a more expensive 
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device compared to the RTAX2000 makes many system designers reluctant to choose 
this s olution. The A X2000 i s a n on-rad-hard version of t he RTAX2000 t hat is 
comparatively low co st and has been us ed t o v alidate t he s tandard router 
configurations. Actel tools provide automated generation of FPGA programming files 
for t he pr ototype from t he o riginal file targeting the r ad-hard device. With t he 
RTAX4000 t his is not p ossible a nd t he de sign would have t o b e v alidated us ing a  
qualified de vice o r r elying o nly o n ga te-level s imulations. N one of  t hose t wo 
alternatives are feasible in practice which led to the search for other solutions. 

3 CASCADING TEN PORT ROUTERS 
 

 

Figure: Two 10x GR-SPW-ROUTER-RTAX SpaceWire routers cascaded by dual 
FIFO interfaces in bridge mode, providing 16 SpaceWire links 

An a lternative solution to one large FPGA is to cascade two or more 10x devices to 
achieve a larger router using the FIFO ports. Many other devices have similar parallel 
data por ts a vailable a nd u se solutions w ith extra F PGAs a s g lue logic t o cas cade 
multiple routers. This requires custom design of the extra FPGA and is costly in terms 
of po wer, area and development t ime. The r isk is a lso higher s ince a n e xtra cus tom 
step is required which needs to be verified and validated compared to using an already 
validated component that is already in use in existing systems.  

Aeroflex Gaisler router FPGAs have a built-in bridge mode for the FIFO ports which 
allows the ports of two routers to be connected without any glue logic. Data and time-
codes will b e transferred in each direction aut omatically.  The b ridge mode ca n be  
enabled through the configuration port o r via an e xternal s ignal. The external s ignal 
sets the reset value o f an internal bit controlling the bridge mode. This way, a bo ard 
for a bridge app lication can be manufactured with a  s trap signal s o t hat t he t wo 
FPGAs enter b ridge mode w ithout any  software intervention. T o ke ep the s olution 
flexible, it is possible to change this setting through the configuration port in systems 
with for ex ample a pr ocessor. This is do ne t hrough R MAP acce sses t o the r outer 
configuration port.   

To avoid that the setting is accidentally changed by some malfunctioning device there 
are several ways to protect the configuration po rt. The whole configuration area can 
be w rite pr otected so that a w rite e nable bit must be set before o ther co nfiguration 
options c an be a ltered. T his s ignificantly lowers t he r isk of an erroneous 
reconfiguration. Configuration accesses can also be disabled for each port individually 
making it completely impossible for a connected device to do any harm.  
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There are dedicated paths for both data and time-codes over the FIFO bridges. Data 
throughput over t he FIFO bridges is at  l east the s ame as  for t he S paceWire po rts 
provided that the core frequency is at least 1/8 of the SpaceWire maximum bitrate. If 
the core frequency is increased, the bandwidth will be improved with the same factor. 
It will however never be possible (in any practical cases) to get a throughput over the 
bridges t hat matches t he t otal t hroughput of a ll t he S paceWire links o n o ne FPGA. 
This m eans that the b ridges m ight become a b ottleneck i f a  large pa rt o f t he 
SpaceWire traffic is go ing between nodes connected to ports on different FPGAs. In 
many s ystems there are a f ew hi gh b andwidth nodes t hat communicate w ith eac h 
other and can therefore be connected to ports on the same FPGA. In those cases the 
bandwidth problem w ould be e liminated at the expense o f a,  pot entially, increased 
burden for the system designer. 

4 CONCLUSION 
To achieve a 16 port router device it is more cost effective to cascade the existing 10-
port ro uter FPGAs compared to moving t o a  16-port device in a  s ingle FPGA. T he 
cost difference is achieved by providing FIFO ports with a bridge mode that removes 
the need for external glue logic. The only downside is that the bandwidth between the 
cascaded devices is limited by t he bridge po rts. I t i s however a nticipated that this 
problem can be avoided in practice by careful system design. 

5 REFERENCES 
1. RT -SPW-ROUTER D ata S heet an d U ser’s Manual, Aeroflex Gaisler, 
www.gaisler.com 

2. GRSPWROUTER User Manual, Aeroflex Gaisler, www.gaisler.com 
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1 ABSTRACT 
Rapid development, integration, and deployment of satellites in response to known and 
emerging needs have been ongoing areas of interest.  Often collectively referred to as 
“Operationally Responsive Space” (ORS), one vision calls for positioning in a depot 
interchangeable satellite payloads and spacecraft buses with common interfaces.  Upon direction 
to deploy a particular mission, the appropriate payload is selected and integrated with a bus, and 
the space vehicle is launched.  This necessitates standardized hardware and software interfaces 
between the payload and bus.  For the development of ORS Bus Standards, SpaceWire standard 
ECSS-E-50-12A was specified as part of the payload-bus interface for high rate data.  With a 
2011 launch, the TacSat-4 satellite demonstrates both a prototype Standardized Bus for small 
satellite national security missions and an example ORS payload, CommX.  This 
implementation includes a SpaceWire interface as called out in the ORS Payload Developer’s 
Guide.  For the bus and payload SpaceWire interfaces, existing SpaceWire logic designs were 
used, notably the gate array core developed by the NASA Goddard Space Flight Center.  The 
SpaceWire link runs between the Payload Data Handler (PDH) on the bus side and Universal 
Interface Electronics (UIE) on the payload side.  Connector interfaces were adapted to be 
suitable for the launch depot environment.  TacSat-4 and the ORS Standards Development effort 
led by the government, industry, and academia Integrated Systems Engineering Team (ISET) 
have demonstrated that use of existing standards blended with tailoring for rapid integration 
enables ORS. 
 
2 INTRODUCTION 
The motivation to reduce the cost and speed the fielding of space assets has been of interest 
since the dawn of the space age.  To this end, different countries and organizations have 
implemented various approaches.  In the 1970s, the Soviet Union kept reconnaissance satellites 
ready to launch within 24 hours, and they used them to collect intelligence during international 
crises such as the Arab-Israeli war in 1973[1]. 

More recently, the U.S. Department of Defense has supported a range of approaches to reducing 
the time and costs associated with taking advantage of spaceborne assets.  At the instigation of 
Adm. Cebrowski in 2001, efforts were undertaken to find ways to streamline the deployment 
and exploitation of satellite resources[2].  This led to the development of TacSat-1 in 2003 as an 
Innovative Naval Prototype, and the christening of such efforts as pertaining to “Operationally 
Responsive Space”, or ORS.  The TacSat-1 development went from concept to launch-ready 
within about a year and for about $10M[3].  The need to identify those national security space 
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missions most subject to a rapid approach was recognized, and the Office of Force 
Transformation funded a Massachusetts Institute of Technology (MIT)/Lincoln Labs “Phase 1” 
study to investigate mission classes and their needs[4].  At about the same time, the Air Force 
Research Laboratory undertook an effort to develop standardized software and hardware 
component interfaces, dubbed “Space Plug & play Avionics”, or SPA, to enable rapid custom 
mission design and spacecraft implementation through the assembly and self-organization of an 
essentially arbitrary number of components[5].   

The results of the Phase 1 study by MIT/Lincoln Labs were used by a funded consortium of 
representatives from industry, academia, and government organizations to develop standards for 
an ORS system.  The consortium, know as the Integrated Sytems Engineering Team (ISET), 
ultimately produced a set of documents prescribing standards for an ORS system that 
encompassed a range of small satellite national security missions.  These standards outlined an 
approach that split the spacecraft into two major sections: (1) the bus, which provides services 
required by a typical satellite such as attitude control, power, propulsion, and command and 
telemetry; and (2) the payload, which performs the mission function, such as communications, 
imagery, intelligence, etc.  One of the main points of this division was to allow the companies 
that would be contracted to build parts of the system to take advantage of their existing technical 
approaches, while constraining only the bus/payload interface to a standard.  

As part of ORS Phase 3, the Naval Research Laboratory (NRL) and the Applied Physics 
Laboratory (APL) were selected to develop an ORS spacecraft bus that adhered to the ISET 
standards.  Separately, a different team at the Naval Research Laboratory was selected to 
develop an example ORS payload.  This payload performs a communications function and is 
designated COMMx.  Together, the bus and payload form the TacSat-4 spacecraft. 

Much attention was paid during the ISET standards development to the data interface to be used 
between the bus and payload.  In the final standards, two data interfaces are specified: RS-422 
for lower rate data (below 10 Mbps) and SpaceWire for higher rate data (10Mbps or above).  
The bus supports both, and the payload may use either or both.  The selection of SpaceWire 
arose from a high rate data trade study that also considered IEEE-1394 and Ethernet[6]. 

SpaceWire was a natural choice for part of the data interface because of its simplicity, well-
written standard, ability to be easily implemented in a variety of hardware, and significant 
existing user base.  By taking advantage of a proven and accepted standard, the lessons learned 
and extant infrastructure could be utilized.  Additionally, using SpaceWire fostered the 
possibility that system implementers might already have the relevant experience when 
developing ORS buses, payloads, and supporting equipment.  The fact that NASA Goddard 
makes available free to U.S. entities VHDL cores for SpaceWire nodes and routers further 
enhanced the choice of SpaceWire.   

3 TACSAT-4 SPACEWIRE IMPLEMENTATION 
One aspect of the SpaceWire standard that was not ideally suited for ORS was the connector 
specification.  The use of micro-D 9-pin connectors for cable interconnects requires tools, 
handling precautions, and attention to detail not necessarily conducive to a rapid-response 
launch depot environment staffed with relatively unskilled personnel.  Because the bus and 
payload need to be mated quickly and reliably at the launch depot shortly before launch, 
alternative connectors were investigated.  The connectors selected were series 38999-D 13-pin 
circular connectors that offer keying and fast, tool-less installation.  Bulkhead varieties allow the 
SpaceWire link to be brought from the electronics to a convenient place on the bus or payload 
for mating during depot operations.  Additional details of the cabling construction, 
characterization, and lessons learned are discussed extensively by Schierlmann[7,8]. 
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On TacSat-4, the SpaceWire link runs between the Payload Data Handler (PDH) board in the 
Command and Data Electronics (CDE) on the bus side, across the standardized interface to the 
Universal Interface Electronics (UIE) on the payload side.  The PDH was developed by one of 
us (Clifford) at Silver Engineering using the NASA Goddard SpaceWire VHDL core, and also 
incorporates routing and data storage functions.  The UIE software development was performed 
by another of us (Axe) at Sierra Nevada Corporation (SNC) and can support a range of functions 
in addition to acting as a SpaceWire node.  It uses a SpaceWire VxWorks driver developed by 
SNC.  The SpaceWire cabling exists in three segments: from the PDH to the bus bulkhead, from 
the bus bulkhead to the payload bulkhead, and from the payload bulkhead to the UIE.  At the 
PDH and UIE, the standard SpaceWire 9-pin micro-D connectors are used, and they are 
integrated with the boxes and attached to the inner side of the bus and payload bulkheads, 
respectively, during the manufacturing process.  At the launch depot, the bus and payload are 
stored separately until mission call up.  The mission then specifies which type of payload, from 
a variety of payloads, is to be mated to a bus.  At this point, the bus and selected payload are 
removed from storage and mechanically mated.  Then the electrical connections are made by 
mating circular connectors for data and power.  For TacSat-4, this was tested during the 
manufacturing process in preparation for simulated depot operations.   

4 RAPID SPACECRAFT INTEGRATION AT THE “LAUNCH DEPOT” 
The ORS concept of a launch depot entails a storage and integration facility at a spacecraft 
launch range in which standard buses and different types of compatible payloads are stored to 
allow integration and launching in short duration in response to a national need.  The TacSat-4 
spacecraft is the first demonstration of the launch depot concept in which distinct and separate 
bus and payload sections are integrated. Since an actual ORS launch depot does not yet exist, the 
completed bus and payload were stored instead for a year at a storage facility at NRL in 
Washington, DC until national priorities called for the TacSat-4 launch.  The two parts are 
shown in the leftmost picture in the figure.   

After call-up, the ORS bus and COMMx, which were stored separately, were given one month 
to be removed from storage, tested independently, readied for shipment, packed along with all 
test equipment, and shipped to Kodiak Launch Complex (KLC) in Kodiak, Alaska for launch.  
Of particular note is that, in line with the ORS concept, the bus and payload were not electrically 
or mechanically mated after the storage period prior to shipment.  (Of course the space vehicle 
(SV) had been mated earlier as part of the test campaign.)  Upon arrival at KLC (the "launch 
depot"), the bus and COMMx payload were again tested independently and in parallel to verify 
functionality following the cross-country transport.  Only after independent functional testing of 
the bus and payload were they integrated into the full space vehicle, after which all testing was 
repeated in preparation for launch. 

One of the challenges of the depot concept is the requirement to expeditiously test a payload (or 
a bus) after removing it from storage before SV integration.  To meet this end, it is important to 
have adequate simulation of all bus electrical interfaces.  Among these interfaces on COMMx is 
the SpaceWire interface to the UIE box.  During COMMx standalone testing, the UIE was tested 
with a breadboard of the ORS Bus electronics.  Not only was this test configuration high 
fidelity, but it was also as flight-like as possible in keeping with the philosophy, “Test it like you 
fly it.”  This flight-like testing allowed for seamless integration with the flight ORS bus 
spacecraft at the launch depot with minimal risk. 

Two of us, Bradley and Rossland, performed the actual mating of the SpaceWire and other 
interconnects between the payload and bus, respectively.  The actual connection of the 
SpaceWire link between the bus and payload took less than 30 seconds and required no tools.  A 
detail of the SpaceWire link between the bus and the payload, without blanketing, can be seen in 
the center picture below, and the fully integrated spacecraft can be seen on the right.  
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Figure 1: (left)The bus and payload; (center) blue SpaceWire cable between the bus and 
payload; (right) the integrated spacecraft at the launch site 

Because of factors beyond the TacSat-4 program’s control, the launch was delayed until 
September of 2011.  Though the Spacecraft has remained in its integrated configuration, the 
shortened timeline demonstrated for mating of the bus and payload could easily have occurred 
just in advance of the planned launch.  The ISET ORS standards and their instantiation in 
TacSat-4 have demonstrated that SpaceWire tailored for depot operations offers a compelling 
solution for high rate data links for ORS. 
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ABSTRACT 

In this paper, we discuss the need for short term improvements of the current 
SpaceWire standard and its extension to new domains such as Gbps communications 
and reliability and real-time capabilities. Focussing on short term improvements, we 
recall the need for a revision of the current SpaceWire standard as well as the 
improvements foreseen to be developed, breadboarded and documented in ECSS 
standardisation format through the ESA/TRP R&D activity “SpaceWire Evolutions” 
started in September 2011. 

1 BACKGROUND 
Through several years of standardisation and technology development activities, the 
European Space Agency (ESA) has prepared the SpaceWire (SpW) technology that 
allows embarking high speed data networks on board spacecraft. This new technology 
has become widely adopted not only by ESA missions but also by other agencies and 
industries. However, some evolutions of the SpaceWire standard have been proposed 
by the SpaceWire Working Group ([5], [6], [7], [8]) over the last five years. 

In particular, the SpW Working Group identified shortcomings of the current protocol 
for the support of Plug-And-Play (PnP) capabilities ([9], [10], [11], [12]) as defined 
jointly by ESA and the National Aeronautics and Space Administration (NASA) and 
drafted into [13]. The technical investigations on SpaceWire PnP also rose the 
awareness that the behaviour of “nodes” have to be clarified as well as their definition 
in the current standard [1], because this definition is not in line with international 
telecommunications core definitions of network items, and in fact ambiguous. 

Among the discussed additional features to SpaceWire are the sideband signalling for 
interrupt distribution and the introduction of SpaceWire operating in half-duplex or 
simplex mode over wire-limited harness. 

These new techniques, as well as the required clarification of SpaceWire node 
definition and behaviour, are highly promising but they need to be breadboarded prior 
to their eventual standardisation because they will be adopted by the SpaceWire 
community only if they are backwards compatible, i.e. if they can operate with 
existing SpaceWire devices. 
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This is currently being done in the frame of the “SpaceWire Evolutions” 
Research & Development (R&D) contract kicked off in September 2011. This 
contract is funded under the ESA Technology Research Programme (TRP). 

2 OBJECTIVES 
The objective of this activity is to breadboard a number of modifications and 
additional features to the SpaceWire standard, to validate these updates and check that 
they are backwards compatible with the current suite of SpaceWire standards ([1], [2], 
[3], [4]) by setting up some test bench and running verification procedures. The 
features to be modified or added are the following. 

2.1 CLARIFICATION OF SPACEWIRE DEFINITIONS 

For the modifications to the SpaceWire protocol aiming at clarifying the definition 
and behaviour of “SpaceWire nodes” and better supporting Plug-And-Play 
capabilities, the first stream of research is on how to align the SpaceWire standard to 
international telecommunications core definitions of network items. Namely, the 
network should be described as links and nodes, the links carrying digital information 
between pairs of nodes, and nodes being either terminal nodes (where information is 
either produced or consumed) or switching nodes (that can switch the digital 
information from an input link to one or more output links). However, the network 
item definitions must be adapted to the specific aspects of SpaceWire on-board 
networks, mainly redundancy at processing nodes and at communication path levels. 
Another important issue to consider is that redundancy schemes are influenced by the 
fact that routers are very likely to be fitted into on-board functional unit boxes (as 
opposed to having their own box, physically located in between the boxes of two 
functional units), i.e. physically very close to one or more terminal nodes to which 
they are linked. 

The second stream of research is towards a consistent approach of configuration ports 
attached to nodes. Indeed, the Plug-And-Play capabilities – as defined jointly by ESA 
and NASA and drafted into [13] – that are also currently subject to standardisation 
effort, require registers to be read and written in each and every node, be it a terminal 
node or a switching node. These capabilities also require that these registered be 
accessed through the SpaceWire network itself (this is done in practice via the Remote 
Memory Access Protocol [2]). This implies, on one hand, that switching nodes 
contain a terminal node; and, on the other hand, that terminal nodes are able to switch 
some types of SpaceWire packets to a register handling process instead of to their 
functional host interface. 

2.2 INTRODUCTION OF SIDEBAND SIGNALLING 

For the broadcast of low-latency signals across a SpaceWire network (for the purpose 
of distributing on-board systems level interrupts), the baseline solution is to use the 
ESC + N-Char sequence of characters as described in [1]. Overcoming some 
ambiguities in the current version of the SpaceWire standard [1], the SpaceWire 
Working Group have recently agreed that the “Time-code” [17] shall have its Control 
Flags (bits T6 and T7) both set to 0. The SpaceWire Working Group have also agreed 
that Control Flag sequence 0b01 may be used for low-latency signalling broadcast, 
leaving the sequences 0b10 and 0b11 reserved. 
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A first solution ([14], [15], [16]), based on “Interrupt-codes” (extended Control Flag 
C5=0) and “Interrupt_Acknowledge-codes” (extended Control Flag C5=1) has been 
extensively discussed within the SpaceWire Working Group. 

However, another research stream will start from the basics of information theory and 
investigate the possibility of unifying the already defined (and implemented) 
Time-codes with some general low-latency signal scheme (using the ESC + N-Char 
sequence of characters) that would allow broadcasting system-level interrupts but also 
other kinds of low-latency signals such as multiple time-domain clocks. 

2.3 INTRODUCTION OF SIMPLEX AND/OR HALF-DUPLEX SPACEWIRE 

For the SpaceWire communications which are highly asymmetric in terms of data rate 
(e.g. sensor-storage), two research streams of SpaceWire Signal Level optimisation 
will be followed with the common target to reduce the SpaceWire logical signalling to 
one pair only of Data/Strobe signals (thereby reducing the number of wires required 
for the physical layer from 8 to 4). 

Simplex operation [18] consists in having only one side of the link (the “sender”) 
sending NULL characters and Normal Characters (N-Chars). The other side of the 
link (the “receiver”) would only send Flow Control Tokens (FCTs). Sharing of the 
single physical channel between “sender” and “receiver” communications must be 
handled by some Medium Access Control (MAC) arbitration. 

With Half-Duplex operation, the MAC arbitration allows both ends of the single 
physical channel to be alternatively “sender” and “receiver”. The robustness of this 
approach is still to be verified through proper testing. But the first implementations 
([19], [20]) show that the MAC arbitration overhead can be kept within 20%. 

Both schemes (Simplex and 
Half-Duplex) will be designed and 
formally verified. A traded-off between 
the two will lead to selection of one of 
them for breadboarding. This will allow 
for verification of robustness and 
integrity, but also of compatibility 
between this scheme and Full-Duplex 
SpaceWire as defined in [1]: a 
SpaceWire packet must be able to pass 
through a series of SpaceWire links that 
may be full-duplex, half-duplex or simplex, with no other modifications of its 
properties than would be introduced by passing trough a series of full-duplex links 
with differing link speeds (i.e. timing properties). 

3 VALIDATION 
For the validation of these new features at breadboard level, a test setup and 
verification procedures will allow demonstrating the functionality, the performance, 
and the backwards compatibility of the feature with the current SpaceWire standard 
[1]. The test setup will be mainly based on existing SpaceWire equipment modified 
and upgraded with the new features.  

Figure 1 – Example of SpaceWire network mixing 
full-duplex, half-duplex and simplex links 
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4 CONCLUSION 
Once designed, formally verified, breadboarded, and validated, the three new features 
presented in this paper will be handed over to the SpaceWire Working Group for 
endorsement. They will then be integrated, together with a list of minor improvements 
to the current SpaceWire standard [1] endorsed by the SpaceWire Working Group, 
into a “SpaceWire 1.1” updated version of the SpaceWire standard. This version will 
then be subject to formal standardisation by the European Cooperation for Space 
Standardisation (ECSS).  

Following requests from the SpaceWire community, ESA is also preparing for the 
medium term extension of SpaceWire to new domains such as Gigabit-per-second 
(Gbps) communications and reliability and real-time capabilities (“SpaceWire 2.0”), 
in parallel with the short term effort to have the currents SpaceWire standard revised. 
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ABSTRACT 
Data recorders and payload interface units have been developed for ASTRO-H space 

X-ray observatory scheduled to be launched in 2014 using deterministic 

implementation of SpaceWire protocol interfaces.  Data transmission with RMAP 

(Remote Memory Access Protocol) for the data recorder is realised in deterministic 

way, as such implementation of SpaceWire applied on the communication interface 

enables preventing congestion between prompt recording of scientific data and regular 

recording of house keeping data.  Payload interface units developed for ASTRO-H in 

the same scheme consist of TCIM (Telemetry and Command Interface Module) and 

MSE (Mission Support Equipment).  The purpose of these equipments is to translate 

legacy communication protocols of as-built design into SpaceWire. 

1 DATA RECORDER 

1.1 OUTLINE 

Japanese X-ray astronomy satellite, ASTRO-H, has multiple scientific instruments to 

observe variety of X-ray sources in the sky [1].  Data produced from these sources 

varies with time and the data rate is often difficult to predict due to the nature of 
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sources.  Therefore a data recorder is required to have flexibility to handle randomly 

produced data from these instruments.  The requirement of the memory size is 

2Gbytes which is sufficient to handle data taken every day.  This data recorder has 

been developed on these requirements for ASTRO-H based on SpaceWire [2] and 

other future spacecrafts.  As the feature of the data recorder, it enables recording of 

scientific data in RMAP initiator mode as well as recording of house keeping data in 

RMAP target mode.  The data recorder accepts input data through the SpacePacket 

interface with the SpaceWire format.  The input data is checked whether it organizes 

the right RMAP packet format.  Then it is classified by the data mode, and the data 

recorder starts to operate the recording 

or the real time reproducing or the 

both.  As the data recorder has RMAP, 

the data recorder has achieved to 

record the intermittent scientific data 

and the regular house keeping data at 

the same time. 

Since the data recorder employs the 

deterministic implementation of 

SpaceWire protocol, it is not 

necessary to accommodate software.  

Therefore, this data recorder realised 

as the A6 size (150mm x 140mm) 

equipment which consists of all 

hardware including 16Gbits SDRAM 

memory modules.                                             Figure 1: Data Recorder structure image 

1.2 THE PROTOCOL OF THE DATA RECORDER 

The data recorder has an original protocol stack which is complied with the 

SpaceWire-D draft specification protocol stack [3].  Figure 2 shows the SpaceWire-D 

draft protocol stack and the data recorder protocol stack.  The figure shows that the 

data recorder keeps the structure separated by the protocol layer clearly.  That is, the 

data recorder is 

realised RMAP 

in deterministic 

way.  The data 

recorder has no 

implementation 

for SpaceWire-

D and 

SpaceWire-R in 

itself as shown 

in figure 2.  

These two 

protocol layers 

are 

accommodated 

in an attached 

on board computer.    Figure2: The SpaceWire-D and the data recorder protocol stack 
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1.3 DATA RECORDER OPERATION 

The data recorder for ASTRO-H operates recording the scientific data in the RMAP 

initiator mode, and the house keeping data in the RMAP target mode.  The data 

recording operation is shown in figure 3.  The input data goes through the SpaceWire 

interface at first, and the data is processed by the RMAP codec. Then the data 

recorder starts data transfer for recording into main memory and/or transfers the data 

for real time reproducing to TCIM through the RMAP codec. 

The RMAP initiator mode recording is operated as follows; at first, the Data Recorder 

receives the RMAP write command to see a plan for collecting data.  Then the data 

recorder creates and sends the RMAP read command to target nodes according to the 

received RMAP write 

command.  In the 

process of creating the 

RMAP read command, 

the data recorder gives 

the original 

transaction ID and 

CRC.  As the data 

recorder receives the 

RMAP read reply 

from the initiator 

nodes, the transaction 

ID and RMAP packet 

format including the 

CRC are checked.  If 

they have no error, the 

data recorder starts 

recording that data to 

the main memory.                               Figure3: The data recording operation 

2 PAYLOAD INTERFACE UNITS 

2.1 TCIM (TELEMETRY AND COMMAND INTERFACE MODULE) 

TCIM has two main functions.  Both of them are important for spacecraft bus system 

because this module is connected to both transponder and onboard computer and all 

telemetry and telecommand go through this module. 

(1) Translate telecommand into SpaceWire format and telemetry into transponder 

format 

The transponder receives telecommand from the ground station and transmits it 

through its serial communication interface.  TCIM receives the signal and translate it 

into the SpaceWire format, then sends it out through the SpaceWire network.  In the 

other direction, TCIM receives telemetry from the SpaceWire and translates it into the 

transponder format, then sends it out through serial communication interface. 

(2) Translate legacy interface of RF (Radio frequency) communication equipment into 
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TCIM also has legacy interfaces for transponders or other RF communication 

equipments as pulse command interface to turn the equipments on or off and as bi-

level telemetry interface to monitor the status of the equipments. 

In ASTRO-H, three TCIMs are used.  Two of them have interfaces with S-band 

transponder and are used for the spacecraft telemetry downlink and telecommand 

uplink; they consist of redundant system in each other and automatically change over 

on detection of error in one TCIM.  The other has interface with X-band transponder 

and is used for mission telemetry downlink.  In case of emergency rescue operation of 

the spacecraft, a part of the spacecraft system can be directly manipulated from the 

ground throughout TCIM. 

2.2 MSE (MISSION SUPPORT EQUIPMENT) 

MSE has developed to translate all other mission specific legacy communication 

protocol into SpaceWire.  In ASTRO-H one MSE unit is installed.  MSE gathers 

telemetry of legacy interface equipments and stores them in it.  The spacecraft 

onboard computer; namely “SMU” in ASTRO-H, acquires the telemetry from MSE 

using SpaceWire network and its deterministic protocol.  Also, when a command is to 

be transmitted to a legacy equipment, SMU transmits the command to MSE by 

SpaceWire, and MSE translates it into legacy communication protocol and send it. 

3 CONCLUSION 
Thanks to the deterministic implementation of SpaceWire protocol, the data recorder, 

which realises RMAP initiator mode data recording as well as RMAP target mode, 

has been achieved the small size equipment without accommodating software.  

Deterministic protocol implementation is also useful for employing as-built 

equipment such as TCIM and MSE, because those equipments often accommodate 

deterministic communication specification for the transmission of command and 

telemetry based on legacy protocol.  In order to implement deterministic protocol on 

to SpaceWire, a protocol layer for time slot control is separated from re-transmission 

mechanism and redundancy control, because RMAP packet format, which includes 

CRC, can be fully exploited for diagnosis and re-transmission purpose leaving the 

time slot control capability within SpaceWire protocol layer.  This scheme is 

formalised in SpaceWire–D draft specification and adopted for ASTRO-H. 
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ABSTRACT 

The STAR-Dundee SpaceWire Link Analyser Mk2 is a key piece of equipment when 

performing test, validation and verification of a SpaceWire [1] system. The analyser 

sits between two SpaceWire devices and monitors traffic in both directions of the link 

providing the user with the functionality to monitor, record and analyse SpaceWire 

traffic. The new features of the SpaceWire Link Analyser Mk2 make it an invaluable 

tool when testing, debugging, validating or verifying any type of SpaceWire 

equipment. 

INTRODUCTION 

The SpaceWire Link Analyser Mk2 is the second generation of the STAR-Dundee 

link analysis solutions [2] and is designed to specifically support the testing and 

debugging of SpaceWire systems by providing a rich set of test functionality. The 

analyser benefits from increased traffic storage capacity which is up to 2000 times the 

capacity of the original analyser allowing millions of events to be stored in both 

directions of the link. RMAP and custom protocol analysis is supported, considerably 

reducing the effort required to capture and analyse RMAP traffic. Trigger in and 

trigger out ports can be configured to allow interaction with external equipment and 

provide a trigger source for an external scope or logic analyser. The analyser also has 

a Mictor breakout port which makes decoded SpaceWire traffic available to an 

external logic analyser. 

The analyser is provided with a comprehensive set of software including an easy to 

use graphical user interface with context sensitive help and a new analysis API. This 

API exposes the full set of analysis features to automated user test suites where 

analysis can be coordinated with other test equipment. 

OVERVIEW 

The SpaceWire Link Analyser Mk2 hardware unit is depicted in Figure 1 and an 

example setup of the analyser is depicted in Figure 2. 
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Figure 1 SpaceWire link analyser hardware unit 

On the front panel are two SpaceWire ports, input and output trigger connectors and 

status LEDs for the ports and triggers. To use the analyser a SpaceWire cable is 

connected from each device to be monitored and to the analyser. The link analyser 

buffers the LVDS signals internally and analysis is unobtrusive. A new feature of the 

analyser is the inclusion of an input trigger and an output trigger to allow cross 

triggering and synchronisation with other external EGSE equipment. Link status, error 

and data transfer information is provided by the SpaceWire status LEDs and trigger 

activity is provided by the trigger LEDs. 

A Mictor connector is provided on the rear panel of the Link Analyser Mk2 to allow 

the analyser to be connected directly to a Logic Analyser. The SpaceWire traffic in 

each direction of the link is decoded into a set of characters which are provided on the 

logic analyser connector. The analyser connects to a host PC through the USB 2.0 

interface and is powered by a provided 5V power brick.  

 

Figure 2 SpaceWire Link Analyser Mk2 example configuration 

The analysis software which runs on the Application Software PC supports Windows 

(7, Vista, XP and 2000) and Linux (2.6 kernel) systems. 

FUNCTIONALITY 

The link analyser operates using a trigger to capture an event and a storage memory to 

capture the data which occurs before and after an event. The analyser software is used 

to setup the trigger condition, start and stop the analyser’s trigger, monitor the trigger 

status and display the stored data when the trigger occurred. The link analyser also has 

a status monitoring function which provides an updating display, updated once per 

second, of the traffic on the SpaceWire link. 

194



The analyser trigger condition can be set to capture one or more events on the link 

including: link errors, NULL, FCT and data characters or data packet comparators. A 

sequence of up to eight triggers can be set. Dependent on the debugging level the 

analyser can be configured to capture all link characters or can be set-up to filter out 

link control characters and only capture data. This greatly increases the amount of 

data storage available. 

When the trigger condition has been met, and data has been stored in the analyser’s 

deep internal memory, the data can be viewed using the analyser’s extensive 

SpaceWire traffic displays including: a character level display which displays all link 

control, error and data information; a packet level display which can display raw data 

or protocol encoded traffic; and a bit level display which displays the raw data-strobe 

bits around the trigger condition at a resolution of 1.25 ns per sample. A new search 

feature has been added to the software providing the ability to quickly find 

information in the large storage memory. The character level and packet level displays 

are illustrated in Figure 3. 

 

 

Figure 3 Character level and Packet level displays 
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Offline analysis is supported using the save and storage functions of the software. 

Recorded data can be saved in Link Analyser format for future analysis or saved to a 

text format file for display in other software tools. The software is also capable of 

saving raw N-Char data values (excluding EOPs and EEPs). 

The functionality available in the Link Analyser software is replicated in an easy to 

use Application Programming Interface. For EGSE purposes the collection and 

analysis of the operation of the SpaceWire links often needs to be automated and 

coordinated with the operation of other test equipment. To support this, the Link 

Analyser Mk2 is provided with an API for C. 

PERFORMANCE AND RESULTS 

The SpaceWire link analyser Mk2 is capable of monitoring links running up to 400 

Mbit/s and the bit-stream level display is capable of capturing data-strobe bit 

transitions at a rate of 1.25 ns (800 MHz). 

The storage capacity of the link analyser has been greatly increased and up to 16 

Million (16 Mebi) events can be captured using the C API and 1 million (1 Mebi) 

events in the software user application. 

CONCLUSION 

The new features of the SpaceWire Link Analyser Mk2 make it an invaluable tool 

when testing, debugging, validating or verifying any type of SpaceWire equipment. 
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ABSTRACT 
The SpaceWire thermal interface node is a small piece of equipment that integrates 
thermal sensors and heaters into the SpaceWire network. In traditional satellite 
architecture, a lot of thermal sensors and heaters are directly connected to a thermal 
control unit. We propose a novel concept for a distributed satellite thermal control 
architecture in which thermal sensors and heaters are connected via distributed 
SpaceWire thermal interface nodes. The SpaceWire thermal interface node has a few 
A/D converter channels for a thermal sensor interface and a few solid-state switches 
for controlling thermal heater power. It provides a higher level thermal control 
interface that automatically converts a sensor value to a temperature value. It also 
provides intelligent thermal control functions in that the SpaceWire thermal interface 
node automatically controls heater switches to maintain a temperature specified by the 
satellite controller. This feature is represented by a small controller implemented in 
the SpaceWire thermal interface node. Therefore, the SpaceWire thermal interface 
node will improve the flexibility of satellite thermal control and reduce harness mass. 
In this paper, we present a distributed thermal control system concept demonstrated 
with a prototype of the SpaceWire thermal interface node. We also present an early 
implementation of the SpaceWire thermal interface node. Also, we discuss the 
topology of the distributed thermal control system and the control methods of the 
satellite thermal controls. 
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1 SATELLITE THERMAL CONTROL 
One major task of satellite management is thermal control. This control measures the 
temperature of the measuring points on the satellite components and the satellite body 
panels and controls heaters to maintain a temperature within a specified thermal range. 
The number of the measuring points depends on the satellite size and/or the number of 
components. Scores of measuring points exist. In traditional satellite design, a lot of 
heaters and thermal sensors are connected to the thermal control unit and controlled 
by the satellite controller. This thermal control system is distributed through the entire 
satellite and requires many harnesses. In recent satellites, bus components are 
connected via a local area network like SpaceWire, and this represents the flexibility 
of modern satellite design. The satellite thermal control system uses many sensors 
and heaters that are distributed through the entire satellite and also requires analogue 
signals and power switches. This is because the thermal control system is difficult to 
integrate into the satellite bus network. 

2 THERMAL CONTROL OVER THE NETWORK 
We considered that network architecture that integrates the thermal control system 
into the satellite network is classified into two methods: 

1. All heaters and thermal sensors are connected to and controlled by the thermal 
control unit in a traditional manner, and the thermal control unit is connected to a 
satellite network. A thermal control unit controlled via a satellite network is 
shown in Fig. 1. 

2. One or few heaters and thermal sensors are connected to a satellite network via a 
small network adopter, as shown in Fig. 2. 

Method 1 requires minimum modification to the traditional design, but its advantage 
is limited to the satellite controller being able to control the thermal system via a 
network. Method 2 has the disadvantage of requiring a lot of network adopters and the 
advantages of reducing the number of harnesses and integrating time in addition to 
method 1. 

We assumed that a network based on a thermal control system like method 2 could be 
realized with a sufficient number of advantages if a small network adopter were used. 
We named the small network adopter “SpaceWire thermal interface node” and 
developed a functional prototype model. 

SpaceWire
NetworkSatellite

Controller

Thermal 
Control 

Unit

Heater

Thermal 
sensor

Heater

Thermal 
sensor  

Fig. 1: Traditional thermal control system with SpaceWire interface 
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Fig. 2: Network based thermal control system 

 

3 SPACEWIRE THERMAL INTERFACE NODE 
The functional prototype model of the thermal interface node has one pair of heater 
switches, a thermal sensor interface, and two SpaceWire interfaces on two pieces of 5 
cm by 6 cm PCBs. Figure 3 shows the architecture of the thermal control node, and 
Figure 4 shows the prototype model. 

   
 

Fig. 3: Internal architecture of thermal 
interface node Fig. 4: Prototype module of SpaceWire 

thermal interface node 

 

This thermal control node has a programmable control mechanism that controls the 
heater switch automatically within a specified temperature. It also has the ability to 
convert thermal sensor output into an actual temperature. This functionality is 
represented by an abstract thermal interface, so the satellite controller needs no S/W 
modification when implemented in a different satellite and/or if the sensor or heater is 
changed. Also, the satellite controller only needs to control the high level thermal 
control because the low level thermal control is implemented in the thermal control 
node. 

Figure 5 shows the topology of the thermal control network. We will use ring 
topology to reduce cable mass with enough redundancy. To improve reliability, the 
thermal control network is divided into multiple rings, and two or more independent 
rings control each satellite panel or the thermal sensitive components. Figure 6 shows 
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an example of the thermal network configuration. In Figure 6, the ring topology is 
simplified as a single line, but actual wiring requires a return path. 

 

SCU

N

NN

N

N
N

R

SCU: Spacecraft Control Unit
R: Router
N: Thermal Interface Node

R

 

Fig. 5: Topology of thermal control network 

 

 

Fig. 6: Example of network configuration 

 

4 SUMMARY 
We presented a SpaceWire thermal interface node and a satellite thermal control 
system that uses these thermal interface nodes. This thermal control system reduces 
harness weight and improves reliability. Also, the thermal interface node enables the 
abstraction of the thermal control interface because the thermal interface node can 
execute a part of the thermal control process. However, to reduce harness mass, a half 
duplex and/or low-mass cable specifications are required. We will evaluate a thermal 
control system that uses the thermal interface node. 
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ABSTRACT 

This work describes the development of an Electrical Ground Support Equipment 
(EGSE) to be used by the flight software development team and during the integration 
and test activities for the PLATO (PLAnetary Transits and Oscillations of stars) 
Mission. The EGSE will be used to feed the Data Processing Units (DPUs) with 
dynamic scientific data, representative of expected sky scenarios, using SpaceWire 
links. Its functionality is fully compliant with the real camera specification. The main 
system is implemented in a Altera Stratix IV FPGA (VHDL language). This work 
presents the electrical and software architecture used to implement the EGSE. The 
main point is the conversion of USB packets to the RMAP SpaceWire packets, under 
the PLATO electrical constraints, putting in evidence hardware and firmware 
solutions. 
 
KeyWords: SpaceWire, RMAP, VHDL, FPGA, Embedded System 

1 OVERVIEW PLATO SYSTEM 

The scientific goal of PLATO [1] is the discovery and study of extrasolar Planetary 
System by means of planetary transits detection. 

The instrumental concept proposed by the PLATO Payload Consortium is based on a 
multicamera approach. There are 32 normal cameras arranged in four sub-groups of 8 
cameras, and 2 fast cameras working independently. Each camera is equipped with its 
own CCD (Charge Coupled Devices) focal plane array, comprised of 4 CCDs. The 
CCDs work in full frame mode for the normal cameras, and in frame transfer mode 
for the fast cameras (attitude control). The proposed system simulates only normal 
cameras and normal front end devices (N-FEE). 
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There are 16 normal data processing units (N-DPU). Each N-DPU is responsible for 
processing the data of 2 normal cameras belonging to 2 separate optical groups. The 
processing cadence for N-DPUs is 25 seconds, and each camera has one N-FEE 
associated. 

2 EGSE DESCRIPTION 
The EGSE tests a half N-DPU, sending one complete camera image through two links 
SpaceWire [2] with RMAP [3]. The Figure 1 gives an overview of the EGSE. The 
frame “Plato Image Subsystem” illustrates the system implemented in the satellite and 
that is emulated in this work. 

 
Figure 1: EGSE overview 

 
The EGSE is composed by two subsystems: 1- a workstation running an user interface 
and responsible for sending images through USB (Universal Serial Bus) to the N-FEE 
simulator, like a normal camera; 2- the N-FEE Simulator, that sends the image 
through SpaceWire using RMAP protocol.  
 

2.1 N-FEE SIMULATOR DESCRIPTION 
Each N-FEE in the PLATO is responsible for digitize the video signal, send the 
digitized image to the N-DPU over a SpaceWire link using the RMAP protocol, 
receive and execute commands from N-DPU, receive and propagate synchronization 
signal, as well as manage housekeeping (HK). A full CCD image transfer (around 39 
MBytes) starts at the time the synchronization (Synch_in) signal is received, needing 
to be performed in less than 3.3 sec. The remainder time is used to transfer the image 
to a memory zone. The figure 2 illustrates the time constraints involved in the 
application and which is emulated in the EGSE. The Synch_out is the synchronization 
signal propagated through the internal logic. 
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Figure 2: Time constraints, Sync is synchronization signal 

The RMAP protocol write command is used to transfer data from N-FEE to the N-
DPU, one write command per half line, and, in the opposite direction, from N-DPU to 
N-FEE, (ie: memory address, operation mode). A RMAP read command is used from 
N-DPU to N-FEE to access the housekeeping information. 

The two SpaceWire links run at 100 Mbits resulting in a instantaneous data rate (with 
25% SpaceWire overhead and RMAP header), for full CCD transfer, of 80 Mbits and 
an averaged transfer at 70.5 Mbits.  An SpaceWire time code is sent by the N-FEE 
simulator to the 2 SpaceWire links at the time a synchronization signal (Synch_in) is 
received. This time code serves to synchronize the N-DPU with the external Synch_in 
signal (6.25s) and to indicate which CCD is being transferred (0, 1, 2, 3). 

The N-FEE Simulator has four types of operation modes which can be set by the N-
DPU: 1- Operational mode: the CCDs are read with the synchronization signals. 
Data packet including image and housekeeping are sent; 2- Stand-By mode: Only 
housekeeping data are sent on request from the N-DPU; 3- Integration mode: The N-
FEE may function without synchronization signals from the N-AEU; 4- Test Mode: 
the N-FEE sends a data pattern to the N-DPU.  

2.2 N-FEE SIMULATOR ARCHITECTURE 
The architecture proposed to the N-FEE Simulator is given in the Figure 3. All 
architecture is embedded in a Stratix IV [4] FPGA. The USB module implements 
USB 2.0 interface acting as a device. 

 

Figure 3: N-FEE Simulator hardware architecture  
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The image sent from the computer is stored in a one of the two DDR2 SDRAM 
memories in less than 6.25 seconds. When the synchronization signal (synch_in) is 
detected the N-FEE Unit Control (FEE UC) swaps the memory, connecting the fresh 
loaded memory to the SpaceWire/Rmap handler, and linking the other memory to the 
USB handling. So, while the workstation sends the next CCD data to the memory 
allocated for the USB handling, the SpaceWire/Rmap handler sends the image 
previously loaded in the other memory to the N-DPU. 

Sync handling is responsible to detect the Synch_in signal (6.25s and 25s signal that 
came in the same line). It has also the ability to generate the synchronization signal in 
order to the system work in the integration mode. 

The data from the work station is sent to the USB2.0 as a 32 bytes burst transfer, and 
then the USB handler interprets and executes a write burst to the memory controller. 
The memory controller is implemented using an Altera IP core [5], and deals with the 
two DDR2 SDRAM of 1GB each one. There is an internal controller that only gives 
write or read access to one memory per time, this prevents reading unread data. 

A SpaceWire/Rmap handler which interfaces with the SpaceWire codec is also 
implemented. This block is able to create an RMAP write command using the data 
from the SDRAM memories, respond to write commands (reply), record the data 
received on auxiliary internal memory, as well as respond to read commands using 
data from auxiliary internal memory.   

The FEE UC control all the previously blocks, swapping the read/write access to the 
memories when the synchronization signal is received, configuring the blocks with 
the operation mode, as well as loading default values at start-up. 

3 PRELIMINARY RESULTS AND CONCLUSION 

The system is in the implementation phase using the Altera Quartus II V11 
development environment. Gate level simulations have been made and the system is 
being able to reach the time constraints proposed. The architecture with two memories 
allows future improvement of the EGSE to support more than one N-FEE, simulating 
a more complex system. 
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ABSTRACT 
The STAR-Dundee SpaceWire Remote Terminal Controller (RTC) Development System is 

intended to facilitate the development of both hardware and software for spacecraft systems 

based on the Atmel AT7913 SpaceWire RTC device. 

The development system hardware consists of an AT7913 device, plus an FPGA and 

additional on-board resources.  The FPGA provides a number of different connection options 

between the RTC and a host computer, allowing the downloading and debugging of software, 

and the simulation of the RTC device interfaces. 

The RTC can be connected to a number of internal, on-board, hardware resources, or to 

external equipment via case-mounted connectors. The FPGA allows for flexible control over 

these connections, switching among different configurations or working modes, and 

providing full control for debugging. 

The software for the development system is based on the widely-used Eclipse IDE, and will 

be immediately familiar to existing Eclipse users.  It also offers a shallow learning curve for 

new users, allowing them to quickly start developing or porting software for the RTC.  A 

wide range of debugging features is available, including breakpoints, single-stepping (source 

and assembler), and inspection of memory and registers. 

An additional system component provides facilities for the simulation of spacecraft 

instruments or other devices, with the generated data being passed to the RTC as if it were 

produced by the real instruments or devices. 

This paper describes the main features of the RTC Development System, and examines its 

possible uses in spacecraft hardware and software development. 
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1 STAR-DUNDEE RTC DEVELOPMENT SYSTEM 
The STAR-Dundee RTC Development System is designed to provide an all-in-one 

environment for developing, testing and debugging on-board hardware and software, and 

consists of a development board plus associated host computer software. The development 

board provides a number of interfaces which can be connected to the host computer to 

support program download, debugging and testing, as well as a range of other connections for 

external instruments or other equipment. 

 

Figure 1 - SpaceWire RTC Development System 

 

2 HARDWARE 

The STAR-Dundee RTC development board is built around the SpW-RTC SpaceWire 

Remote Terminal Controller device, AT7913, from Atmel [1]. This single chip embedded 

system centres around a LEON2-FT (SPARC V8) processing unit, plus a double precision 

floating point unit.  Connected to these via on-chip busses are several other peripheral 

modules, including CAN, ADC/DAC, GPIO, FIFO, timers and two SpaceWire interfaces 

supporting RMAP.  

The RTC device also includes 64KBytes of EDAC protected on-chip memory, into which 

software can be copied via a SpaceWire link, allowing it operate as a single-chip system, 

forming a very compact solution for remotely controlled applications. Alternatively it can 

operate in a fully-featured system, with software being loaded from a local PROM and 

executed from a local SRAM.   The development board includes 160Mbit of Flash PROM 

and 160Mbit of SRAM which can be used while developing this type of system. 

 

The hardware unit is shown below in Figures 2 and 3.  Connectors are provided for an 

interface to the host computer using high-speed USB, SpaceWire or RS232, as well as CAN, 

SpaceWire, GPIO, FIFO and ADC/DAC connectors for external devices. 
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Figure 2 - SpaceWire RTC Development Unit  

front view 
Figure 3 - SpaceWire RTC Development Unit 

 rear view 

The hardware unit has been specifically designed to be compact and portable and is only 220 

mm wide, 30 mm high and 115mm deep. 

3 SOFTWARE 

Eclipse is an open-source Integrated Development Environment (IDE) that has been widely 

adopted in software development, including development of embedded systems [2]. These 

factors made it an ideal choice for the front end environment for the RTC development 

system. The Eclipse environment has been extended to operate with a version of GCC that 

has been optimised for use on the RTC. Programs written in C or C++ can be compiled and 

then run and debugged on the development board. 

Both the STAR-Dundee RTC hardware and software have been designed with simplicity in 

mind. The steps required to start debugging are minimal. This is essentially a case of 

connecting the device to the host PC and starting a debug session in Eclipse (see Figure 4). 

 

Figure 4 - Starting a debug session in Eclipse 

When using a fast USB or SpaceWire connection between the host computer and the 

development board, Eclipse gives a smooth single stepping experience. While debugging, 

Eclipse provides familiar views to allow inspection of variable and register values (Figure 5). 

 

Figure 5 - Single-stepping through code running on the RTC 
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Custom views added to the Eclipse environment also provide access to other aspects of the 

hardware, such as the device register view shown in Figure 6. 

 

Figure 6 – Device Register View 

Whilst making it easy to get up and running, the development environment also allows 

configuration of more advanced options such as the interface to use (e.g. USB or SpaceWire), 

the size of available memory, clock frequency, etc. [3] 

4 CODE ROCKET 

 

Figure 7 - Code Rocket design views integrated inside Eclipse 

Code Rocket from Rapid Quality Systems [4] is a detailed software design tool that provides 

abstract pseudocode and flowchart visualisations of algorithms. Plugins are available for the 

Visual Studio and Eclipse IDEs that allow the developer to design and visualise methods on 

demand (see Figure 7). When changes are made in the code, the design views are 

automatically synchronised. Similarly, when changes are made in the pseudocode or 

flowchart editors, the method can be re-populated with the associated forward-engineered 

code. The synchronisation between code and design ensures that neither gets out of date and 

the ad-hoc nature of the tool means that it unobtrusively fits into the developer’s working 

process. 
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A new feature in Code Rocket is the ability to see the current statement highlighted in the 

design views when stepping through code in the debugger. Whilst Code Rocket is already an 

extremely valuable resource for designing and understanding algorithms, this new addition 

makes it a powerful debugging tool too. Given that the RTC Development System has been 

designed specifically to speed up the development of on-board spacecraft software using 

Eclipse, Code Rocket fits naturally into this paradigm. When combined, both products 

provide a unique way of designing and executing software on the RTC hardware as well as a 

dynamic flowchart that is highlighted as a debug session is running on the RTC hardware 

unit. The combined system will be used by developers to ensure that their software meets the 

high quality demanded by space applications. 

When stepping through code the current statement is highlighted in yellow, with a red outline 

if a breakpoint is encountered or with a green outline when stepping over other statements 

that don’t have breakpoints (see Figure 8). The flowchart is naturally easy to follow and the 

addition of the debugging information makes it very easy to pinpoint exactly which part of 

the software is being debugged and the surrounding context. 

 

 

Figure 8 - Breakpoint highlighted with red outline and non-breaking statement highlighted with green outline 

5 POTENTIAL APPLICATIONS 

In the early development stages of a spacecraft instrument or payload, the software 

development team will not normally have a full hardware platform to work with. As a result, 

unexpected issues may be discovered much later during system integration. The STAR-

Dundee RTC Development System aims to address this issue by providing virtual devices 

that are interchangeable with the actual devices that may be connected to the physical ports. 

This allows software development to progress before the physical hardware becomes 

available, and when the hardware does become available the actual devices can easily be 

substituted for the virtual ones, and then tested. 

For example, the data stream from an onboard instrument which will be connected to the 

FIFO can be simulated, with data being provided by the host computer, to allow initial testing 

of its data management software before the hardware development is complete.  When the 

instrument hardware is available it can be connected to the RTC development system via the 

external FIFO connector, and further testing carried out – the aim being to ensure that 

software and hardware can be thoroughly tested before integration with other flight systems. 

The development board is also equipped with ADC and DAC chips which can be used for 

hardware prototyping. These chips are commercial counterparts of Space Qualified ASICs, so 

a prototype system based on this on-board ADC or DAC could be easily migrated to a flight 

qualified design. 
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Some of these possible applications are illustrated in Figure 9, including platform OBC, 

controller or data handler to instruments, bridge to low-speed CAN bus, separate data 

processor, and mass memory controller. 
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Figure 9 - Possible Applications of the SpW-RTC Device 

 

5 CONCLUSIONS 

The STAR-Dundee SpaceWire RTC Development System is a combination of test and 

development hardware and software tools for developing, testing and debugging onboard 

spacecraft systems. This paper has described and discussed both the hardware and the 

software tools used with it. 

Alongside the compact but capable hardware unit, the software development environment has 

been designed with complete simplicity in mind. The ability to connect to the device and 

quickly start debugging is an improvement over existing solutions that may be over-complex 

for the end user. 

When combined with Code Rocket, the RTC Software Development System becomes an all-

in-one spacecraft software design, development, test and debugging toolset that paves the 

way for improved developer productivity and software quality. 
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1 ABSTRACT 
Two Remote Interface Units (RIUs) have been developed by SEA for the upcoming 

ESA BepiColombo mission to Mercury.  Each RIU will be used as a stand-alone unit 

within the BepiColombo Data Management System (DMS) and provide the 

connection between the onboard computer and a large range of sensors and actuators.  

One RIU provides sub-system interfaces within the Mercury Planetary Orbiter 

(MPO), whilst the second provides sub-system interfaces within the Mercury Transfer 

Module (MTM). The implementation details of SpaceWire interfaces within the two 

RIUs are described and the performances achieved discussed. 

2 MPO RIU 
The MPO RIU provides two SpaceWire links running at 10Mbps. These interfaces 

utilise an EIA‐644 LVDS electrical layer compliant with the ECSS-E-ST-50-12C 

(SpaceWire – Links, nodes, routers and networks) standard. The MPO RIU 

incorporates the Aeroflex UT54LVDS031-LV LVDS quad transmitter and the 

UT54LVDS032-LV LVDS quad receiver for the SpaceWire interfaces. Figure 1 

below shows the SpaceWire interface components for the MPO LVDS interface. 

Figure 2 below shows the SpaceWire outputs when the link is exchanging “null” 

packets. 
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Figure 1: MPO RIU SpaceWire 

Interface 

Figure 2: Waveform of MPO SpaceWire LVDS 

link – yellow trace (SPW_DATA_OUT_PLUS), 

green trace (SPW_STRB_OUT_PLUS). 
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3 MTM RIU 
The MTM RIU provides two SpaceWire links running at 4Mbps (initialising at 

10Mbps). This unit however utilises an SBDL (Standard Balanced Digital Link) 

electrical layer. This requires the use of EIA-422 devices. The MTM RIU 

incorporates the Intersil HS-26C31RH RS422 transmitter and the Intersil HS-

26C32RH RS422 receiver for the SpaceWire interface. Figure 3 below shows the 

SpaceWire interface components for the MTM SBDL interface. Figure 4 below shows 

the SpaceWire outputs when the link is exchanging “null” packets. 

 

 

 

 

 

 

 

 

 

4 SIGNALLING PERFORMANCE 
The LVDS buffers can operate at a switching rate of 400Mbps (200MHz). Signal 

tracks on the PCBs have been routed in accordance with [RD1] to minimise the skew 

introduced by signal length mismatch. According to signal timing analysis the total 

cumulative skew is approximately 9ns (including external SpaceWire router). The link 

could therefore readily run at speeds in excess of 100Mbps, however in practice it is 

limited by performance limitations of the FPGA (see section 5).    

The SBDL link utilised on the MTM is however far slower. The defined maximum 

data rate of an RS-422 link is 10Mbps over a length of 1200m with up to 10 receivers 

on the signal line. This electrical layer has been chosen to improve the common mode 

voltage / signal levels across the spacecraft separation interface. This improvement is 

gained by a much larger difference between the output voltage transition levels VOH 

and VOL, however a result of the increased signal swing is much longer signal 

transition times. Due to the performance of RS422 transmit/receive components, the 

link cannot meet the rise/fall/skew times specified within ECSS-E-ST-50-12C, 

however for the low data rate requirement of the MTM this is not an issue. 

No channel to channel skew figures are available for the Intersil HS26C32RH and 

HS26C31RH RS422 devices, therefore max propagation delay – min propagation 

delay is taken as worst case skew. According to signal timing analysis the total 

cumulative skew is approximately 65ns (including external SpaceWire router). The 

link could theoretically therefore run at speeds in excess of 15Mbps. 
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Figure 4: Waveform of MTM SpaceWire SBDL 
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5 FPGA PERFORMANCE 
The BepiColombo RIU has two SpaceWire Controller modules. Each module 

contains an RTAX2000S FPGA containing two ESA RMAP IP cores with embedded 

SpaceWire CODECs [RD2]. Both RMAP IP cores are configured as Target only (to 

ensure that no messages are initiated by the RIU).  

The RTAX FPGAs have limited global clock resources which causes a constraint on 

the implementation of the SpaceWire CODEC core when more than one is being 

instantiated within the same FPGA.  The RTAX FPGAs have four hardwired clocks 

HCLKA/B/C/D and four routed clocks CLKE/F/G/H. Hardwired clocks are only 

routed to register clock inputs, whereas the routed clocks can be used for any global 

signals requiring low skew. It is standard practice for one of the routed clock nets to 

be utilised for the internal synchronous reset signal. A routed clock net is also 

required for each of the SpaceWire receive clocks (recovered by Exclusive OR of the 

incoming data and strobe signals. This is necessary to ensure low skew of the receive 

clock and follows the guidance within a Microsemi application note [RD3]. This only 

leaves one spare routed clock network left between the two SpaceWire CODEC 

transmit clocks. 

The SpaceWire CODEC requires to have a transmit clock which runs at 10Mbps (link 

initialisation) and then to link running rate (variable by configuration). This can be 

achieved by utilising a configuration (known as SYS_DIV or TXCLK_DIV), which 

creates a divided version of the clocks however this creates asynchronous clock 

signals which require global nets to reduce skew. It can also be achieved by utilising a 

configuration (SYS_EN) which allows the default 10Mbits/s transmit rate and the 

variable transmission rate to be generated by an internal clock enable generator. This 

has the advantage of the transmit clock being the same as the main system clock so a 

dedicated global net for the transmit clock is not required.  

In order to minimise the number of global clock nets the SpaceWire CODECs have 

therefore been configured to SYS_EN within the BepiColombo RIU. The design 

meets the required timings at MIL spec operating conditions and with 50kRAD total 

dose. Figure 5 shows a screenshot of the Microsemi Libero Designer Smart-Time 

software showing the performance achieved on the internal clock nets.  

 

 Figure 5: Libero Designer SmartTime screenshot. 
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The speed of the transmit clock within this configuration is limited by the inherent 

speed of the FPGA routed clock network. A speed of 27MHz could be achieved with 

the current FPGA design. The maximum SpaceWire rate required for the 

BepiColombo RIU is 10Mbps, therefore this performance is acceptable and no further 

optimisation has been carried out. 

Performance could be improved in a number of ways if required: 

 Investigate the worst case delays limiting the clock speed (which may/may not 

be related to the SpaceWire CODEC) and then optimise the code. 

 Procure a higher speed grade FPGA.  The BepiColombo RIU utilises –STD 

speed grade devices, however -1 and -2 speed grade devices are available 

which have guaranteed higher internal operating performance. 

 Move the SpaceWire CODEC into a device with a radiation hard embedded 

phase locked loop (PLL). This would almost certainly be an ASIC or a 

SpaceWire Router / SpaceWire receiver IC. This has the advantage of 

allowing a much higher transmit speed unconstrained by maximum clock 

speed of the RTAX routed clock network. 

6 SCHEDULE 
The FPGA SpaceWire interface has been fully tested using Microsemi Pro-ASIC3E 

devices. The next stage of the development will be to migrate the design into 

Commercial Axcelerator AX2000 devices following the Microsemi prototype 

development approach outlined in [RD4]. The design will then be programmed into 

RTAX B-grade devices for EQM qualification testing in Q4 2011. 
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ABSTRACT 

The Consultative Committee for Space Data Systems (CCSDS) published a document 
called the Spacecraft Onboard Interface Services (SOIS). This document specifies a 
set of standard services and traffic classes to be provided by onboard networks for 
onboard applications, but not all of the services and traffic classes can be realized with 
the existing standards on SpaceWire. This paper proposes developing some protocols 
so that SpaceWire can provide all the subnetwork services and traffic classes defined 
by SOIS. Specifically, this paper proposes developing two protocols to support the 
traffic classes. One of them provides the functionality of managing the traffic on the 
network, and the other provides the functionality of performing retransmissions to 
ensure reliable delivery. 

1 INTRODUCTION 
The Consultative Committee for Space Data Systems (CCSDS) published a document 
called the Spacecraft Onboard Interface Services (SOIS) in 2007 [1]. This document 
proposes a layered architecture of onboard communications services that should be 
provided by onboard networks of spacecraft for onboard applications. According to 
this architecture, SpaceWire is a type of Data Link. The Data Link should be accessed 
by applications or other upper-layer standard services with a set of standard services, 
which are called the SOIS subnetwork services. The SOIS document also defines four 
traffic classes, each of which corresponds to a set of quality of service (QoS) levels. 

There are already some standards related to SpaceWire (for example, [2] and [3]), but 
not all of the subnetwork services and traffic classes defined by SOIS can be realized 
with the existing standards. Some more protocols that run on top of the existing 
SpaceWire protocols are required. This paper proposes developing some more 
protocols so that SpaceWire can provide all the subnetwork services and traffic 
classes defined by SOIS. Specifically, this paper proposes developing two protocols to 
support the traffic classes. One of them provides the functionality of managing the 
traffic on the network to ensure guaranteed bandwidth and timely delivery. The other 
provides the functionality of performing retransmissions to ensure reliable delivery 
without loss, without duplication, and in-sequence. Two of the SOIS subnetwork 
services with all the traffic classes can be provided by combining the SpaceWire 
specification [2], the Remote Memory Access Protocol (RMAP) [3], and the two 
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protocols mentioned above. The three other services can be provided by adding 
simple protocols to these protocols. 

2 SOIS SUBNETWORK SERVICES AND TRAFFIC CLASSES 
This section briefly introduces the subnetwork services and traffic classes defined by 
SOIS. 

2.1 SERVICES 

SOIS [1] defines the following five subnetwork services. 

1)  Packet Service – supports the transfer of packets over a subnetwork (that is, a 
SpaceWire network). 

2)  Memory Access Service – provides the capability to read or write data from or to a 
memory location in a device. 

3)  Time Distribution Service – provides the capability to distribute a centrally 
maintained reference time to multiple users throughout the spacecraft. 

4)  Device Discovery Service – provides the capability to detect devices becoming 
active following a change in the hardware configuration of the spacecraft. 

5)  Test Service – used for checking data system functionality and connectivity. 

2.2 TRAFFIC CLASSES 
SOIS [1] defines the following four traffic classes. For each of the subnetwork 
services shown above, these traffic classes can be used. 

1)  Best Effort – provides for non-reserved (that is, no network bandwidth are 
reserved), try once communication. 

2)  Assured – provides for non-reserved communication with retries. 

3)  Reserved – provides for best-effort communication over a resource reserved 
logical link. 

4)  Guaranteed – provides for resource reserved communications with retries. 

3 PROPOSED PROTOCOLS 

In this section, two protocols that augment the capabilities of SpaceWire networks are 
presented. 

3.1 SPACEWIRE-SCHEDULING 
This protocol provides the functionality of managing the traffic on the network to 
reserve bandwidths for data flows that require them and guarantee timely delivery of 
data to the receiving users. To reserve bandwidths, this protocol uses time slots, which 
are defined using the Time-Codes defined in SpaceWire [2]. Time Slots are allocated 
to instances of subnetwork services with Reserved and Guaranteed traffic classes. 
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This protocol does not have any more functionality than defining, allocating, and 
ensuring the use of time slots. This protocol is used as a building block combined with 
other protocols to support traffic classes that require reserved bandwidth and timely 
delivery.  

3.2 SPACEWIRE-RELIABLE 
This protocol provides the functionality of performing retransmissions to ensure 
reliable delivery without loss, without duplication, and in-sequence. It also provides 
the capabilities for (1) segmenting data units provided by the users if they are longer 
than the size allowed by the underlining network, (2) adjusting the rate of data 
transmitted from the sender based on the reception capability at the receiver (flow 
control), and (3) managing redundant routes (that is, if a route has been found not 
functioning, the protocol automatically switches to an alternative route). This protocol 
is used as a building block combined with other protocols to support traffic classes 
that require reliability. 

4 HOW SOIS SUBNETWORK SERVICES AND TRAFFIC CLASSES ARE PROVIDED 
This section shows how the SOIS subnetwork services and traffic classes are provided 
using the two protocols presented in the previous section. 

Figure 4-1 shows how the SOIS traffic classes are provided using SpaceWire-
Scheduling and SpaceWire-Reliable. If traffic classes Best Effort and Assured are to 
be used together with traffic classes Reserved and Guaranteed on the same SpaceWire 
network, SpaceWire Scheduling will be used to support all these traffic classes, 
allocating sufficient bandwidths to the Reserved and Guaranteed traffic classes. 

 

Figure 4-1: How the SOIS Traffic Classes are Provided 

Figure 4-2 shows how the SOIS subnetwork services are provided using SpaceWire-
Scheduling and SpaceWire-Reliable. The Packet Service is provided by using the 
combination of protocols shown in Figure 4-1. The Memory Access Service is 
provided by using RMAP together with the combination of protocols shown in Figure 
4-1. To provide each of the Time Distribution, Device Discovery and Test Services, a 
simple protocol for defining messages and message sequences is needed together with 
the combination of protocols shown in Figure 4-1 (possibly with RMAP for some 
Services). 
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Figure 4-2: How the SOIS Subnetwork Services are Provided 
(*) Whether to use SpaceWire-Scheduling and SpaceWire-Reliable depends on the 

traffic class selected. 

5 CONCLUSION 
This paper presented some protocols that run on top of SpaceWire and are used to 
provide the SOIS subnetwork services and traffic classes. This paper only presented 
rough concepts of these protocols, and further investigation is needed to determine the 
full specifications of these protocols. Furthermore, a roadmap showing how 
SpaceWire should evolve to accommodate the requirements of future spacecraft 
should be created and shared by both developers and users of SpaceWire. The 
diagrams presented in this paper are examples of such a roadmap. 
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ABSTRACT 
Spaceflight designs often contain a mix of standard and custom interfaces.  Although 

test bench equipment for standard interfaces such as SpaceWire is often available for 

testing flight designs in the lab, testing custom interfaces often presents a challenge.   

The Total Verification System, TVS, addresses this issue and more.   

The TVS provides the user with the ability to modify its functionality at a low level to 

allow for verification of non-standard features of the device under test.  Furthermore, 

interactions between SpaceWire interfaces and other custom interfaces can be 

properly verified in the TVS because of the user-programmability.   

1 COTS SPACEWIRE GSE 
Commercial off-the-shelf (COTS) SpaceWire ground support equipment (GSE) is 

readily available.  So, the question is: why do they not suffice?  Most COTS GSE is 

missing some desirable qualities for design verification.  Two such qualities are a lack 

in simulation models and the ease of customization.  Let’s take a closer look at both of 

these and why they are important for creating a more efficient and cost effective test 

and verification process. 

1.1 LACKING IN SIMULATION MODELS 

Why do we even need GSE simulation models?  Typically, GSE has been designed 

for lab use with little or no thought of its use in a simulation environment.  Doing this 

has kept us blind from the possibility of having a more efficient and cost effective test 

and verification process. 

FPGA capacities are continuing to grow.  As they grow, board designs are becoming 

more FPGA-centric. With FPGA-centric designs come FPGA-centric systems.  If 

FPGAs are tested and verified in a simulation environment then it also makes sense to 

test and verify FPGA-centric board designs and FPGA-centric system designs in a 

simulation environment as well.   

If we want to advance our test and verification process to one with higher efficiency 

and cost effectiveness, then we need to shift our simulation applicability from FPGA 

level to board level.  However, running board level simulations require driving 
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SpaceWire interfaces with something.  That something is a simulation model of the 
GSE.   

Once we have a simulation model of the GSE, we are then able to maximize 
portability to the lab.  This is because the same set of tests used in simulation can now 
be the same set of tests used in the lab.  So, where there used to be two totally 
different set of tests written by two separate verification engineers, there is now only 
one set of tests that works in two environments written by one verification engineer.  
This allows for more design issues to be caught in the simulation environment where 
it’s less costly to fix than in the lab environment where changes are more costly to fix. 

It makes for smarter practice to be able to see how the system as a whole behaves 
before hardware is even built.  This is done through simulations and saves you 
schedule, money, and even manpower. However, in order to simulate the entire 
system one needs...you guessed it, GSE simulation models.  

1.2 NOT EASILY CUSTOMIZABLE 

Why do we need to be able to customize our GSE?  GSE can be quite costly and with 
that comes the need for their reuse in order to make the purchase worthwhile.   When 
it comes to space flight designs, it seems that no two designs are ever alike.  They 
may have very close similarities but they are almost always slight if not major 
changes to design requirements from project to project.  This brings us the need to be 
able to customize our GSE in order to meet the ever-changing needs of our ever-
changing designs.  This brings on the ability to reuse our GSE as we move from one 
project to the next.   

Most GSEs are also interface specific and if an interface changes, this means the 
purchasing of a different type of GSE.  If the GSE is customizable, this would save 
not only money, but space (be it rack or bench space).  

In some cases, a design requirement which requires a modification to the SpaceWire 
standard can’t be tested at board level if the GSE is not customizable. This means that 
the requirement can’t be tested until a later phase of integration where fixing possible 
issues becomes more expensive. An example of customizing GSE is the GSFC 
implementation of SpaceWire time codes and exercising a built-in Bit Error Rate 
(BER) feature. 

2 TVS SPACEWIRE GSE 

The TVS is a custom-designed, fully FPGA-reprogrammable piece of GSE that is 
optimized for verifying digital designs at the board level.  It can implement up to 6 
SpaceWire ports as well as other custom interfaces that use RS422, TTL, LVTTL, and 
I2C.  The PLL provides 3 clock sources up to 200MHz each.  The TVS can be used 
with software applications ranging from directed tests to Labview-like GUI programs.  
The functionality of TVS is modeled with high-fidelity simulation models so that it 
can be used to fully verify the spaceflight design before hardware is even built.  The 
simulation test bench is easily ported over to the lab environment allowing reduced 
schedule times and cost savings in manpower.   
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The TVS GSE is also scalable which allows the use of multiple units as needed to 
cover all DUT interfaces.  Its scalability is due to the fact that it connects to a host PC 
over USB, allowing more than one TVS to be connected to the host PC and controlled 
by the host PC.   

3 TVS FPGA 

The TVS FPGA is a USB-reprogrammable Xilinx Spartan 3.  The gate count, 1500k 
or 4000k, depends on which Opal Kelly board the TVS is configured with.  The 
XEM3010 houses the Spartan 3-1500 while the XEM3050 houses the Spartan 3 - 
4000.  There is also the option of upgrading to a Xilinx Spartan-6 (XC6SLX45) by 
configuring the TVS with the XEM6010 board.  If you wanted to upgrade even more, 
there are two other XEM6010 boards LX45 and LX150 that are available for the TVS 
that also use the USB bus.  The XEM6110 uses PCIe which is faster, but requires the 
host PC to have a PCI board installed that supports PCIe.    

No matter which board the TVS is configured with, the FPGA can be loaded with 
GSFC-developed verification IP Cores such as SpaceWire Nodes and can be used to 
create complex data patterns in real time.  The programmability of the TVS FPGA 
allows users to replace costly GSE equipment and provide the user with full control 
over its behavior allowing unique mission requirements to be tested and verified, thus 
reducing costs.  

4 TVS USAGE 

The TVS has many uses in test and verification from the simplest of designs to the 
more complex.  The TVS is applicable to any industry where electronic designs are 
developed such as space, medical, automotive, or consumer.  In any application, its 
function is to test and verify designs and it can do so in both the simulation 
environment and lab environment.   

Although the TVS is mainly designed for use with digital designs, it also has the 
capability to support analog designs with the addition of some external hardware.  For 
example, an ADC or DAC that supports I2C can be connected to the TVS’s I2C 
signals, allowing the TVS to drive and sample analog signals.   

4.1 TVS IN SIMULATION 

The TVS can be used in the simulation phase, prior to building hardware.  Typically, 
the simulation phase consists of a suite of self-checking and automated tests written in 
C/C++, the TVS simulation model, the device under test (DUT) with its component 
simulation models and FPGA RTL, and the C-VHDL gasket interface which bridges 
the tests to the simulator. 

The tests communicate with a simulation model of the TVS and the verification IP 
cores in the TVS FPGA via the C-VHDL gasket interface to exercise specific 
functions of the DUT.    The TVS thus promotes a board level test bench which 
allows netlist problems to be caught in simulation where it is easier and cheaper to 
address. 
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The diagram below shows the TVS in a typical simulation environment.   The orange 
block represents the test suite.  The TVS simulation model is shown in blue.  It uses a 
gasket interface which is provided as part of the C-VHDL gasket.  The DUT contains 
the FPGA RTL code and component simulation models. 

 

 

 

4.2 TVS IN THE LAB 

Once we have the design fully simulated with all FPGA RTL code coverage having 
reached the desired goal, we can confidently move on to DUT fabrication.  When the 
DUT is fabricated, the same suite of simulation tests is recompiled for use with a real 
TVS to exercise the real DUT.  The advantage of using the same suite of test for the 
lab as we used in simulation is that if a bug arises during lab testing, it can usually be 
recreated in simulation and fixed more easily with full visibility into the entire design.  
Please note that although the advantages of running board level simulations are great, 
some bugs require real time operation to present themselves. 

The diagram below shows the TVS in a typical lab environment.  Notice the high 
degree of similarity to the simulation environment.  The main difference is that the 
GSE and DUT models are replaced with real hardware.  The tests are the same as in 
the simulation environment, and only talk to the GSE.  The abstraction layer is also 
recompiled to talk to APIs instead of the C-VHDL gasket and the TVS verification IP 
cores are targeted to the TVS’s Xilinx Spartan 3 FPGA. 

The fun doesn’t have to end at board level testing.  The TVS can even be used in the 
box level GSE rack to exercise a box’s front panel signals during environmental 
testing.  This allows for more of the SpaceWire network to be exercised. 
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5 TVS COMMERCIALIZATION 

As a tax-funded agency, NASA gives back to the US economy through its technology 
transfer program.  This section discusses the possibility of commercializing the TVS 
concept. 

5.1 POTENTIAL MARKET 

The TVS has gone from an idea to concept to realization and has been used 
successfully on multiple NASA missions.  As mentioned earlier, the fact that it is so 
customizable allows for the TVS to be applicable for not only Space applications but 
for medical, automotive, or consumer industries where electronics designs is 
developed.  The TVS truly is versatile.  

5.1.1 Product Offerings 

The TVS hardware can be sold as a stand-alone GSE that comes with a high-fidelity 
simulation and a test bench environment that provides the portability from simulation 
to lab testing.  TVS FPGA verification IP cores can be developed and sold as add-on 
modules to the TVS unit.  The verification IP cores cater to various industries and 
come with software drivers (DLLs) and User’s Manual documentation.  With certain 
TVS verification IP cores, the TVS could potentially replace far costlier equipment.  It 
is usually possible to replace multiple COTS GSE units with a single TVS unit. 
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5.1.2 Training Classes 

The TVS concept is suggested for advanced designers due to the high level of 
sophistication and customization, so training will be necessary.  However, there are 
quite a few training possibilities for learning that will cater to anyone.  Not everyone 
learns by the same method as others and it is important to offer diverse training 
opportunities such as tutorials, webinars, seminars, on-site training, or a one- on- one 
consultation.   

5.1.3 Usage For Design Verification Services 

Companies that offer design verification services can benefit from making the TVS a 
part of their process.  Efficient users of the TVS can offer their clients reduced costs, 
shorter schedules, and more thorough design verification, an advantage that benefits 
the company and makes it more competitive. 

5.2 NTR SUBMITTED 

A new technology report (NTR) has been submitted for the TVS.  New Technologies 

are defined as any invention, discovery, improvement, or innovation whether or not 

patentable, either conceived or first actually reduced to practice in performance of 

NASA work. This includes, but is not limited to, new processes, machines, 

manufactures, and compositions of matter, and improvements to, or new applications 

of, existing processes, machines, manufactures, and compositions of matter. New 

Technologies also include new computer programs, and improvements to, or new 

applications of, existing computer programs. (1) 

The submitting process for NASA inventions is shown in the diagram below. 

 

5.3 HW/SW AVAILABILITY 

The TVS GSE hardware (HW) is not yet an off-the-shelf product, however NASA can 
license out the design files necessary for fabrication.  The manufacturing expenses are 
estimated at $1k (using the XEM3010).  A reasonable retail price of $5k would yield 
an 80% profit.   

The TVS software (SW) can be made available.  The test bench software should come 
along with the hardware and the FPGA IP cores (VHDL and DLLs) can be 
individually licensed for use. 

For more information on the TVS HW, SW, or both please contact Omar Haddad at 
Omar.A.Haddad@nasa.gov. 

1. Orans R. (2009, April 1.) Technology Reporting. Retrieved August 19, 2011, from 
NASA Technology Transfer System website: https://ntr.ndc.nasa.gov/ 
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ABSTRACT 
The SpaceWire Electronic Ground Support Equipment (EGSE) is a STAR-Dundee 

product [1] designed to simulate and stimulate SpaceWire devices. It provides a 

means of generating user defined packets in pre-defined sequences at specific times 

and data rates. The SpaceWire EGSE is configured using a script that is compiled and 

loaded onto the SpaceWire EGSE unit. Once configured, the EGSE can generate 

complex SpaceWire packet sequences without further interaction from host PC 

software.  

Real-time SpaceWire Electronic Ground Support Equipment can be implemented 

easily with the SpaceWire-EGSE unit, avoiding the need for complex and expensive, 

real-time software development. 

1 INTRODUCTION 
SpaceWire Electronic Ground Support Equipment (EGSE) is needed to support the 

integration and testing of spacecraft that use SpaceWire. The EGSE has to simulate 

instruments and other equipment during integration and test, and has to do this with 

similar if not identical timing. Furthermore the SpaceWire EGSE has to integrate with 

other test equipment, either responding to events or triggering other pieces of 

equipment. Typically SpaceWire EGSE is implemented using a SpaceWire interface 

board in a rack with a host computer which controls the SpaceWire interface, often at 

the same time as controlling other EGSE interfaces. To provide representative timing 

of SpaceWire packets, the software has to operate in real time, which is both costly 

and difficult to develop. Last minute changes are very difficult to implement, 

especially when the software is controlling multiple interfaces. 

What is needed is a unit that will allow arbitrary SpaceWire packets to be transmitted, 

in a predefined sequence, at a specified user data rate. It should initiate the sending of 

a packet sequence on command from the host software, when a particular SpaceWire 

packet is received, or when an external trigger is asserted. It should do this without the 

need for any real time software development. 
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The new STAR-Dundee SpaceWire-EGSE unit is just such a unit. It is provided with 

a special scripting language which allows SpaceWire packets to be defined using easy 

to understand terms. This language also specifies the time sequencing of packets and 

the event or series of events that cause various packet sequences to be sent. The 

information thus provided is compiled and loaded on to the SpaceWire-EGSE 

hardware. Thereafter the only interaction with user real-time software controlling the 

SpaceWire-EGSE and other equipment is through software events that can be asserted 

by the user application or indicated by the SpaceWire-EGSE.  

2 HARDWARE 
The SpaceWire EGSE is configured via a USB connection to the host PC. It has two 

SpaceWire ports from which packets can be generated and received. It has four 

external triggers, three input and one output. It also has a large memory for storing 

packet definitions. 

 

3 SPACEWIRE EGSE SCRIPTING LANGUAGE 
The SpaceWire EGSE is configured using a simple yet powerful scripting language. 

The language can be used to define variables, events, packets, packet generation 

schedules and state machines. 

3.1 PACKET DEFINITION 

Packet definitions can consist of data defined in hexadecimal or decimal bytes, 

variable references, CRC and checksum calculations and EEP and EOP control 

characters. 

Example Description 

packet myPkt 

 hex(0A 0B 0C 0D) 

 eop 

end packet 

Defines a packet named “myPkt” 

consisting of data specified in 

hexadecimal bytes (0A 0B 0C 0D) 

followed by an end of packet marker. 

 

Above is a very basic packet definition. As with much of the SpaceWire EGSE 

language, packets are defined using a header, body and footer. The header consists of 

the “packet” keyword followed by the packet name and indicates the start of a packet 

definition. The packet body defines the packet contents. The packet footer consists of 

the keywords “end packet” and indicates the packet definition end. 
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Example Description 

packet myPkt 

 start(crc8) 

 hex(0A 0B 0C 0D) 

 dec(01 02 03 04) * 2 

 stop(crc8) 

 crc8 

 eop 

end packet 

Defines a similar packet to the previous 

example but contains additional data 

specified in decimal. It also contains a 

CRC calculation and reference.  

 

The start and stop statements in the example above can be used to calculate CRC and 

checksum values for the data between them. The CRC or checksum value can then be 

referenced in the packet definition. 

3.2 VARIABLES 

The SpaceWire EGSE provides variables that are used to define packets with dynamic 

data. Variables have names by which they can be referenced in packet definitions 

along with a type and (optionally) an initial value. Each variable performs a function 

upon its value when read, based upon its type. The variable types available are 

increment (increments variable value by one when read), decrement (decrements 

variable value by one when read), rotate left (performs rotate left bit shift to variable 

value when read), rotate right (performs rotate right bit shift to variable when read) 

and random (assigns a random value to the variable). The example below 

demonstrates the use of a variable to dynamically set the ID of each packet sent. 

Example Description 

variables 

 transactionID inc8 = 0 

end variables 

 

packet myPkt 

 hex(0A 0B 0C 0D) 

 transactionID 

 eop 

end packet 

Defines an increment variable named 

“transactionID” with an initial value of 0.  

 

A packet definition containing a reference 

to the incrementing variable 

“transactionID”. 

3.3 PACKET GENERATION SCHEDULES 

A schedule is used to define a timed sequence of packets for packet generation. The 

schedule references packets defined earlier in the script. Packets can be sent relative 

to the start of the schedule or relative to the previous packet. We can also specify the 

number of times the packet is sent. 
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Example Description 

schedule mySchedule1 

 5ms send myPkt1 * 2 

 10ms send myPkt2 

end schedule 

schedule mySchedule2 

 5ms send myPkt1 

 +10ms send myPkt2 

end schedule 

Schedule named “mySchedule1” sends 

packet “myPkt1” twice, 5ms after the 

schedule starts, and “myPkt2” once 10ms 

after the schedule starts. 

Schedule “mySchedule2” sends 

“myPkt1” 5ms after the schedule starts 

then “myPkt2” 10ms after “myPkt1” is 

sent. 

3.4 STATE MACHINE 

The state machine definition is responsible for control of the EGSE state. The state 

machine consists of state definitions. Each state has an associated schedule which is 

run when the state is entered at the data rate specified. Along with a schedule each 

state contains statements that determine when to change state and when to transition 

from one state to another. 

statemachine 1 

 initial state state1 

  do mySchedule1 @ 20Mbps 

  transition at end of schedule 

  on myTrigIn1 goto state2 

 end state 

 state state2  

  do mySchedule2 @ 50Mbps repeatedly 

  transition at end of packet 

  on myTimer goto state1 

 end state 

end statemachine 

 

The above example is a state machine definition for SpaceWire link 1 of the 

SpaceWire EGSE. Two states are defined named “state1” and “state2”. On entering 

“state1” the schedule named “mySchedule1” is run once at a data rate of 20Mbps. If 

the event named “myTrigIn1” is received then at the end of the current schedule the 

state will change to “state2”. On entering “state2” the schedule named 

“mySchedule2” is run repeatedly at a data rate of 50Mbps. If the event named 

“myTimer” is received then once the current packet is sent the state will change to 

“state1”. 

3.5 EVENTS 

As seen in the state machine definition above, events are used to control the current 

state and therefore the current packet generation schedule. There are pre-defined 

events and user defined events. Predefined events include link started, link errors 

(parity, escape, credit, and disconnect), time-code received, and packet generation 

events. User defined events are timers, counters, software and external triggers. 

229



Example Description 

timers 

 myTimer 10ms start on mySWEvent1 

end timers 

counters 

 myCounter 10 on myTrigIn1 

end counters 

software 

 mySWEvent1 1 

end software 

triggers 

 myTrigIn1 input 1 rising

 output high on myTimer 

end triggers 

 

A 10ms timer that begins when the 

event “mySWEvent1” is received. 

A counter that generates an event 

when the event “myTrigIn1” is 

received 10 times. 

Declaration of a software event. 

Generates “myTrigIn1” event when 

rising signal received on external 

input trigger pin 1. Generates a high 

external output trigger signal when 

“myTimer” event is received.  

 

Timers generate an event when a specified time is reached. The timer starts when the 

associated event is received. A counter has an initial value that is decremented each 

time an associated event is received. When the counter reaches zero it generates an 

event. 

External trigger-in events specify the event to generate when a trigger-in signal is 

received on the associated input pin. The external output trigger generates a signal 

when it receives a specific event. 

Software events permit host PC software to trigger a change in the state machine in 

the SpaceWire-EGSE. They provide a means of interaction with the host PC software. 

An API makes available functions the user can call upon to generate a software event. 

The host software can also be signalled when a specific event occurs or when a 

particular state is entered in the EGSE state machine. 
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The screenshot above is taken from a SpaceWire Link Analyser and shows the EGSE 

generating a sequence of small packets on both SpaceWire links, at the maximum rate 

possible on the link. Note that the link is running at 350MHz and no NULL characters 

are seen in the trace. 

4 CONCLUSION 
This paper has briefly described the SpaceWire EGSE and the scripting language used 

to configure it. The scripting language can quickly be used to configure the 

SpaceWire EGSE unit to mimic the behaviour of the SpaceWire device of interest. 

The SpaceWire EGSEs ability to generate packets independent of host software 

means it can produce very similar if not identical packet generation behaviour to the 

simulated instrument. The external input and output triggers on the SpaceWire EGSE 

provide a means by which to integrate with other test equipment. Such capabilities 

make the SpaceWire EGSE a quick and efficient way of simulating SpaceWire 

devices. Using the SpaceWire EGSE it is possible to develop a complete SpaceWire 

instrument or other device simulation with real-time behaviour, in little more than one 

day. 

5 REFERENCES 
1. STAR-Dundee, http://star-dundee.com/products.php, STAR-Dundee SpaceWire 

Products, STAR-Dundee Website. 
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ABSTRACT 
STAR-Dundee have previously reported on test equipment which is capable of testing 

the Network, Packet, Exchange, Character and parts of the Signal level of the 

SpaceWire standard.  This paper introduces the SpaceWire Physical Layer Tester 

(SPLT), which is a new tool designed to test, validate and verify a SpaceWire system 

across all levels covered by the SpaceWire standard. 

Two SpaceWire ports on the SPLT employ a special LVDS interface which allows the 

transmitted signals to be deliberately and measurably manipulated to test the 

capability of a unit under test (UUT) to receive signals of varying quality.  The SPLT 

SpaceWire drivers offer full, independent control of voltage offset and amplitude for 

data and strobe pairs.  Skew can be introduced both in-pair and between data-strobe 

pairs.  Slew rates can be individually configured on each half of the differential pairs.  

To facilitate acquisition of an eye-diagram, the signal received on the termination 

resistors on these ports is buffered on external connectors to allow easy interfacing to 

an oscilloscope.  This allows a comprehensive suite of tests to be performed through 

the UUT SpaceWire port without the need to open the unit. 

In addition to the LVDS interface, the SPLT also implements many of the capabilities 

of existing STAR-Dundee devices: Link Analyser Mk2, Conformance Tester and 

USB Brick in addition to the packet generator and checker capabilities of the newly 

announced SpaceWire EGSE.  A pair of Gigabit Ethernet ports and a USB 2.0 port in 

addition to an API allow for great flexibility in interfacing the SPLT to existing test 

environments.  The device is rack mountable in a 1U, half width format. 
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1  EXISTING TECHNIQUES FOR TESTING THE PHYSICAL AND SIGNAL LAYER 

1.1 INTRODUCTION 

The SpaceWire Standard is defined across six levels ranging from the Physical level 

up to the Network level.  A successful SpaceWire system must be implemented in a 

way which conforms to the specifications laid out across all of these levels.  A range 

of existing techniques can be implemented to analyse the performance of such a 

system at the physical and signal layer.  A more detailed overview of the devices and 

test techniques discussed in this section can be found in [1]. 

1.2 TIME DOMAIN REFLECTOMETRY 

Time Domain Reflectometry is used to evaluate the performance of connectors, 

differential pair traces on Printed Circuit Boards (PCB), backplanes, cables and any 

other media which is used to transmit SpaceWire LVDS electrical signals.  A pulse is 

transmitted down a SpaceWire differential pair and the analysis of the reflections can 

show up impedance discontinuities or incorrect termination of the line.  An 

appropriate interface to the SpaceWire port is required to inject the test signals and 

measure the responses. 

1.3 EYE PATTERN MEASUREMENT & SPECTRUM ANALYSIS 

Measuring the eye-pattern of a SpaceWire signal using a high speed oscilloscope 

gives insight to the transmitter characteristics of the unit under test.  The signal’s rise 

and fall times and jitter can be observed.  A mask can be applied to the opening of the 

eye for a sustained test period to verify that the signal remains in a valid region.  Eye 

pattern measurement can also be employed to measure Data-Strobe skew 

characteristics by measuring the Data eye pattern when triggering on the Strobe signal 

and vice-versa.  A Spectrum Analyser can be used to display the power spectrum of a 

SpaceWire signal being transmitted from a UUT and analyse parameters such as drift 

and jitter. 

One of the biggest difficulties in performing Spectrum Analysis or Eye Pattern 

measurements on a SpaceWire system is that it requires probes to be fixed to the 

LVDS termination resistors in the receiver.  It is often undesirable or not permitted to 

remove the case of flight equipment and attach probes onto the relevant components.  

A further difficulty is that these tests work best when pseudo-random bit streams 

(PRBS) are being analysed.  It may be difficult to configure a unit under test to 

generate such a condition. 

1.4 BIT ERROR RATE TESTING (BERT) 

BERT systems will typically use a transmitter to generate a PRBS or pre-programmed 

bit sequence for transmission to the UUT.  A receiver in the BERT system will 

compare the received signal to an expected signal and flag any bit-errors that are 

detected.  One difficulty with these systems is that an interface from the 

transmitter/receiver to a SpaceWire port would have to be implemented.  It also 

assumes that the unit under test can conveniently output PRBS test data through a 

loopback mode. 
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2 THE STAR-DUNDEE SPACEWIRE PHYSICAL LAYER TESTER 

2.1 TESTING ACROSS THE SPACEWIRE STANDARD 

STAR-Dundee currently supply a range of test equipment which tests across most, but 

not all levels of the standard.  This is summarised in Figure 1. 

 

Figure 1: Testing, Monitoring and Verifying SpaceWire systems across the SpaceWire standard 
with STAR-Dundee test equipment. 

2.2 OVERVIEW OF THE SPACEWIRE PHYSICAL LAYER TESTER 

The unique feature of the STAR-Dundee SPLT is the capability of manipulating the 

analogue characteristics of the output LVDS signals. This facilitates the analysis of 

what the UUT is capable of successfully receiving.  The severity of skew, slew, 

swing, common-mode and jitter can be controlled to mimic a range of physical media, 

environments and device output characteristics.  The operation and capabilities of 

these special LVDS drivers is explained in Section 4.  The SPLT also features the 

capability to connect a high speed oscilloscope via SMA connectors on the front panel 

in order to observe the received SpaceWire signals.  High speed analogue buffers are 

utilised to buffer the signal close to the termination resistors allowing the SPLT to 

receive and decode the SpaceWire signals whilst they may be simultaneously 

monitored by an oscilloscope. 

The SPLT is a 1U rack mountable ½ width device which interfaces to a host PC 

through either USB 2.0 or one of its 2 Gigabit Ethernet ports.  A Mictor connector 

allows a logic analyser to interface to the device’s inbuilt STAR-Dundee Link 

Analyser Mk2 [2].  An enhanced version of the STAR-Dundee Conformance Tester 

[3] allows advanced conformance testing of the physical layer to be performed. 
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3 PERFORMING TESTS WITH THE SPACEWIRE PHYSICAL LAYER TESTER 

3.1 INTRODUCTION 

A range of tests can be performed with the SPLT operating in different modes. 

3.2 IN-LINE MARGIN ANALYSIS 

The SPLT is connected between two SpaceWire UUTs in the same way a STAR-

Dundee Link Analyser would be connected.  This configuration is shown in Figure 2. 

 

Figure 2: Using the SPLT to perform in-line margin analysis between two devices under test. 

When operating in in-line analysis mode, the two UUTs will communicate as normal, 

sending and receiving data to each other.  The SPLT buffers the incoming signals on 

one SpaceWire port and then drives them out through the analogue LVDS drivers on 

the other SpaceWire port.  The SPLT can then manipulate the SpaceWire signals in 

one, or both, directions to explore the receive margins of either, or both, UUT devices. 

3.3 LOOP-BACK MARGIN ANALYSIS 

In loop-back configuration, the SPLT is connected to a single UUT as shown in 

Figure 3. 

 

Figure 3: Using the SPLT to perform loop-back margin analysis, conformance testing, pattern 
generation & checking on a single UUT.  This setup can also be implemented to use the SPLT as 
a SpaceWire interface to a Host PC. 
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In loop-back analysis, the SPLT receives data from the UUT and loops the data back 

through the same SpaceWire port.  The LVDS transmitters can manipulate the data to 

test the receive margins of the UUT.  The signals received from the UUT are buffered 

by the SPLT and made available for analysis on an oscilloscope.  Loop back 

SpaceWire data is decoded onto the Mictor connector for easy interface to a Logic 

Analyser.  Loop-back analysis requires the UUT to be able to start a SpaceWire link 

and to send and receive SpaceWire commands. 

3.4 CONFORMANCE TESTING 

The SPLT implements an advanced version of the STAR-Dundee Conformance 

Tester with additional tests which take advantage of the analogue LVDS driver 

capabilities of the SPLT.  The test environment is set up in the same configuration as 

Figure 3. 

3.5 PATTERN GENERATION AND CHECKING 

A series of Packets can be pre-programmed into the SPLT for transmission as well as 

a series of expected packets that should be returned by the UUT.  The SPLT can be 

set up to mimic a SpaceWire device that will be interfaced to the UUT.  The test 

packets are transmitted from the SPLT at high speed and the UUT response checked 

against the pre-defined expected response.  Any errors in the received bit-stream will 

then be flagged up by the SPLT. 

3.6 SPACEWIRE INTERFACE WITH RMAP CAPABILITY 

In SpaceWire interface mode, the SPLT is used to send and receive SpaceWire 

packets to a UUT from a PC through either USB 2.0 or Gigabit Ethernet connections.  

In this way, the SPLT works in a similar fashion to the STAR-Dundee SpaceWire 

Brick, but with added capabilities of LVDS margin testing.  An RMAP target 

provides memory space which can be written to or read from by the UUT. 

3.7 DETECTING ERRORS AND DEBUGGING CAPABILITIES OF THE SPLT 

As the output LVDS signals are progressively degraded, bit errors on one, or both of 

the interfaced UUTs become increasingly likely.  SpaceWire bit errors will manifest 

themselves as link disconnects due to detection of parity errors.  Errors which are not 

detected by parity may still be picked up by implemented protocol features such as the 

RMAP cyclic redundancy check (CRC).  The SPLT inbuilt Link Analyser Mk2 could 

then be triggered on detection of an RMAP header which reports a CRC failure. 

The analogue signals received at the inputs of each SpaceWire port are buffered by 

the SPLT.  An oscilloscope can be used to monitor the received data and strobe 

signals from both SpaceWire ports simultaneously.  The SpaceWire data flowing 

through the SPLT SpaceWire ports is decoded by an inbuilt Link Analyser Mk2 and 

the characters are output on a Mictor connector suitable for interfacing to a Logic 

Analyser.  A Host PC can be used to control the inbuilt SPLT Link Analyser Mk2 to 

trigger, store and read out captured data. 
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4 OPERATION OF THE LVDS DRIVERS 
Figure 4 shows the components of the LVDS driver which are employed to 

manipulate the output of the SpaceWire signals. 

 

Figure 4: Operation of the LVDS driver circuitry.  Figure 4a gives a simplified overview of the 
LVDS driver chain.  b shows the operation of the low-pass filter (LPF) component.  c and d 
respectively show the circuitry responsible for controlling the common-mode and swing of the 
LVDS signalling. 

4.1 MANIPULATION OF SKEW AND JITTER USING THE DELAY LINES 

Delay lines on the positive and negative transmission lines allow the measurable 

introduction of in-pair and Data-Strobe skew to a resolution of 10ps.  A SpaceWire 

device should state what its maximum operating frequency is for a given Data-Strobe 

skew.  The SPLT allows this test to be performed directly.  Cables will typically state 

how much skew there is per unit length of cable.  This information can be used to 

simulate different cables of different lengths. 

Jitter can also be introduced into any of the delay lines.  This can be used to simulate a 

device’s stated jitter characteristics as well as deterioration of signal caused by 

electromagnetic interference (EMI). 

4.2 MANIPULATION OF SLEW USING THE LOW PASS FILTERS 

The low pass filters work by switching a combination of 3 capacitors of differing 

capacitance into or out of of the chain.  This allows for eight different levels of slew 

to be introduced to a signal.  Signal slew is typically caused by the capacitive effect of 

b: Low-Pass Filters 

a: Overview c: Common-Mode 

d: Swing 
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the cable down which the signal travels.  This allows the SPLT to simulate different 

cable characteristics such as length and mutual capacitance. 

4.3 CONTROLLING THE SWING AND COMMON-MODE OF THE LVDS SIGNALLING 

Digital to Analogue Converters (DACs) are used to set both the swing and the 

common-mode voltage by controlling reference voltage levels into operational 

amplifiers.  Additional calibration voltages are used to ensure that both positive and 

negative components of the LVDS pair swing by the same magnitude about an equal 

common-mode. 

Modification of the swing of the output signal simulates attenuation of the SpaceWire 

signal as it propagates through pcb traces and cables from transmitter to receiver.  

Attenuation can be simulated for media of differing lengths. 

SpaceWire is not DC balanced and requires adequate common grounding between the 

communicating systems.  Imbalances in ground plane, or power supply voltages 

between units could cause the DC level of the LVDS signalling to drift.  The LVDS 

can test the permitted margins of this drift by manipulating the common-mode voltage 

of the output signal. 

4.4 NO SINGLE POINT OF FAILURE 

The design of the SPLT electronics guarantees that there will be no single point of 

failure on the SPLT that could damage SpaceWire equipment to which it is connected. 

5 MEASURMENTS FROM THE LVDS DRIVERS 
In order to demonstrate the capabilities of the SPLT, the Data and Strobe signals of a 

SpaceWire port were driven with a 25MHz square wave before manipulation by the 

analogue-electronics.  The SpaceWire port was looped back into the analogue 

SpaceWire buffers on the SPLT so that an oscilloscope could be used to analyse the 

outputs.  Screenshots from the oscilloscope measurements are presented in Figure 5 to 

show the discrete sources of signal disruption that the SPLT can introduce.  Figure 5h 

then shows these sources combined to give a typical margin-testing waveform. 

6 CONCLUSION 
The SpaceWire Physical Layer Tester incorporates and builds upon established 

STAR-Dundee test products: the Link Analyser Mk2, the Conformance Tester and 

SpaceWire interface devices.  Whether used with just a host PC, or in conjunction 

with a high speed oscilloscope and logic analyser, the SPLT can be connected in a 

variety of configurations to test SpaceWire systems.  The ability to measurably 

deteriorate the SPLT output LVDS signals and to easily measure the input signals on 

an interfaced oscilloscope allows the SPLT to test, validate and verify SpaceWire 

systems from the physical and signal layer of the SpaceWire standard, right up to any 

protocols which are running on top of the SpaceWire standard. 
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Figure 5: Measuring the different methods of deteriorating the LVDS signals from the SPLT.  In 
these measurements, the Data (top pair) is manipulated with the strobe (bottom pair) untouched.  
Figure 5h omits the Strobe signal and replaces it with the subtraction function Data(+) – Data(-).  
Figure 5g uses infinite persistence to show applied jitter.  Horizontal axis is 10 ns per division and 
vertical axis is 300 mV per division for all measured signals in all figures. 

7 REFERENCES 
1. Agilent Technologies, “Signal Integrity Solutions.  Find Problems Now, Prevent 

Problems Next Time”, 30
th

 April 2010, Agilent Reference: 5988-5405EN. 

2. Pete Scott, Steve Parkes, “SpaceWire Link Analyser Mk2: A New Analysis 

Device for SpaceWire Systems”, International SpaceWire Conference 2010, St 

Petersburg, 22
nd

 – 24
th

 June 2010. 

3. Steve Parkes, Martin Dunstan, “Debugging SpaceWire Devices using the 

Conformance Tester”, International SpaceWire Conference 2007, Dundee, 17
th

 – 

19
th

 June 2010. 

a: Unmodified output signal b: Introduction of slew 

c: Reducing signal swing d: Reducing common mode 

e: 10 ns Data-Strobe skew f: 10 ns in-pair Data skew 

g: 300 ps Data Jitter (persistence) h: Multiple sources of disruption 

239



SYSTEMATIC AND COMPLETE VERIFICATION OF SPACEWIRE BUS WITH 

MODEL CHECKING 

Session: SpaceWire test and verification 

Long Paper 

Zhiping SHI1, Zhiquan DAI1,Yong GUAN1, Minhua WU1, Shengzhen JIN1, Jie ZHANG2, Xiaojuan 
LI1 

1 Beijing Engineering Research Center of High Reliable Embedded System, Captial 
Normal University, Beijing, China 

2College of Information Science & Technology, Beijing University of Chemical 
Technology, Beijing, China 

E-mail: shizhiping@gmail.com, woyun_23@163.com, guanyxxxy@263.net  

ABSTRACT 

The SpaceWire bus is usually used in safety-critical areas like aerospaces and other 
harsh environments. Therefore, it is vital to verify the correctness of SpaceWire 
designs and implementations. In this paper, the model checking method is employed 
to verify the SpaceWire bus system designed by the Beijing Engineering Research 
Center of High Reliable Embedded System of China. The eight modules of the 
SpaceWire Bus are verified and three errors are found. After corrected the errors 
according to the counter examples returned from the result of model checking 
verification, all the properties extracted from the protocol specification are proved 
valid. The results show that model checking is a simple and effective method with 
high level automation for SpaceWire protocol verification. 

1 INTRODUCTION  

The SpaceWire protocol [1] which was developed by the European Space Agency 
(ESA) has been applied to multiple in-orbit space equipments. ESA puts forward the 
protocal in natural language description; and there is not standard SpaceWire 
communications equipment so far. The designs and implementations of different 
developers of the SpaceWire protocol will be different. In the hardware circuit design, 
it is vital important to verify the circuit design satisfies the target specification or not. 

In the hardware circuit design, finite-state machine is often used to show the circuit's 
function and can be well associated with Kripke structure of formal verification model. 
Secondly, in functional verification, finite-state machine only needs to verify its 
timing sequence correctness, don’t care about the specific concept of time, in this way, 
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high-order temporal logic in model checking method can well represent the functional 
properties. Last, there have been relatively mature automated verification tool that can 
help people efficiently finish the completeness verification of design and 
implementation [2-3]. It is very necessary that we use model checking to achieve the 
systematic and complete verification of SpaceWire systems. 

2 VERIFY FLOW 

In this paper, the verification object is the SpaceWire system circuit design 
implemented by the Reliable Embedded Systems Laboratory of the Capital Normal 
University China. The system is composed of the following eight modules: the baud 
rate selection module, the recovery module, the credit module, the time module, the 
faulting module, the control module, the sending module and the receiving module. 
Because the eight modules are functionally independent, the combined model 
checking is adopted to verify the eight modules respectively. The divide and rule 
method avoids the state space explosion problem to which the model checking is 
prone.  

The verification process is as follows. At first, the system design is modelled using 
Kripke structure. Then, we use the branching-temporal logic to describe the properties 
of the protocol specification into the CTL formulas. Finally, a model checking tool, 
SMV, is employed to verify whether the logic formulas of the properties are valid in 
the formal models of the system design. The verification results show whether the 
implementation of the SpaceWire system accords with the protocol specification. The 
verification process is shown in Figure 1. 

   

requirement

formal 

specification

system design

modeling

formalized  
model

model 
checking

true false+counter
-example 

 simulation/
test error locating

 

Figure 1. Formal Verification Process Graph 

The SpaceWire circuit design is described in hardware description language VHDL, 
whereas the SMV system can accept Verilog description language [5] or SMV 
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language. Therefore, before verification, we use the third-party software X-HDL to 
transform the VHDL code into Verilog code. The state transition relations are 
abstracted from the Verilog code, and expressed by Kripke structure. In addition, 
through analyzing the protocol specification, we extract the properties that the system 
should satisfy and formalize the properties in higher-order temporal logic formulas. 
Finally, in order to reduce unnecessary verification cost, some signal variables in the 
design code, such as system reset signal, clock signal, are limited in certain range in 
accordance with the protocol specification. After the property formulas are merged 
into the design code, we use automated model checking tool SMV to carry out the 
verification. 

3 SYSTEM VERIFICATION 

According to protocol specification, we extract a total of fifty-five properties and 
describe them in higher-order temporal logic formulas. The verification shows that the 
seven formulas out of them are invalid. According to the counterexamples given by 
SMV, we check the code and dig out three design errors. Based on the protocol 
specification, we revise the design code, and then all the properties pass the new 
verification. 

As the length is limited, we take a time code register module as an example to 
introduce the model checking process.  

3.1 MODELLING 

According to the SpaceWire protocol specification, the module of the time code 
registers will achieve the function as follows: If the module is reseted, the output data 
are invalid all-zero data, or if the Tick_In signal, which requests sending the time 
code, is valid and the HoldRegister signal, which represents the register pending, is 
invalid, this module will output a valid time code. Design code is shown below. 

 

if (Reset == 1'b1) 
      begin 
         Time_Out <= {6{1'b0}} ;  
         TimeControlFlag_Out <= {2{1'b0}} ;  
      end 
else 
      begin 
         if (Tick_In == 1'b1 & HoldRegister == 1'b0) 
         begin 
            Time_Out <= Time_In ;  
            TimeControlFlag_Out <= TimeControlFlag_In ;  
         end  
      end  
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Figure. 2 Time code register module design code 

According to the design code and combining the method of formal modelling, this 
module is modelled as the state transfer diagram as Figure 3.  

S0

S1

S2 Reset=0
Tick_In=1

HoldRegister=0

Reset=0&(Tick_In=0|
HoldRegister=1)

Reset=0
Tick_In=0|HoldRegister=1

Time_Out= Time_In            
TimeControlFlag_Out= 
TimeControlFlag_In

Time_Out=000000            
TimeControlFlag_Out=00

Time_Out=XXXXXX            
TimeControlFlag_Out=XX

Reset=1

Tick_In=1
HoldRegister=0

Reset=0&(Tick_In=0|
HoldRegister=1)

Tick_In=1
HoldRegister=0

Reset=1 Reset=1

 

Figure 3. The state transfer diagram of the time code register module 

If the system is reset, the module steps into the reset state. In this state, Time_Out, 
which requests the time code been sent out, and TimeControlFlag_Out, which 
requests control flag of the time code, are all assigned to zero. In the state S0, if reset 
signal is invalid, Tick_In is valid, and HoldRegister is invalid, then the system will in 
the state S1. In this state, Time_Out and TimeControlFlag_Out will be valid. If reset 
signal and Tick_In are invalid and HoldRegister is valid, the system will in the state 
S2. In this state, Time_Out and TimeControlFlag_Out will random. Between the state 
S1 and the state S2 can also be interchangeable. 

3.2 ANALYSIS OF PROPERTY VERIFIED   

There are three properties to be verified in this module. Property1: If the system reset, 
the output time code and the control flag of the time code will be set zero. Property2: 
If the system is not in reset state, when Tick_In is valid and HoldRegister is invalid, 
the value of the time code and the control flag of the time code are equal to a moment 
of the corresponding input values. Property3: If the system is not in reset state, when 
Tick_In is invalid and HoldRegister is valid, the output time code and the control flag 
of the time code will be set zero. 

Property1: SPEC AG(Reset -> AF (Time_Out =0 & TimeControlFlag_Out=0 )); 

where, Reset is reset signal in the module; Time_Out is the time code data value that 
is need to be send; TimeControlFlag_Out is the time control code to send.  
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Property2: SPEC AG(Tick_In & ! HoldRegister & !Reset-> AF ( (AX Time_Out[0] <-> 

Time_In[0]) & (AX Time_Out[1] <-> Time_In[1] ) & (AX Time_Out[2] <-> Time_In[2]) & 

(AX Time_Out[3] <-> Time_In[3]) & (AX Time_Out[4] <-> Time_In[4]) & (AX Time_Out[5] 

<-> Time_In[5]) & (AX TimeControlFlag_Out[0] <-> TimeControlFlag_In[0]) & (AX 

TimeControlFlag_Out[1] <-> TimeControlFlag_In[1]))); 

Property3: SPEC AG ((!Tick_In | HoldRegister) & !Reset-> AF (Time_Out =0 & 

TimeControlFlag_Out=0 )); 

Where Tick_In is the request signal that request to send the time code, and 
HoldRegister is the register pending signal, Time_Out is the value of time code to 
send out, and TimeControlFlag_Out is the control flag of the time code to send. 

3.3  VERIFICATION  

The SMV checker gives the result: Property1 and Property2 are true, but Property3 is 
false. The SMV gives the counter-example of Property3 (see Figure 4). 

Through analyzing the counter-example, we find that the value of 
TimeControlFlag_Out is always one and TimeControlFlag_In is always zero from the 
third moment. By analyzing the design code, we find the error occurs  because the 
condition sentence is incomplete. It does not designate the value of the output signal 
when the condition is false. So, we add the situation state assignment which is 
equivalent to the output signal of the reset, the revamped code is shown in Figure 5. 

After modifying the design code, we verified the time code register module again, and 
the results show the three properties are true as in Figure6. 
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Figure 4. The counter-example of Property3 

 

Figure 5. Design code modification of the time code register module 

 

Figure 6. Verification results after modifying the design code 

3.4 ERRORS FOUND AND SOLUTION 

Errors have been found in three modules: the time code register sub-module,the send 
register sub-module in the sending module, and the faulting module. 

In the time code register sub-module of the sending module, we find a property shown 
false. Through analying the design code and the counter-example, the error owes  the 

if (Reset == 1'b1) 
      begin 
         Time_Out <= {6{1'b0}} ;  
         TimeControlFlag_Out <= {2{1'b0}} ;  
      end 
else 
      begin 
         if (Tick_In == 1'b1 & HoldRegister == 1'b0) 
         begin 
            Time_Out <= Time_In ;  
            TimeControlFlag_Out <= TimeControlFlag_In ;  
         end  

else 
begin 

           Time_Out <= {6{1'b0}} ;  
           TimeControlFlag_Out <= {2{1'b0}} ;  
       end 

   end  
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incomplete condition sentence. In the above example, we have illustrated the wrong 
reason and solution. 

In the send register sub-module of the sending module, when it sends time code 
packet, we verify whether the data-control flag is  consistent the protocol 
specification. The verification results of the two property formulas don’t pass. By 
analyzing the counterexamples and the design code, we find the data-control flag of 
time-code packet is set to zero, inconsistent with the requirements in the protocol 
specification. In the original design, we modified the data-control flag setting based 
on the protocol specification, then the two property formulas pass verification.. 

In the faulting module, the generated errors have responding priority.the parity error, 
the escape error, the disconnect error, the credit error and the character sequence error, 
these five kinds of errors have increasing priorities in order. The 4 out of 7  
properties of the faulting module failed to pass verification, because when both the 
high priority and the low priority error processing requests occur, the low priority 
error processing requests will be shielded by the high priority ones. Thus, it is 
possible that the high priority requests continuously come before the low priority 
errors got response, then low-priority requests would be starved to death. In order to 
prevent the low priority error processing requests from starving to death because the 
errors always fail to get response. For instance, we can  count response times of 
diffident priority errors, if the response times of high priority errors have reached the 
configured maximum number of response times, the error priority will lower a level. 
So, the low-priority errors will not starve to death. 

3.5 VERIFICATION RESULTS 

We extract fifty-five properties totally from the eight modules, and most of them pass 
verification. There are seven properties failed to verify in the faulting module and two 
sub-modules of the sending module. As shown in table 1. 

Table1 Verification Results of SpaceWire 

Module name CTL formulas True  False 
Baud rate selection module 3 3 0 
Recovery module 3 3 0 
Credit module 3 3 0 
Time module 4 4 0 
Faulting module 7 3 4 
Control module 22 22 0 
Sending module 5 3 3 
Receiving module 8 8 0 

For invalid properties, SMV put forwards corresponding counterexamples that cause 
properties invalid. Based on the counterexamples for the checked properties, we 
found the design errors in the design code after analyze the protocol specification and 
design code. Finally, we modify and improve the SpaceWire system design, then the 
property which prior failed to verify  pass the verification. 
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4  CONCLUSIONS 

We use the model checking method to verify the design of SpaceWire bus system 
implemented by Capital Normal University China. In order to avoid states explosion 
problems, this paper adopts divide and rule methodology to independently verify the 
eight modules. We abstract and verify fifty-five properties,  out of which seven 
properties failed to verification . The design flaw are found and revised according to 
the counterexamples that SMV system given. After revised, the seven properties pass 
verification. The SpaceWire system has higher reliability after verified and revised. 

Model checking is a simple and effective method of formal verification with high 
level automation, and is a feasible protocol verification method. 
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ABSTRACT 
SpaceWire is going to be adopted to some Japanese satellite missions, and the 

development of SpaceWire devices of satellites is increased. And, the support devices 

of the development such as a protocol converter to communicate between a general 

computer and SpaceWire devices and a debug tool for SpaceWire links also become 

important in laboratory experiment. Thus, we are developing the SpaceWire 

communication tester named SpaceWire Test Module (STM) as a part of the support 

devices. STM is a SpaceWire communication analysis and debug tool which has four 

function modules, Statistics Counters, User-defined Function (Analyser), Signalling 

Rate Counters, and Self-checking Function. We would like to emphasize that STM 

can be introduced to one’s laboratory at low cost and customizable for any one’s 

purpose because the FPGA logic and the application software will be opened. 

1 INTRODUCTION 
In Japan, SpaceWire is adopted to future scientific satellite missions, for example, 

BepiColombo/MMO, SPRINT (Small space science Platform for Rapid Investigation 

and Test) series, and ASTRO-H. The demonstration of SpaceWire technologies has 

already been performed by SDS-I/SWIM launched in 2009, and the opportunity of 

developing instruments with SpaceWire interfaces will be increased in small/large 

satellite missions and also in balloon-borne experiments. In addition, SpaceWire IP 

and RMAP Target IP distributed at Shimafuji site and SpaceWire/RMAP Library 

released via SpaceWire Users Group Japan encourage one to use SpaceWire in 

laboratory experiments. Therefore, we have developed a low-cost and user-

customizable SpaceWire communication tester named SpaceWire Test Module 

(STM) for laboratory use. We have fabricated the board and designed a FPGA logic 

using SpaceWire IP described above, and developed the application software. These 

products are also open. This paper presents a hardware, FPGA logic, and application 

software of STM. 
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2 HARDWARE AND THE SETUP 
STM has FPGA, three SpaceWire ports, RS-232C port, and two for input and two 

for output LEMO ports (LVTTL level) as shown in Figure 1. FPGA is Altera Cyclone 

III. SpaceWire0 is RJ45 connector and SpaceWire1 and 2 are D-sub 9 pin connectors. 

The clock of SpaceWire reciever is 175MHz. RS-232C port is to communicate a 

computer. The baud rate of RS-232C is 115.2 kbps. 

Figure 2 shows the hardware set-up of STM. STM is placed between two pieces of 

SpaceWire devices to SpaceWire1 and SpaceWire2 in Figure 1. STM is controlled by 

a Linux computer through RS-232C. STM User may use a Serial-USB convertor 

because a laptop computer usually has no serial port.  

 

Figure 1: Outside of STM 

 

Figure 2: Hardware Set-up 

3 WHAT STM MONITORS 
Figure 3 shows a functional block diagram of the STM FPGA. There are four main 

function modules, “Signalling Rate Counters”, “Statistics Counters”, “User-defined 

Functions”, and “Self-checking Function”. SpaceWire link interfaces in STM are 

made by utilizing open SpaceWire IP distributed by SpaceWire User Group Japan.  
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Figure 3: Functional Block Diagram of the FPGA 

3.1 SIGNALLING RATE COUNTERS  

Signaling Rate Counters measures transmission speeds of bidirectional SpaceWire 

links. This module counts the rising-edge of receiver clocks recovered by receivers 

connected to each SpaceWire port. The measurements are recorded on FPGA registers 

and updated per 0.1 second. 

3.2 STATISTICS COUNTERS 

As described in ECSS-E-ST-5012C, receivers of the SpaceWire IP recognize 

SpaceWire control characters and control codes, and the detection signals such as 

gotNull, gotFCT, gotN-Char, GotTime-Code are set. RxErr (disconnect, parity, and 

escape error), credit error, and character sequencer error are also detected in the 

receiver modules. Statistics Counters counts these flags and records the statistics 

(cumulative total value or the rate per a second) on the registers.  

3.3 USER-DEFINED FUNCTION (ANALYSER) 

 User-defined Function is provided to STM users as an extra room to implement 

advanced features for any purpose. Our sample logic will offer advanced features to 

capture a series of SpaceWire packets triggered by specified SpaceWire characters, 

codes, or errors. 

3.4 SELF-CHECKING FUNCTION 

 Self-checking Function works as a dummy SpaceWire device to debug Statistics 

Counters and Analyser. As shown in figure 3, the arbitrary patterns including invalid 
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SpaceWire packets set by a computer through the RS-232C are sent to both 

SpaceWire1 and 2, and then the other modules captures those patterns. 

4 STM SOFTWARE 
STM software is a multi-platform and user-friendly graphical interface software 

designed with C++ and cross-platform application and UI frame work Qt. STM is 

controlled by the software. The software reads FPGA registers that store the data from 

Signaling Rate Counters, Statistics Counters, and Analyser modules per a second, and 

then it shows all data numerically and plots the data from Statistics Counters and 

Signalling Rate Counters on the time series graph. The log files for each functional 

module and each link are generated automatically. It is also possible to plot the past 

data. 

 

Figure 4: GUI window of STM software 

5 STATUS OF DEVELOPMENT 
The status of the development of STM is under the verification of FPGA logic and 

the software together. The verification of Signalling Rate Counters for 24 hours was 

conducted using two SpaceWire devices. This verification was repeated enough to say 

that Signalling Rate Counters is able to continue working right and long enough. The 

verification of Statistics Counters and Analyser that Self-checking Function sends a 

large variety of the arbitrary SpaceWire packets as I mentioned in section 3.4 will be 

conducted in near future. 

6 CONCLUSION 
We are developing SpaceWire Test Module (STM) as a low-cost and customizable 

SpaceWire communication tester for the development of SpaceWire devices. STM 

has four function modules, “Statistics Counters; User-defined Function (Analyser); 

Signalling Rate Counters; and Self-checking Function”. These function modules 

provide us the information of SpaceWire links. We are in the stage of the verification, 

and the verification for Signalling Rate Counters has done. After the verification for 

the rest function modules has done, we are going to deliver STM and open the source 

codes through SpaceWire User Group Japan. Then, STM users are able to modify the 

source codes as the users like. 
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1 ABSTRACT 
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Spacecraft uni ts ar e t ypically composed of a s et of  P rinted Circuit B oards ( PCBs) 
which are connected together within the unit via a backplane PCB.  Each of the PCBs 
incorporates a subset of  the unit’s functionality.  As the semiconductor technologies 
have achieved higher and higher levels of integration the functional complexity of the 
PCBs has i ncreased and t his i n t urn has l ead to i ncreasing the performance 
requirements on the test environment, including the test software. 

From t he A ssembly Integration a nd T est ( AIT) vi ew poi nt t his m odular uni t 
construction is particularly attractive since the functions can be verified individually 
and t hen i ntegrated, so t hat a  complex uni t c an be bui lt f rom know n w orking s ub-
functions. H owever t raditionally t he num ber and t ypes of  backplane i nterfaces i s 
many and varied and this introduces a significant level of additional complexity to the 
integration and test activities. 

A SpaceWire1 Active Backplane2 is one solution, providing the possibility of module 
emulation and packet monitoring to permit functional verification with high visibility 
of the data traffic between PCBs. 

2 BACKPLANE BASED SPACECRAFT UNITS 
Figure 1 shows a t ypical spacecraft uni t, which consists of a set of PCBs (Modules) 
that slide into a card frame and mate with a backplane PCB (highlighted in green). 

The a dvantage of  t his modular uni t de sign i s that an individual Module c an b e 
removed or replaced without t he ne ed t o di smantle t he c omplete uni t. From t he 
Assembly Integration and Test (AIT) view point this type of modular construction is 
also attractive since the Modules can be tested individually and then integrated so that 
a unit with a high functional complexity can be built from simpler sub-functions that 
are easier to debug individually. 

The backplane is a key PCB since it carries the communication signal and power lines 
to each M odule. Figure 2 shows an  ex ample unit that has be en de signed f or 
“Spacecraft A” and uses a s et of  Modules that are powered from the backplane and 
interconnect with a mix of discrete control and monitoring signals. 

254

mailto:peter.worsfold@sea.co.uk


 

Figure 1: A typical Spacecraft unit consists of a box containing PCBs that mate with a backplane 
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Figure 2: In a typical unit the backplane routes 
a mix of signal types that use different protocols 
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Figure 3: An alternative SpW based backplane 
approach that simplifies AIT 

3 IMPACT ON ASSEMBLY, INTEGRATION AND TEST 
The ba ckplane i nterfaces i n c urrent uni t de signs are t ypically chos en to interface 
directly between the varieties of di fferent semiconductor device t ypes u sed on each 
Module, for example t hese i nterfaces m ay be simple s erial interface bus ses, 
multiplexer a ddress li nes, pulses or  clocks as  w ell as  discrete bi-level status and 
control s ignals.  T hese interfaces are like ly to  use di fferent el ectrical l evels and  
information e xchange pr otocols.  W ithin F igure 2 the di fferent backplane interface 
types are represented by different coloured links between the set of modules. During 
the AIT activity, the v ariety of  electrical i nterfaces m akes testing th e modul es 
individually m uch m ore di fficult s ince the  te st e quipment mus t r eproduce al l t he 
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required interface types so that the boards are stimulated in an electrical environment 
that i s r epresentative of  flight. Furthermore t hese i nterfaces a re l ikely t o change for 
the next mission dependant on t he mix of  device technologies used and the varying 
performance r equirements f or the di fferent a pplication, t hus new A IT Electrical 
Ground Support Equipment (EGSE) must be designed. 

A s olution i s t o c hange all t he ba ckplane communications interfaces t o SpW, as 
shown i n F igure 3.  T his c hange i n de sign a pproach adds com plexity at t he early 
design s tages and at the PCB component level, however there are major advantages 
during the later AIT activities since now the module test environment needs only to 
support one  ba ckplane communication standard and i n m ost c ases t he r equired test 
equipment can be bought off the shelf from suppliers3,4,5 complete with configuration, 
test a nd m onitoring s oftware t ools. When a  uni t i s r equired f or t he ne xt generation 
Spacecraft, Figure 4, then the existing unit can be expanded if required by extending 
the SpW network to support new Modules without impacting on the inherited module 
hardware designs, and a high proportion of the EGSE can be re-used. 

Though changing the backplane interfaces to just SpW links and power connections 
will c ater f or th e ma jority of  the  P CB modul e ne eds, it is  a nticipated that the  
backplane c onnector interface may also need to r oute a  limite d number of  di screte 
signals (Figure 5).  These extra signal paths could be, for example, for timing signals, 
FDIR status and control signals, backplane slot address codes, power status and reset 
signals etc. that cannot be easily carried via the SpW communication channel without 
a di sproportionate i ncrease i n system c omplexity.  M inimisation of  t he num ber, 
variety and com plexity of t hese extra i nterface t ypes is c learly an impor tant design 
aim6. 
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Figure 4: Spacecraft B can re-use Spacecraft A modules as well as 
their associated AIT equipment, the SpW network can be expanded 

to support the additional interface functions 
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Figure 5: A SpW backplane 
offers a common backplane 

interface to modules 

4 MODULE EMULATION AND UNIT TEST 
A key advantage of the SpW backplane during AIT activities is that any missing PCB 
module (or modules) can be emulated by EGSE that is connected to a spare backplane 
or specifically provided SpW EGSE port (Figure 6).  E ven if a module is present in 
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the uni t, the network addressing can usually be reconfigured to permit emulation of  
that m odule t o de bug t he uni t ha rdware a nd s oftware f unctions via a  S pW por t 
dedicated to AIT EGSE.  T his E GSE por t c an a lso permit network pa ckets t o be  
observed b y pa ssing t he pa ckets t o t he E GSE a nd ba ck i nto t he s ystem.  F or t ime 
critical cases where packet l atency i s an issue “packet sniffing” can be achieved b y 
using an extender card, with the SpW signals routed to the backplane from the module 
as well as to the SpW test equipment. 
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Figure 6: Potential unit test setup during Assembly Integration and Test (AIT) 
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ABSTRACT 
The Aeroflex Gaisler Ethernet to SpaceWire bridge [1] facilitates rapid development 
and testing of SpaceWire equipment by providing bridging between three SpaceWire 
links and one 10/100 Mbit/s Ethernet link. In addition to the three physical SpaceWire 
links six virtual links are interfaced through TCP/IP sockets over the Ethernet link.  

This product has been available since 2006 w ith 100 Mbit/s SpaceWire links and 25 
Mbit/s a ggregate e ffective t hroughput on the E thernet link. T o s upport f uture 
applications r equiring higher ba ndwidth an d other i nterfaces ne w v ersions o f t he 
bridge are under development which will provide up to 500 M bit/s over the Ethernet 
link. This paper presents the technical details o f the current device and the road-plan 
for future versions. 

1 INTRODUCTION 
The E thernet to S paceWire b ridge pr ovides b ridging b etween t hree 100 M bit/s 
SpaceWire links and one 10/100 Mbit/s Ethernet link. The Ethernet communication is 
handled by six virtual links interfaced t hrough T CP/IP. T his a llows a  de veloper t o 
generate test data on a workstation, send it over TCP/IP and forwarded by the GRESB 
to the appropriate SpaceWire or Ethernet destination. 

The link speeds on both the SpaceWire and Ethernet links do not support the highest 
speeds available on the respective network and the bridge might thus not be suitable 
for all applications.  

Several other interfaces such as CAN 2.0B, CCSDS/ECSS TM/TC MIL-STD-1553B 
and SPI are often used in space applications. The intention is therefore to add one or 
more of these interfaces to the bridge making it more versatile.  

This paper begins with a detailed presentation o f the current features of the core and 
their technical details followed by how speed and functionality will be i mproved in 
future versions. Lastly the introduction of additional interfaces will be discussed. 
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2 CURRENT FEATURES 
The three SpaceWire links provided by the bridge support up to 100 M bit/s and are 
addressed by a S pW address. In add ition to this there are s ix virtual links interfaced 
through TCP/IP sockets over the Ethernet link which are also addressed with a SpW 
address. 

All ni ne l inks can b e co nfigured in a  r outing t able w hich a llows a de veloper t o 
generate test data on a workstation, send it over TCP/IP and forwarded by the GRESB 
to the appr opriate SpaceWire o r Ethernet destination. The routing table a nd TCP/IP 
sockets ar e i mplemented in software us ing uC linux ( linux-2.0.x). T his o lder ke rnel 
was chosen because it introduces less load on the processor thus allowing for higher 
throughput on the TCP/IP links.  

The aggregate throughput on the Ethernet link is up to 50 M bit/s (full-duplex) being 
one order of magnitude lower than what is (ideally) available full-duplex on the three 
SpaceWire links (456 Mbit/s). This is still very useful in a lot of applications but not 
in maximum throughput testing. 

The hardware is implemented on a X ilinx Spartan 3  FPGA w hich limits area a nd 
frequency r equiring s uboptimal c onfigurations o f b oth C PU a nd E thernet c ore b ut 
makes it a cost effective solution. 

The bridge supports Internet tunneling without the need for a workstation or PC to be 
connected t o the uni t ( unlike other s olutions on t he market). Tunneling allows 
SpaceWire based equipment and satellites to be integrated at multiple remote sites and 
be interconnected through SpaceWire networks. 

Configuration o f the routing table, SpaceWire links and the Ethernet connection can 
be do ne t hrough a  w eb interface pr ovided by a  webserver r unning o n t he bridge's 
Linux ke rnel. I t also shows s tatus such a s pa cket/data counters and SpaceWire link 
status. C onfiguration c an a dditionally be do ne t hrough the T CP/IP s ockets us ing a  
custom protocol.  

The bridge a lso fully supports t he G RMON s oftware de bugger t ool w hich allows 
remote upl oad a nd de bugging o f s oftware o n SPARC based pr ocessors s uch a s 
LEON2/LEON3/LEON4 through the use of RMAP. Any link on the bridge and any 
SpaceWire de stination addr ess ca n be acce ssed by s pecifying command line 
parameters. O nce a s ession started it w ill r un t ransparently w ith no further 
configuration needed. 

 

Figure: First generation of GRESB 
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3 IMPROVING PERFORMANCE 
The current version of the GRESB has a c ompetitive set o f functions w ith t he main 
limitation being t hroughput. This w ill be addressed by  new ve rsions o f t he de vice 
planned for the near future. To achieve higher bandwidth several steps are performed.  

For the first new version a new FPGA is chosen enabling higher frequency and larger 
caches for the LEON3 processor, faster SpaceWire links and a faster Ethernet device. 
The be nefit o f do ing only t hese c hanges is t hat existing IP c ores c an be  u sed and 
software does not need to be modified. Thus a s ignificant performance improvement 
will be a chieved w ith little e ffort. T he intention is t o us e a  X ilinx Spartan 6 FPGA 
which in addition to a higher frequency will fit a LEON3 with larger caches, a Gigabit 
Ethernet device and 200 Mbit/s GRSPW2 SpaceWire links.  

The t otal full-duplex S paceWire t hroughput w ill n ow b e 912 M bit/s but t he main 
bottleneck will still be the TCP/IP connections. Although the device now contains a  
Gigabit E thernet de vice t he T CP/IP co nnections w ill s till be in software an d thus 
processor l imited. T he new E thernet co re co ntains pe rformance improving features 
such as scatter-gather DMA and checksum offloading but the full-duplex throughput 
will pr obably not be  more than 80 Mbit/s. T rial r uns s how that the f requency 
improvement be tween S partan3 a nd 6 for L eon3 s ystems is 10 -20% a nd t he t otal 
processor performance increase (taking into account caches etc.) can be up to 30%.  

The second step results in a much bigger leap forward in terms of both functionality 
and performance. T he s oftware w ill mostly be kept a s i s w ith t he w ebserver a nd 
TCP/IP links. But in addition to this there will be one channel available for Ethernet 
communication us ing an UDP based protocol handled completely in hardware. This 
will a llow for a  t hroughput up to 500 M bit/s which is now in the s ame o rder o f 
magnitude as the upgraded SpaceWire links.  

The SpaceWire links will also be replaced with a r outer core handling all SpaceWire 
routing in hardware further o ffloading software. Forwarding of TCP/IP packets w ill 
still b e h andled by s oftware w hich needs t o h old a  r outing t able for t he virtual 
channels. T here w ill s till be a large ga in in pe rformance s ince a ny S paceWire t o 
SpaceWire communication will not be seen by the processor and high bandwidth data 
from the host can now be transferred using the UDP based hardware protocol. 

4 ADDITION OF NEW INTERFACES 
Due to customer requests several custom made bridges have already been deployed to 
customers with a C AN 2.0B interface. There has been a de mand for other interfaces 
as well such as  CCSDS/ECSS TM/TC, MIL-STD-1553B and SPI.  

Due to area limitations the versions previously shipped needed removal of other cores 
in the configuration to fit the CAN 2.0B core. With the change to the larger Spartan6 
device it w ill now be po ssible t o f it al l t he interfaces w ithout the r emoval o f an y 
present ones. The new interfaces will be accessed from the TCP/IP links in the same 
way a s for Ethernet t o SpaceWire co mmunication. E ach interface w ill have its 
dedicated TCP/IP connection thus leaving the routing table unmodified. 
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A possibility is also to increase the number of SpaceWire ports. There has not been a 
specific demand but probably even up to 8 ports could be useful. This combined with 
the other new interfaces requires a new box to be used as well. 

 

Figure: Second generation GRESB block diagram 

5 CONCLUSION 
The E thernet t o S paceWire Bridge provides a versatile a nd easy t o us e uni t for 
SpaceWire t estdata ge neration on t ypical host c omputers. W ith t he upgr ade t o ne xt 
generation it w ill a lso be a high performance de vice w ith t he po ssibility t o achieve 
maximum S paceWire t hroughput as  w ell as e xtending the co ncept w ith add itional 
interface types. 
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ABSTRACT 
SEA has performed two activities to assess the practicality of providing a wireless 

bridge to interface to SpaceWire. The first conducted experiments interfaced 

IEEE.802.11 based protocols with SpaceWire via Ethernet, then a practical test of 

Ultra Wideband USB. The second assessed the feasibility of combining wireless data 

and power transmission to minimise physical interaction during system Assembly 

Integration and Verification (AIV), for example when Planetary Protection (PP) 

requires aseptic assembly. 

A number of cases can be considered for making use of Commercial Off The Shelf 

wireless communications to a SpaceWire network, e.g. to reduce harnessing and 

connector make/break during AIV, for communication with the passenger satellite 

during launch and immediately post-separation and even to provide communications 

links for localised formation flying. The potential merits of these use cases and the 

maturity of the technology to address these markets is considered. 

Implications for how a SpaceWire architecture can best interface to a wireless bridge 

and the measured performance data rates are reported. In particular the data rates 

achieved are much lower than those claimed by manufacturers and mitigating steps 

must be taken if acceptable data rates are to be achieved. 

The feasibility study for the development of contactless telemetry exchange & power 

supply between a spacecraft under test and its Electrical Ground Support Equipment 

is also reported. The particular case for which PP and cleanliness requirements will 

require aseptic assembly is considered. 
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ABSTRACT 

As the factual standard for the Intelligent Space Bus of new generation, SpaceWire exhibits 
enormous advantage in transmission speed, structural expansibility, systematic fault-tolerance, etc, 
which make SpaceWire outperform traditional bus techniques, eg. the CAN Bus. Therefore, 
SpaceWire has been widely applied to onboard spacecrafts. The fault-tolerance of SpaceWire is 
the key factor to implement the high-reliability design for the control and load system of 
spacecrafts. However, there are many limitations to verify the effectiveness of fault-tolerance 
using traditional test methods. In this paper, the fault-tolerance of SpaceWire is firstly studied, and 
then the stochastic Petri nets is used to model SpaceWire in formal way, finally a generalized 
stochastic Petri nets model is established. According to the computational analysis on the tool kits, 
meanwhile based on the verification on the utility of the fault-tolerance of SpaceWire under the 
failure modes of spacecrafts, this paper can provide technical support for the design of the control 
and load system of typical spacecrafts. 

 
Key Words: SpaceWire bus; Fault tolerance; Stochastic Petri net; 
 

1. Introduction 
As the satellite and deep space exploration technology is developing gradually, the 

requirements of the data bus is becoming more and more stringent. A general-purpose space data 
bus which is high-speed, scalable, low-power, low-cost is needed urgently to meet the data 
processing requirements. SpaceWire is proposed by ESA in order to solve the on-board data 
processing issues. SpaceWire which can build modularization and reconfigurable adaptive 
systems has been applied in the Mars Express, Smart-1 and other space missions successfully. 

In-depth analysis of the protocol is an important application of SpaceWire bus. The protocol 
analysis by the formal technologies has become an important technical means, which attaches 
great attentions to research in this area in many countries, such as the UK's National Physical 
Council (NPL), the French National Communications Research Centre, German National 
Communications (GMD) and U.S. National Research Council standardization Bureau. 

Finite state machine is the most commonly used protocol formal description techniques, 
usually using State Transition Graphs to represent. Petri Nets (PN) has been widely used in the 
communications field. Petri Nets can clearly express the communication between two processes. 
By adding some special models, Petri Nets have a variety of extensions, including Stochastic Petri 
Net (SPN), Colored Petri Net (CPN) and Time Petri Net (TPN), etc. 

263

mailto:myhello@126.com


2. The Stochastic Petri net Model of SpaceWire 
The working process of SpaceWire is as follows: when the system electrification is reset, the 

system enters the ErrorReset state, simultaneously the sender and receiver enter the reset state. 
And then, the receiver is enabled, and is started to check data flow. After waiting for a sufficient 
preparing time, the system enters the Started state. And then, the sender sends a NULL byte, and 
the receiver continuously checks the NULL byte. When the receiver receives the NULL byte, it 
enters the Connecting state, where the SpaceWire controller starts to send the FCT and NULL 
byte. When the receiver receives the FCT, it transfers to the Run state. If the receiver fails to 
receive the FCT within a given period, it enters the ErrorReset state immediately. In the Run state, 
the receiver starts and the sender sends the data such as Time-Code, FCT, N-Chars, and NULL, 
etc. During the working process, if any mistake occurs in the connection, the system enters the 
ErrorReset state immediately.   

SpaceWire uses a peer-to-peer full-duplex protocol, therefore both the sender and receiver 
have the sending and receiving functionality. The Petri net model for the working flow is shown 
as fig.1. The initiation of the Petri net is marked as M0 that is placed at P1 (the sender is in 
ErrorReset state) and P6 (the receiver is in ErrorReset state).The definition of the symbols in Fig.1 
is shown in Tab.1 and Tab.2.  

 
Fig.1 The Petri net model for SpaceWire 

 
Table.1 The definition of Place 

Place Definition 

P1 sender ErrorReset 

P2 sender ErrorWait 

P3 sender Ready 

P4 sender Started 

P5 sender Connecting 
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P6 receiver ErrorReset 

P7 receiver ErrorWait 

P8 receiver Ready 

P9 receiver Started 

P10 receiver Connecting 

 
Table.2 The definition of transition 

Transition Definition 

T1 sender 6.4us delay 

T2 sender 12.8us delay 

T3 sender LinkEnabled signal valid 
T4 sender sends NULL signal 

T5 sender creates GotNull signal 

T6 sender sends data 

T7 link problem in sender Waiting state 

T8 link problem in sender Preparing state 

T9 link problem in sender Starting state 

T10 sender overtime or link problem 

T11 receiver 6.4us delay 
T12 receiver 12.8us delay 

T13 receiver LinkEnabled signal valid 

T14 signal receiver creates GotNull signal 

T15 receiver sends NULL 

T16 receiver sends data 

T17 link problem in receiver Waiting state 
T18 link problem in receiver Preparing state

T19 link problem in receiver Starting state 

T20 receiver overtime or link problem 

3. Verification of the Stochastic Petri net Model of SpaceWire 
The verification on the SpaceWire protocol is based on the analysis on the Petri net model. 

From the perspective of Network theory, a network mainly contains the key properties such as 
boundedness, activity, reachability, and invariability. 

Reachability means all the states in the Petri net model are reachable. The reachability 
analysis is used to check if all the states and their expected behavior meet the requirement of the 
protocol. Usually, the behavior includes deadlock, unexpected sending/receiving, transition ability 
and the boundedness of the number of token. The SpaceWire fault mechanism can verify through 
the Petri network state equation which can analyze state under specific transition. 

3.1 The Analysis Based on Reachability Graph 
The reachability graph is an important Petri net based analysis technology. The reachability 

analysis starts from an initial global marker, and creates the branches based on every transition. 
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By this analysis, we obtain the reachability graph and state space analysis on Petri net shown in 
Fig.2 and Fig.3.  

 
Fig.2 The reachability graph of Petri net model. 

 

Fig.3 The state space analysis on Petri net model. 
 

(1) Boundedness. The number of token in reachability tree is limited within two, therefore the 
protocol is bounded. 

(2)Activity. Every transition is activated at least once, and therefore there is not the transition 
that is not active. In the reachability tree, every marker owns its predecessor that can be activated. 

For a reachable set ，every marker )( 0MR 'M has a transition rout from root  to 0M 'M , 

namely ββ [: 0M∃ > 'M . Based on the definition of activity, we know the network is active, 

and the deadlock never occurs. 
(3) Reachability and Integrity: There is not redundant cycle in the reachable tree, and 

therefore the overall initialized protocol of communication is reachable. 

3.2 The Specified State Analysis on SpaceWire 
Based on Fig.1 and the Petri net theory, we can obtain the correlation matrix C of the Petri 

net. The matrix element is  

),(),(),( jiijji TPWPTWTPC −=  
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Based on the system state formula CUMM k += 0 of Petri net (M0is initial state, and U is 

corresponding transition series), we obtain the conclusion: 
(1) All marked state reached by the dynamic execution of the model has activated transition 

and their predecessors. This means starting from the initial state M0（1，0，0，0，0，1，0，0，
0，0）, role in the activation sequence δ, the model can return its initial state. Therefore, the 
protocol is reachable. 

(2)If there occurs problem at any working state, such as link problem and overtime problem, 
the model can always return initial state. Therefore, the protocol has fault tolerance ability. For 
instance, in state M4（0，1，0，0，0，0，1，0，0，0）, there is link problem, namely the transition 
T9 occurs, based on state formula we can get the predecessor of M4 is M0（1，0，0，0，0，1，
0，0，0，0）, which shows the system returns to initial state. 

4. Conclusion 
In this paper, the key properties of SpaceWire Bus protocol and stochastic Petri net are 

primarily studied. Aiming at the drawback of the traditional analysis on SpaceWire Bus protocol, 
we build a formal model for the running process of this protocol using stochastic Petri net. The 
model is then simulated with the Petri net analysis tool ‘Pipe’, and a reachability tree is obtained. 
Finally, by analyzing the reachability tree, the properties of the model are verified so that the fault 
tolerance mechanism of SpaceWire Bus protocol is confirmed correctly.  

Stochastic Petri net shows a big advantage on analyzing SpaceWire Bus protocol, but it can’t 
describe the protocol sufficiently and consequently is lack of stable simulation accuracy. 
Therefore, we will focus on these two problems in the future study. 
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ABSTRACT 
Standard SpaceWire has limited support for applications requiring galvanic isolation 
between link endpoints. The limitation is derived from the combination of the low 
common-mode tolerance of ANSI/TIA/EIA‐644 LVDS devices and the unbalanced 
character-level encoding method established by ECSS‐E‐ST‐50‐12C, Clause 7 [1]. 

This paper describes the search for a practical alternative character-level encoding 
method capable of supporting galvanic isolation using ANSI/TIA/EIA‐644 LVDS 
devices and conventional Alternating Current (AC)-coupling circuits. Other goals of 
the research were to maintain the clock recovery benefits of Data-Strobe encoding, 
provide error detection comparable to the standard SpaceWire parity check and 
minimize the impact to link bandwidth efficiency. 

The result is a class of codes that simultaneously Direct Current (DC)-balance both 
the Data and Strobe bit streams while maintaining the clock recovery behavior of 
Data-Strobe encoding. Class members are differentiated by the code size and the 
effort needed to minimize low-frequency content. Members of the class with a larger 
code size have a direct impact on encoding overhead (decrease in link bandwidth 
efficiency) while members with a smaller code size have an inverse impact on 
algorithm complexity (running disparity tracking, etc.). Several examples of the class 
are described: some have large code size (12-bits to 16-bits) that reduces bandwidth 
efficiency significantly relative to standard SpaceWire, some have simple encoding 
methods (12-bits and 16-bits) and others have smaller code size (10-bits and 11-bits) 
or complex encoding methods (10-bits to 15-bits, excluding 12-bits) and bandwidth 
efficiency closer to that of standard SpaceWire (the 10-bit example is within 5%). 

In this paper, the term character is used as defined by the SpaceWire standard and 
includes data characters and control characters. The term code is defined as a binary 
value used to represent a character when transmitted on the SpaceWire link. In 
standard SpaceWire, a character and the corresponding code are identical. 
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1 SPACEWIRE CHARACTER ENCODING BACKGROUND 
SpaceWire character-level encoding starts with Non-Return-to-Zero (NRZ) encoded 
ten-bit characters serialized as the Data signal. The Strobe signal is generated from the 
Data signal by Exclusive OR (XOR) with an alternating binary one-zero pattern of 
identical length (see Figure 1). The alternating one-zero pattern represents a one-half-
rate clock with transitions corresponding to the bit intervals of the Data signal 
(commonly known as a Double-Data Rate (DDR) clock). 

Clock 

Strobe 

Data 

 

Figure 1 – Data-Strobe Encoding Waveforms 

Because standard SpaceWire encoding uses raw binary values to form NRZ-encoded 
characters for the Data signal, the degree of DC balancing achieved is determined by 
the character sequence transmitted. As can be observed from Figure 1, introducing a 
balanced bit stream for the Data signal doesn’t automatically create a balanced bit 
stream for the corresponding Strobe signal. 

2 DESIRED PROPERTIES OF DC-BALANCED CHARACTER ENCODING 
The search for DC-Balanced character encoding originated from concerns about the 
limited common-mode tolerance of standard LVDS signaling technology. Many 
applications migrating to SpaceWire from alternate communications protocols (e.g. 
MIL-STD-1553) provide much greater tolerance for long-term and transient 
differences between ground references. 

Several goals were established (see Table 1). The primary goals were considered 
mandatory while the secondary goals were a factor in ranking alternatives. 
 

Category Goal Note 

Primary 

Allow galvanic isolation of a SpaceWire link 
using typical AC-coupling methods 

Requires intensive 
validation effort 

Maintain the standard SpaceWire electrical 
interface and clock recovery mechanism  

Contain changes within the character encoding 
level of the SpaceWire standard  

Secondary 
Provide comparable error-detection capability  
Maximize the bandwidth efficiency  
Minimize the encoding/decoding complexity Lowest priority 

 
Table 1 – Goals 

2.1 FACTORS CONSIDERED IN ESTABLISHING GOALS 

The use of typical capacitive or inductive AC-coupling methods for galvanic isolation 
depends on a transmitted bit stream with an average value of 0V (assume binary 1 
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corresponds to +1V and binary 0 corresponds to -1V electrical levels). The average 
must be maintained over a sliding time window with a length dependent on the 
characteristics of the communications channel and the sensitivity of the receiver. 

The DC-balanced encoding must be applied to both the Data and Strobe signals so 
that each can be AC-coupled in the same manner. The encoding method attempts to 
maintain the same average DC-balance on both signals simultaneously to maximize 
the clock recovery opportunity of the standard SpaceWire Data-Strobe receiver. 

By limiting changes to the SpaceWire character encoding level, all other aspects of 
the standard are unaffected. The well-proven SpaceWire physical and signal levels, 
the link protocol (exchange level), and the packet and network levels continue to 
function as with standard SpaceWire. 

2.2 SPACEWIRE FACTORS IMPACTING GOAL ACHIEVEMENT 

Because SpaceWire link traffic primarily consists of data characters and flow-control-
token (FCT) characters, the size of encoded characters dominates when evaluating 
link bandwidth efficiency. Any change to the encoded size of a character has a 
corresponding impact on link overhead. Because the FCT traffic associated with one 
link direction is overhead to the other link direction, any increase in FCT character 
code size has a greater impact than increases in the other control character code sizes. 

The standard SpaceWire error detection mechanism using a parity bit for each 
encoded character consumes approximately 10% of available link bandwidth. Because 
the SpaceWire standard establishes a lagging-parity mechanism (the parity bit 
associated with one character is transmitted as the first bit of the following character), 
the encoded value of each standard SpaceWire character is dependent on the parity of 
the preceding character, essentially defining two representations of each character. 
These factors make replacing the parity-based error detection mechanism highly 
desirable. Because transmission error detection is required by the SpaceWire 
exchange level, any replacement error detection mechanism must provide an 
comparable capability. 

The standard SpaceWire NRZ-based encoding is very simple to implement. Any 
alternate encoding method is likely to be more complex. 

3 DC-BALANCED CHARACTER ENCODING BACKGROUND 
The transmitted bit stream created by DC-balancing must have an average value of 0V 
over a limited time interval to minimize undesirable biases in the galvanic isolation 
circuits. The average value over small time intervals is a function of the transition 
density and run-length of the encoded values composing the bit stream. 

The transition density capability of 8b10b encoding was used to establish the initial 
transition density and run-length benchmarks. The 8b10b encoding scheme guarantees 
a transition-rich data stream so that the receiving device can perform clock recovery 
on the incoming serial data. Transition rich means that for every 20 successive bits 
transferred, the difference in the number of ones and the number of zeros cannot be 
more than two, and there cannot be more than five ones or five zeros in a row [2]. 
Note that the difference in the number of ones and zeroes is termed the disparity. 
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Note that the 8b10b encoding scheme cannot be used directly because of the need to 
DC-balance both the Data and Strobe signals simultaneously. The Strobe bit stream 
generated from an 8b10b encoded Data bit stream does not have adequate DC-
balancing characteristics. 

The DC-Balanced Data character encoding must be chosen so that the resulting Strobe 
bit stream has characteristics comparable to the Data bit stream. By selecting Data 
character encodings based on the transition density and run-length of both resulting 
bit streams, the desired average signaling value can be achieved for both. 

4 DEVELOPMENT OF DC-BALANCED CHARACTER ENCODING 
Evaluating the feasibility of a DC-balanced character encoding mechanism begins by 
determining the number of binary values with the appropriate properties for each 
potential code size. The first step is to create a list of the binary value pairs for 
additional evaluation by exclusive-ORing each binary value with an alternating one-
zero pattern (clock) to produce the other binary value of the pair. 

Because high quality DC-balancing is a function of the transition density and run-
length of the encoded values, a number of characteristics must be determined for each 
candidate binary value. The benchmark criteria established from 8b10b encoding 
require that any twenty-bit sequence have a disparity of two or less and that the 
number of consecutive same-value bits be five or less. 

The run-length benchmark criterion can be translated in a straightforward manner by 
establishing that the number of consecutive same-value bits within any two successive 
encoded characters should be five or less (including the boundary between the two 
characters). The character boundary run-length can be constrained using one of three 
methods: 

1. By establishing that the leading and trailing run-length must be two or less 
(corresponding to a boundary-crossing run-length limit of four or less), 

2. By establishing that the leading run-length must be three or less and the 
trailing run-length must be two or less, 

3. By establishing that the leading run-length must be two or less and the trailing 
run-length must be three or less. 

Since method 1 is stricter than the 8b10b benchmark, allowing either method 2 or 
method 3 is preferred. Evaluating each set of candidate binary values using both 
method 2 and method 3 and choosing based on the best result is desirable. 

Translating the disparity benchmark criterion is nontrivial, but a somewhat weaker 
approximation can be achieved by establishing that two successive codes should have 
a combined disparity of two or less. Since any character can occur in combination 
with any other character (including itself), a number of distinct disparity combinations 
must be considered as shown in Table 2. Note that a binary value with an even 
number of bits has even disparity 0, 2, 4, etc. while a binary value with an odd number 
of bits has odd disparity 1, 3, 5, etc. 
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Sequence Description Combination 
Even length values 

Zero-Zero Each code has zero disparity Zero disparity 

Zero-Two The first code has zero disparity and the second 
code has two disparity Two disparity 

Two-Zero The first code has two disparity and the second 
code has zero disparity Two disparity 

Two-Two Each code has two disparity Zero disparity 
Odd length values 

One-One Each code has one disparity Zero disparity 

One-Three The first code has one disparity and the second 
code has three disparity Two disparity 

Three-One The first code has three disparity and the second 
code has one disparity Two disparity 

Three-Three Each code has three disparity Zero disparity 
Note that to achieve the combined result for nonzero disparity sequences, each 
code that has nonzero disparity must have at least one alternate code with the 
opposite (negative) disparity. 

 
Table 2 – Disparity Combinations 

4.1 EVALUATION OF CODE VALUE CANDIDATES 

The evaluation was performed for the code lengths identified in Table 4 to determine 
the feasibility of each length. For each code length, a table was generated containing 
2length values. For each value, the table included the corresponding code formed by 
exclusive-OR with the alternating one-zero pattern and a variety of metrics for both 
codes of the pair. 

The metrics computed for each code were: 

1. The total number of one bits 
2. The maximum number of consecutive one bits 
3. The number of consecutive leading one bits  
4. The number of consecutive trailing one bits 
5. The total number of zero bits 
6. The maximum number of consecutive zero bits 
7. The number of consecutive leading zero bits 
8. The number of consecutive trailing zero bits 
9. The disparity (the total number of one bits minus the total number of zero bits) 

The metrics for each code pair were used to determine whether that pair should be 
selected for membership in a candidate DC-Balanced code set. The parameters used to 
determine the members of the code set were: 

1. Maximum disparity (the disparity of each code in the code set must be no 
greater than the maximum disparity parameter) 

2. Maximum run-length (the number of consecutive one bits or zero bits must be 
no greater than the maximum run-length parameter) 
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3. Maximum leading run-length (the number of consecutive leading one bits or 
zero bits must be no greater than the maximum leading run-length parameter) 

4. Maximum trailing run-length (the number of consecutive trailing one bits or 
zero bits must be no greater than the maximum trailing run-length parameter) 

Note that the maximum leading and maximum trailing run-length parameters provide 
fine-grained selection within the set of codes that are selected by the maximum run-
length parameter. This was done to address the code boundary run-length issue 
discussed previously. 

Based on the 8b10b benchmark criteria, the initial evaluation of each code length was 
performed using the parameter values in Table 3. Note that the 8b10b criterion that 
any twenty-bit sequence must have a disparity of two or less has been simplified to 
require that any two successive codes must have a disparity of two or less. 

Maximum 
Disparity 

Maximum Run-
Length 

Maximum Leading 
Run-Length 

Maximum Trailing 
Run-Length 

Even length values 
2 5 2 3 

Odd length values 
1 5 2 3 

 
Table 3 – Initial Evaluation Parameter Values 

4.2 CODE SET SIZE 

The SpaceWire character set consists of 256 data characters and 4 control characters, 
so at least 260 distinct code pairs are needed to encode the complete character set. A 
set of code pairs with a nonzero maximum disparity characteristic must include 
sufficient pairs to allow multiple encodings per character. 

If a set of code pairs has a non-zero maximum disparity, each pair in the set must be 
matched with another pair in the set with the opposite disparity to allow representation 
of the same SpaceWire character with either pair. Note that any code pairs in the set 
that have zero maximum disparity can represent a SpaceWire character uniquely. If 
none of the code pairs in the set have zero maximum disparity, a minimum of 520 
distinct code pairs is needed to encode the complete SpaceWire character set. 

Since odd-length codes inherently have non-zero disparity, the minimum of 520 
distinct code pairs always applies. As an additional complication, the nature of Data-
Strobe encoding causes two identical odd-length Data codes in succession to produce 
different Strobe codes. This makes selection of an appropriate set of odd-length codes 
more difficult, so it is convenient to require that successive identical SpaceWire 
characters be encoded to different odd-length codes. This increases the minimum 
number of distinct odd-length code pairs needed to encode the complete SpaceWire 
character set to 1,040. 

To summarize the set size criteria: 

1. If each code pair in a set has zero disparity, a minimum of 260 pairs are 
needed to encode the complete SpaceWire character set. 
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2. If each code pair in a set of even-length code pairs has a nonzero maximum 
disparity, a minimum of 520 pairs are needed to encode the complete 
SpaceWire character set. 

3. Each code pair in set of odd-length code pairs must contain a minimum of 
1,040 pairs to encode the complete SpaceWire character set. 

4.3 CODE SET SELECTION RESULTS 

Based on the initial evaluation, the code lengths of 14-bits, 15-bits and 16-bits easily 
produced code sets of sufficient size that met the benchmark criteria. Of the remaining 
code lengths evaluated, the code sets of sufficient size produced for 12-bits and 13-
bits met the disparity criteria, but failed the maximum run-length criteria. The 10-bit 
and 11-bit code sets of sufficient size failed both the disparity criteria and the 
maximum run-length criteria. Table 4 shows the smallest set of sufficient size to 
encode the complete SpaceWire character set and the corresponding set metrics for 
each code length evaluated. 

Bits Maximum Disparity Maximum Run-Length Set Size 
Even length codes require a set size of 260 (disparity 0) or 520  

10 4 7 552 
12 0 6 284 
14 2 4 1144 
16 0 4 260 

Odd length codes require a set size of 1,040 
11 3 8 1048 
13 1 7 1040 
15 1 4 1188 

Note: the Maximum Run-Length is the greater of the Run-Length and the sum of 
the Leading Run-Length and the Trailing Run-Length 
Note: the Set Size is the number of codes that met the corresponding evaluation 
criteria. The codes to be used are chosen from the full set as desired. 

 
Table 4 – Code Result by Length 

4.4 EFFECTS OF CODE LENGTH ON BANDWIDTH EFFICIENCY 

Because standard SpaceWire characters are encoded as values with differing lengths 
depending upon function, any code length greater than the standard length can have a 
significant impact on link bandwidth efficiency. Table 5 shows the efficiency of each 
candidate code length for the various SpaceWire character types. Note that each 
character type is assumed to use codes of the full candidate length rather than the 
variable lengths defined for standard SpaceWire. 
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SpaceWire 
Character 

Type 

Standard 
SpaceWire 

Candidate Length 

10-bit 11-bit 12-bit 13-bit 14-bit 15-bit 16-bit 

Data 10 
Bits 100.0% 100.0% 90.9% 83.3% 76.9% 71.4% 66.7% 62.5%

FCT 4 
Bits 100.0% 40.0% 36.4% 33.3% 30.8% 28.6% 26.7% 25.0%

EOP/ 
EEP 

4 
Bits 100.0% 40.0% 36.4% 33.3% 30.8% 28.6% 26.7% 25.0%

Time 
Code 

14 
Bits 100.0% 70.0% 63.6% 58.3% 53.8% 50.0% 46.7% 43.8%

Null 8 
Bits 100.0% 80.0% 72.7% 66.7% 61.5% 57.1% 53.3% 50.0%

Note that the SpaceWire Time Code consists of a control character followed by a data 
character. 
 

Table 5 – Code Length Efficiency by Character Type 

Overall SpaceWire link efficiency is dynamically determined by the mix of 
SpaceWire characters transmitted. Fortunately, data characters and FCT characters 
dominate link traffic; the end-of-packet characters are relatively rare, time code 
characters are rarer still and null characters are only used when necessary to keep the 
link active. Table 6 shows the link efficiency of each candidate length relative to 
standard SpaceWire for three representative cases of SpaceWire traffic where the link 
is fully utilized in both directions with packets of the same size. The table clearly 
shows that the overall link efficiency is significantly impacted by code length when 
the majority of link traffic is small packets. Since standard SpaceWire data characters 
have 10-bit length, the 10-bit code length case shows the impact of the increased FCT 
code size on link efficiency. 

SpaceWire Character Mix 
Data/Flow/EOP 

Candidate Length 
10-bit 11-bit 12-bit 13-bit 14-bit 15-bit 16-bit

10 byte packets 
89.3%/7.1%/3.6% 86% 78% 72% 66% 62% 57% 54% 

100 byte packets 
94.7%/4.9%/0.4% 93% 84% 77% 71% 66% 62% 58% 

1000 byte packets 
95.2%/4.8%/0.0% 93% 85% 78% 72% 67% 62% 58% 

The left column contains the percentages of transmitted bits for data characters, flow-
control-token characters and end-of-packet characters respectively. 
 

Table 6 – Code Length Effects on Bandwidth Efficiency 

4.5 MIXING CODE LENGTHS TO IMPROVE BANDWIDTH EFFICIENCY 

Standard SpaceWire minimizes link overhead very effectively by using different code 
lengths. For small packets, the 4-bit code length used for FCT characters improves 
bandwidth utilization by 14% over the utilization when using a 10-bit FCT code. DC-
Balanced character encoding can reduce the impact of increased code length by 
selectively using a shorter code length for control characters. 
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Standard SpaceWire character encoding distinguishes between the various code 
lengths by making all codes unique in the first bits transmitted/received. The four 
standard SpaceWire control characters are each defined as a 4-bit code that does not 
match the first four bits of any other SpaceWire code. The same technique may be 
used to choose a small number of members of a DC-Balanced code set as candidates 
for use as control characters. 

4.6 ERROR-DETECTION CAPABILITY 

The DC-Balanced codes described have intrinsic characteristics that make 
transmission error detection straightforward. The error response defined by standard 
SpaceWire is unchanged. 

Standard SpaceWire adds a parity bit to each encoded character to detect transmission 
bit errors. The error response is to disconnect the link, report the error and attempt to 
reconnect the link (the same approach is used to recover from all link errors). 

The decoding mechanism that translates DC-Balanced codes to the equivalent 
SpaceWire character has inherent error detection capability since an unrecognized 
code is considered an error. A transmission error occurring in a DC-Balanced code 
must convert that code to a different valid code for the error to be undetectable. The 
members of a DC-Balanced code set can be selected to have sufficient Hamming 
distance to prevent many transmission errors from being undetectable. 

In addition, either the Data code or the Strobe code (or both) can be decoded to the 
equivalent SpaceWire character. In cases where an adequate Hamming distance is not 
achievable, the Data code and the Strobe code can be independently decoded and then 
compared to detect most transmission errors. The two mechanisms can clearly be 
combined to provide very robust transmission error detection. 

5 RESULTS AND CONCLUSIONS 
Of the DC-Balanced code sets that fully met the 8b10b benchmark criteria, the 14-bit 
length code set is the most bandwidth efficient. Unfortunately, the bandwidth 
efficiency is at best 66% that of standard SpaceWire. All of the other fully qualified 
code sets are less efficient than the 14-bit code set. 

5.1 RELAXING THE BENCHMARK CRITERIA 

Relaxing the benchmark criteria allows use of DC-Balanced code sets with greater 
bandwidth efficiency. The effects of relaxing the benchmark criteria on link 
performance must be determined by signal integrity analysis and experimentation. 

Although the 12-bit length DC-Balanced code set misses the run-length benchmark 
criterion by 20%, it has the advantage of zero-disparity implementation simplicity. 
The approximately 75% bandwidth efficiency relative to standard SpaceWire can be 
improved to approximately 80% by choosing an FCT code with at most 6-bit length. 

5.2 MOST EFFICIENT, COMPLEX IMPLEMENTATION 

The much better bandwidth efficiency of the 10-bit DC-Balanced code set makes 
further relaxation of the benchmark criteria worth consideration. Taking advantage of 
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a 6-bit FCT code length allows the 10-bit DC-Balanced code set to achieve bandwidth 
efficiency within 5% of standard SpaceWire. 

The 10-bit DC-Balanced code set misses the disparity criterion significantly (the 
running disparity achievable by the 10-bit code set varies based on the tracking 
method used). As with 8b10b encoding, DC-Balanced encoding must manage the 
running disparity to limit the difference in the number of ones and zeroes in the 
transmitted bit stream. Unlike 8b10b encoding, DC-Balanced encoding must track the 
running disparity for both SpaceWire signals (Data and Strobe) simultaneously. The 
goal is to minimize the running disparity of each signal without minimizing one at the 
expense of the other. Modeling has shown that the 10-bit code set running disparity 
can be limited to eight or less for a bit stream composed of a random code sequence.  

The 10-bit DC-Balanced code set misses the run-length criterion by 40% with no 
mitigation method available. Clearly, the ability to take advantage of the bandwidth 
efficiency of the 10-bit code set depends on further analysis regarding the link 
performance. 

5.3 SUMMARY 

This paper has shown that an alternative character-level encoding method that is 
capable of supporting galvanic isolation of SpaceWire links using conventional AC-
coupling circuits is possible. The alternative method limits changes to the character-
level and provides transmission error detection comparable to the standard SpaceWire 
parity check. The major tradeoffs to be considered are the impacts to SpaceWire link 
bandwidth efficiency, encoding/decoding implementation complexity and frequency 
performance over AC-coupled circuits. 
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ABSTRACT 
As SpaceWire has gained a greater market share in recent years, the number of 

software products available for SpaceWire-related activities has also grown.  Software 

APIs are provided by test and development equipment manufacturers, flight board 

manufacturers, chip manufacturers, etc. to control and configure their devices.  Each 

company provides their own API, often with different APIs required for each device 

from the same company. 

The purposes of the SpaceWire standard include reducing system integration costs, 

promoting compatibility between data‐handling equipment and subsystems, and 

encouraging reuse of data‐handling equipment across several different missions.  This 

paper argues that standardisation of software APIs would further these aims, greatly 

improving compatibility between equipment and encouraging software reuse across 

missions, thereby reducing development and integration costs. 

1 INTRODUCTION 
An API, or Application Programming Interface, is the interface provided by a module 

so that software can interact with that module.  In SpaceWire terms, it may be the 

programming interface used to transmit and receive packets on a SpaceWire device. 

STAR-Dundee has considerable experience developing APIs for SpaceWire 

equipment, beginning with the API for a SpaceWire PCI device before the SpaceWire 

standard was released, through to our new API system, STAR-System which supports 

multiple device types and operating systems in a consistent manner [1].  We have also 

worked with NEC TOSHIBA Space Systems to port our SpaceWire USB API to the 

Shimafuji Space Cube [2], in order to provide a consistent platform to run our 

SpaceWire CUBA Software. 
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Despite the great international collaboration taking place in SpaceWire-related 

activities, currently there are no standard APIs for interacting with SpaceWire 

devices.  As a result, hardware and software manufactures can provide completely 

different APIs for each of their products.  This is clearly not beneficial to anyone; 

flight and test software developers must learn a new API for each device or module 

they work with, while manufacturers may need to develop a new API for each device 

they release. 

It can be argued that there is no alternative to this situation.  API implementations 

may differ depending on their target uses.  For example, an API which is to be used 

on a flight system is unlikely to require the same functionality as an API used to test 

devices on a network. 

Regardless of this, there are a great number of implementations being created to do 

very similar tasks.  This paper looks at the various APIs which may be used in a 

SpaceWire system, and considers whether standardisation of these APIs would be of 

benefit to the SpaceWire community. 

2 USE OF EXISTING APIS 
A number of users who are new to SpaceWire expect to use existing, known APIs to 

access SpaceWire devices.  Many assume that they can use the POSIX Sockets API, 

based on the Berkeley Sockets API and part of the POSIX standard [3], with STAR-

Dundee devices.  While we do provide a network interface for our USB devices which 

enables the use of the Sockets API, we strongly discourage anyone from using this to 

write their own code. 

The reason for this is that the Sockets API cannot directly take advantage of the full 

benefits of SpaceWire, or provide access to the many test, development and debug 

features provided in STAR-Dundee devices and APIs.  For example, it is not possible 

to transmit or receive time-codes using the Sockets API directly, or to terminate a 

packet with an EEP.  Even if the Sockets API is used, additional APIs must also be 

used to configure devices.  A further limitation is that the Sockets API is normally 

used to carry streams of data over TCP, with no regard for end of packet markers.  

This is normally not what is required by SpaceWire users, who wish to carry raw data 

over a SpaceWire network, with packet start and end points clearly marked.  Note also 

that there is currently no standard for carrying TCP/IP over SpaceWire, so different 

implementations may be unable to communicate. 

Despite this, there may be an argument for using the POSIX functions in some 

situations, simply because many developers are familiar with the interface, and this 

may therefore shorten development and test times.  On a flight system, where the 

software is concerned primarily with transmitting and receiving packets over a device 

which does not need any configuration (e.g. starting the link, setting the link speed, 

etc.) the Sockets API may be a suitable solution.  The Sockets API could be modified 

to transmit a single packet in response to a send() function call, and to pass up a 

single packet in response to a recv() call. 

This would not provide a particularly high performance interface, however.  An API 

designed specifically for transmitting and receiving packets to/from a SpaceWire 

device is likely to result in better performance and better quality code.  Note that this 
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API may be built on top of the Sockets API, for example when communicating with a 

device over Ethernet. 

3 TYPICAL SPACEWIRE APIS 
The APIs required to access a SpaceWire device are not simply limited to transmitting 

and receiving packets.  Support for protocols such as RMAP [4] and the CCSDS 

Packet Transfer Protocol [5] requires additional APIs, while SpaceWire devices 

typically provide a number of configuration options which are made available through 

software.  These may include setting the device and/or link speed, configuring routing 

tables, and starting and stopping links. 

Some of the APIs which may be used both in test, development and debug 

environments and in flight systems are described below. 

3.1 PACKET TRANSFER API 

The Packet Transfer API is the most important API, and the one that STAR-Dundee 

users generally have the most exposure to.  This is the API that is used to transmit and 

receive packets, and is also used to open and close connections to the device. 

Although it might be assumed that this is quite a simple API, STAR-Dundee’s Packet 

Transfer API, STAR-API, includes a great deal of functionality.  For example, a 

function to transmit a single packet is unlikely to provide very high performance.  

Instead, the transmit function must allow multiple packets to be submitted, these may 

be interleaved with time-codes, and some may be terminated with an EEP.  Similar 

functionality is required for receiving traffic items in order. 

Although not all of this functionality will be required in a flight system, performance 

may be of even greater importance.  The number of interrupts which are generated 

when packets are transmitted and/or received will have a huge influence on the overall 

performance of a system.  An API which can cope with multiple packet transmit or 

receive operations generating a single interrupt will provide better performance and 

use less resources than one that interrupts on each and every packet. 

3.2 REMOTE MEMORY ACCESS PROTOCOL APIS 

STAR-Dundee has developed three different RMAP APIs, in order to separate out the 

diverse functionality that may be required by users developing RMAP applications.  

At the lowest level is the RMAP Packet API.  This provides functions for building 

each of the RMAP packet types (read commands and replies, write commands and 

replies, etc.), for interpreting and validating the contents of RMAP packets and 

extracting the values of fields in the packets. 

The functionality provided by the RMAP Packet API was then used to implement the 

RMAP Initiator and Target modules, each with their own API.  These modules 

provide software implementations of RMAP initiators and targets.  Both modules 

make use of STAR-Dundee’s Packet Transfer API to transmit and receive commands 

and replies. 
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An API providing functions to configure RMAP targets or initiators implemented in 

hardware may require a different API, although there are likely to be some functions 

which are required for both the physical and software implementations. 

3.3 OTHER PROTOCOL APIS 

As with the RMAP APIs, other higher layer protocol APIs, such as the CCSDS Packet 

Transfer Protocol, GOES-R RDDP [6] and SpaceWire-PnP APIs [7], may be split up 

in to a packet building/validating API, an initiator API, and a target API.  The initiator 

and target APIs may be combined, depending on the nature of the protocol. 

Unlike the other protocols discussed above, the CCSDS Packet Transfer Protocol can 

be used over other networks and buses, and not just over SpaceWire.  This means that 

it may be possible to use existing APIs, modified to support SpaceWire addressing.  

Similarly, if TCP/IP packets are to be carried over SpaceWire, the Sockets API can be 

used, as discussed earlier. 

3.4 DEVICE CONFIGURATION API 

One API that may initially appear to be impossible to standardise is the Device 

Configuration API.  This provides the functions that allow the features of a device to 

be configured, and are likely to be very specific to that device.  However, there are a 

number of features which are common between devices, and the SpaceWire-PnP draft 

protocol definition has identified some of these features. 

STAR-Dundee’s Device Configuration API contains a number of functions which are 

common to all STAR-Dundee devices, such as setting the speed of a link, starting a 

link, etc.  There are then additional functions to provide functionality specific to 

individual devices.  A standardised Device Configuration API could be produced in a 

similar manner, using the features identified in the PnP definition as a basis. 

4 SUMMARY AND CONCLUSIONS 
One of the many advantages of SpaceWire is that it has allowed organisations to reuse 

equipment and software.  But without standardisation of APIs, the benefits of reuse 

cannot be fully realised.  With standard APIs, developers can create software using 

development equipment like the STAR-Dundee SpaceWire-USB Brick [8] running on 

consumer operating systems such as Windows or Linux, then migrate their code to 

flight hardware running real-time operating systems such as RTEMS or VxWorks.  

Developers can also write code that will work on multiple devices, without providing 

a “shim” layer which handles the differences between devices.  On long term projects, 

supporting new devices and replacing devices with alternatives, may require no 

additional code to be written at all. 

The disadvantages of standardised APIs are few.  One concern may be that a system 

may not require all the functions provided by the standardised API, and these 

additional functions might take up precious resources.  If the standardised API allows 

some or all functions to be optional, then this problem is eliminated.  This would also 

allow test and development systems to include additional functions not required in a 

flight system. 
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This paper has identified a number of APIs which are typically used in SpaceWire 

systems.  It is clear that standardisation of these APIs would be of great benefit to the 

SpaceWire community, and we urge the community to work towards this.  The effort 

required to reach a consensus would be minor when compared to the potential savings 

that could be achieved. 
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ABSTRACT 
The N ext G eneration Microprocessor (NGMP) i s a  qua d-processor s ystem-on-chip 
currently being developed by Aeroflex G aisler i n a n a ctivity c ommissioned and 
funded by the European Space Agency. Compared to earlier generations of European 
space processors, the NGMP design provides higher performance and places greater 
emphasis o n s upport f or b oth s ymmetric a nd a symmetric multiprocessing. A nother 
significant d ifference is t he introduction o f a S paceWire r outer i nstead of multiple 
node co res w hich have t ypically been u sed in other S ystem-on-Chip de vices. I n 
addition to this the system contains a dedicated RMAP core used for debug access. 

1 BACKGROUND 
The LEON project was started by the European Space Agency in late 1997 t o study 
and develop a high-performance processor to be used in European space projects. 

The LEON family includes the first LEON1 VHSIC Hardware Description Language 
(VHDL) design t hat was used in the LEONExpress t est chip de veloped in 0.25 µ m 
technology t o prove t he f ault t olerance co ncept. T he s econd LEON2 VHDL de sign 
was used in the processor device AT697 from Atmel (F) and various system-on-chip 
devices. T hese t wo L EON i mplementations w ere de veloped by E SA. G aisler 
Research, now Aeroflex Gaisler, developed the third LEON3 design that is used in a 
number of avionics systems and also in the commercial sector. Following the LEON3 
processor A eroflex G aisler de veloped the L EON4 processor that h as improved 
performance thanks to wider internal buses and a modified pipeline. 

Following t he de velopment o f t he TSC695 (ERC32) and AT697 components in 0.5 
and 0.18 µm technologies respectively, ESA has initiated the NGMP activity targeting 
a E uropean D eep S ub-Micron ( DSM) t echnology in order t o m eet increasing 
requirements on performance and to ensure the supply of European space processors. 
Aeroflex G aisler w as s elected to de velop the N GMP s ystem t hat w ill be centered 
around the LEON4FT processor. 
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2 SYSTEM OVERVIEW 

 

Figure 1 shows an overview of the architecture. 

The system co nsists o f five Advanced High-performance Buses ( AHB); o ne 128-bit 
Processor bus, one 128-bit Memory bus, two 32-bit I /O buses and one 32-bit Debug 
bus. T he P rocessor b us h ouses t he four L EON4FT pr ocessor c ores co nnected to a 
shared Level-2 (L2) cache. The Memory bus is located between the L2 cache and the 
main external memory interfaces, DDR2 SDRAM and PC100 SDRAM, and it is also 
connected to a h ardware memory scrubber. Only one of the main memory interfaces 
(DDR2-4800 or PC100 SDRAM) can be used at a t ime and can provide up t o 2 G iB 
of external memory. As an alternative to a large on-chip memory, part of the L2 cache 
can be turned into on-chip memory by cache-way disabling. 

The t wo separate I /O buses house a ll t he peripheral co res. All s lave interfaces have 
been placed o n o ne bus ( Slave I /O bus) and all master/DMA interfaces ha ve be en 
placed o n t he o ther b us ( Master I /O bus). T he M aster I /O b us co nnects t o the 
Processor bus, or alternatively to the memory bus, thus bypassing the L2 cache, via an 
AHB b ridge t hat pr ovides acce ss r estriction a nd address t ranslation ( IOMMU) 
functionality. The two I/O buses include all peripheral units such as t imers, interrupt 
controllers, U ARTs, ge neral pur pose I /O po rt, P ROM/IO co ntroller, P CI 
master/target, H igh-speed S erial L inks, E thernet M ACs, 1553,  S PI a nd S paceWire 
interfaces. All I/O master units in the system contain dedicated DMA engines and are 
controlled by descriptors located in main memory t hat ar e set up by t he processors. 
Reception o f, for i nstance, E thernet an d SpaceWire pa ckets w ill not i ncrease C PU 
load. The cores will buffer incoming packets and write them to main memory without 
processor intervention. 

The fifth bus, a d edicated 32-bit D ebug bus, c onnects a  LEON4FT D ebug S upport 
Unit (DSU), PCI and AHB trace buffers, and several debug communication links. The 
Debug bus w ith the de bug communication links allows for non-intrusive de bugging 
through t he D SU a nd, a s t he D ebug bus is not pl aced behind an AHB bridge w ith 
access restriction functionality, has direct access to the complete system. 

The target frequency of the NGMP is 400 MHz, but depends ultimately on the ASIC 
technology. 
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2.1 LEON4FT MICROPROCESSOR AND L2 CACHE 
The LEON4FT processor is the latest processor in the LEON series. LEON4FT is a 
32-bit pr ocessor cor e co nforming to the I EEE-1754 ( SPARC V8) a rchitecture. I t i s 
designed for em bedded applications, co mbining high pe rformance w ith low 
complexity and l ow po wer c onsumption. LEON4 i mprovements ov er t he L EON3 
processor include: Branch prediction, 64-bit pipeline with single cycle load/store and 
128-bit wide L1 cache. 

The LEON4FT processor connects to an AMBA AHB bus with a 128-bit data width. 
This leads t o a 4x  pe rformance increase, co mpared to LEON3, w hen pe rforming 
cache line fills. Single cycle load and store instructions increase performance and also 
take advantage of the wider AHB bus. 

Static ( “always t aken”) br anch pr ediction ha s s hown t o give a n o verall pe rformance 
increase o f 10% . T he LEON4FT a lso has support for the S PARC V 9 c ompare a nd 
swap (CAS) instruction that improves lock handling and performance. 

The L2 cache acts as a high-speed buffer between external memory and the AHB bus. 
An important f actor to hi gh pr ocessor pe rformance and goo d S MP s caling is high 
memory bandwidth coupled with low latency. A 128-bit wide bus is therefore used to 
connect the L2 cache with the external memory controller. This will allow 32 bytes to 
be read in two clocks, not counting initial memory latency. The L2 cache features a  
configurable r eplacement a lgorithm w ith least-recently-used ( LRU) r eplacement as  
the de fault. I t i s a  256 K iB ( baseline size, act ual s ize limited by t arget technology) 
copy-back cache with BCH Error Correcting Code (ECC). One or more cache ways 
can be locked to be used as fault-tolerant on-chip (“scratchpad”) memory. 

2.2 MAIN MEMORY INTERFACE 

The baseline decision for the main memory interface is to support 96-bit (64 data bits 
and up to 32 check bits) DDR2-800 and PC100 SDRAM on shared pins. However the 
selection between DDR2 and DDR(1) SDRAM should be regarded as open. The flight 
models o f t he NGMP are scheduled several years into the future. At that t ime there 
may be a dditional information ava ilable r egarding memory d evice av ailability. 
Availability o f I /O standards o n t he t arget t echnology may also impact t he final 
decision. 

The data width of the main memory interface is dynamically configurable between 32 
and 64 data bits (plus check bits), allowing for NGMP systems with a reduced width 
of t he memory interface t o s upport pa ckages w ith low pi n c ount, a nd a lso us e in 
systems with fewer components. The PC100 SDRAM interface will be able to run at 
the same or one fourth of the system frequency. The DDR2 interface will be run at the 
same o r twice t he s ystem frequency. T he c lock scaling factor between t he memory 
interfaces and the rest of the system, and also the data width of the memory interface, 
is selectable via external signals. 

External dynamic memory is in the normal case protected with a Reed-Solomon code 
that uses 32 c heck bits to protect the 64 da ta bits (or 16 check bits to protect 32 data 
bits). T o f urther improve resilience ag ainst pe rmanent memory er rors, the s ystem 
supports an on-line ECC code switch where the number of check bits is halved and a 
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faulty memory is removed from system use. The scheme allows any byte, in the check 
bit or data vectors, to be switched away while the system keeps operating. 

2.3 I/O INTERFACES 
A s et of s tandard peripherals required for operating s ystem s upport i s i ncluded on-
chip. T hese include support f or s imple memory mapped I /O de vices, t wo b asic 
console UARTs and one 16-bit I/O port for external interrupts and simple control. 

The hi gh-speed interfaces t hat ar e intended to b e us ed in flight ar e a t welve po rt 
SpaceWire router, two 10/100/1000 Mbit Ethernet links, four 6.25 Gbit/s High-Speed 
Serial Links, 1553 and SPI interfaces and one 32-bit PCI 2.3 master/target interface. 

2.4 PCI INTERFACE 

The currently used AT697 processor and several LEON3FT designs have a 32-bit PCI 
interface. This makes a 32 -bit PCI bus a suitable candidate for the local backplane, 
since it w ill make t he N GMP backward compatible w ith existing backplanes. T he 
downside w ith t he P CI interface is t hat it r equires many I /O p ins a nd is r elatively 
slow. H owever, s electing a more modern interface, s uch a s P CI e xpress w ould 
increase demands on companion chips. This could prevent the use o f many t ypes o f 
currently available programmable logic devices as companion devices. 

2.5 SPACEWIRE ROUTER 

The SpaceWire router is based on the GRSPWROUTER IP core which is the common 
building block for all Aeroflex Gaisler router designs. In NGMP it is configured with 
eight ex ternal S paceWire po rts an d four internal AMBA po rts co nnecting to the 
internal Master I/O bus.  

The S paceWire r outer al lows t he N GMP t o act  b oth pa ssively and actively in a 
SpaceWire network. The router in the NGMP can act separately from t he rest of t he 
system-on-chip-design or the NGMP system ca n connect to the SpaceWire network 
through t he four A MBA po rts a vailable o n the r outer. T he interface o f t he AMBA 
ports i s identical t o the interface o f Aeroflex G aisler's G RSPW2 SpaceWire core, 
allowing re-use of dr iver software. This also allows the router to be used by the host 
system as a n ormal node the only d ifference being that a l eading physical address is 
required s pecifying t he o utput p ort (at the s ame t ime a dding flexibility). An AHB 
slave interface is a lso av ailable co nnected to the s lave I /O b using providing direct 
access to the configuration port. 

Preliminary r esults for t he 400 MHz target frequency s how t hat, us ing only internal 
routing (data no t go ing out on e xternal S paceWire ports), the ar chitecture is a ble t o 
sustain a da ta t hroughput of 1. 5 Gbit/s pe r S paceWire AMBA po rt. I n a s cenario 
where the two full-duplex Ethernet links and all SpaceWire AMBA ports are run flat 
out, the sustainable throughput is roughly 1.5 Gbit/s per Ethernet link and 1 Gbit/s per 
SpaceWire AMBA port. In addition to this, the SpaceWire router will also be able to 
simultaneously route packets at maximum speed. 
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2.6 10/100/1000 MBIT ETHERNET 
The E thernet c ontrollers support 10/ 100/1000 M bit/s o peration and have i nternal 
RAM that allows buffering a complete packet. Support for multicast will be included 
to allow r eception o f multicast pa ckets w ithout setting the interface in pr omiscuous 
mode. 

2.7 HIGH-SPEED SERIAL LINKS 

The a vailability a nd specification o f t he H igh-Speed Serial Link (HSSL) IP cores to 
be integrated within the European DSM ASIC platform is at the t ime of writing very 
limited. Aeroflex Gaisler is working with ESA to be able to provide, at the minimum, 
a descriptor based DMA controller to control the SerDes macros that are expected to 
provide 6.25 Gbit/s o f bandwidth per link. The support of SpaceFibre is a goal, it is 
however subject to maturity of the standard amd availability of a SpaceFibre IP core. 

2.8 DEBUG COMMUNICATION LINKS 
The N GMP has a w ide r ange o f de bug links; J TAG, S paceWire R MAP, U SB a nd 
Ethernet. The controllers for the first three links are located on the Debug bus and will 
be c lock gated off in flight. T he co ntrollers for t he t wo E thernet de bug links are 
embedded in the system's Ethernet cores. 

The two Ethernet debug links use Aeroflex Gaisler's Ethernet Debug Communication 
Link ( EDCL) pr otocol, w hich is c ompletely supported i n hardware and do es not 
require processor intervention. T he E thernet co ntrollers a llow users t o connect eac h 
debug link either to the Debug bus or the Master I/O bus. The Ethernet cores' normal 
function is preserved even if t he debug links are active. The selected buffer s ize for 
the debug traffic in the NGMP gives an Ethernet debug link bandwidth of 100 Mbit/s. 

A U SB de bug c ommunication link c ontroller provides a  de bug c onnection w ith 
relatively high bandwidth ( 20 Mbit/s). T he w ide a doption o f U SB w ill allow t he 
NGMP system to be debugged from nearly any modern workstation without the need 
for co nfiguration t hat is t ypically r equired when u sing an E thernet D ebug 
Communication Link. 

The J TAG de bug c ommunication link pr ovides a  link w ith modest b andwidth o f 
around 500 kbi t/s, typically limited by t he JTAG adapter. With modern USB JTAG 
adapters it is possible to run the JTAG link at 6 Mbit/s. 

A dedicated SpaceWire RMAP target is included on the Debug bus in order to use the 
NGMP in SpaceWire networks. With a d edicated SpaceWire de bug link it becomes 
easy t o us e exi sting infrastructure to c ontrol t he N GMP s ystem. T he S paceWire 
RMAP target will typically provide a debug link bandwidth of 20 M bit/s. This is the 
rate seen in practice w ith t he G RMON de bug software t hrough bridge de vices. The 
hardware core itself runs at 200 Mbit/s nominally and is able to provide the ideal 152 
Mbit/s in throughput. 

3 FAULT-TOLERANCE 
The f ault-tolerance in t he N GMP s ystem is a imed at de tecting and correcting SEU 
errors i n o n-chip a nd o ff-chip RAM. T he L 1 cache in t he L EON4FT co res ar e 
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protected using byte parity and the r egister f ile in ea ch processor is protected using 
TMR. As previously mentioned, t he L2 cache is protected using BCH ECC a nd t he 
external SDRAM memory is protected with Reed-Solomon. The boot PROM will use 
BCH. All RAM blocks in on-chip IP cores are protected with parity, TMR or parity 
DMR. F lip-flops w ill be protected with SEU-hardened library ce lls, if a vailable a nd 
adequate, or TMR otherwise. 

4 IMPROVED SUPPORT FOR TIME-SPACE PARTITIONING AND MULTI-PROCESSOR 
OPERATION 

Beyond s upport f or s ymmetric multiprocessing (SMP) c onfigurations, e.g. w ith a 
central multiprocessor interrupt controller, NGMP also features extended support for 
asymmetric multiprocessing (ASMP) c onfigurations: dup licated interrupt c ontroller 
functionality a nd several t imer u nits a llow r unning separate o perating systems o n 
separate processor cores. 

Each processor core has a dedicated memory management unit (MMU) that provides 
separation between pr ocesses an d operating systems. T he s ystem a lso i ncludes a n 
IOMMU that provides access restriction and address translation for accesses made by 
the DMA units located on the Master I/O bus. The MMU and IOMMU provide access 
restriction and address translation to blocks of memory divided into 4 KiB pages. In 
order to grant selective access to the registers of one and only one peripheral core, all 
peripheral register base addresses are aligned on 4 KiB address boundaries. 

In add ition t o the MMUs in eac h o f t he pr ocessor cores and the I OMMU, memory 
read/write access protection ( fence r egisters) ar e implemented in t he L2 cache. This 
functionality is primarily intended to protect backup software but can also be used to 
add another layer of protection with regard to space partitioning. 

5 IMPROVED SUPPORT FOR DEBUGGING AND PROFILING 
The NGMP includes new and improved debug and profiling capabilities compared to 
existing LEON2FT and LEON3FT devices. The selection of available debug links has 
previously been described. Additional debug support features of the NGMP include: 
AHB trace buffer with filtering and statistics, processor instruction trace buffers with 
filtering, pe rformance co unters for t aking measurements in each pr ocessor co re; 
hardware b reak- and w atchpoints, interrupt time s tamping in o rder to m easure 
interrupt latency and a PCI trace buffer with filtering. 

All performance counters and trace buffers can be accessed via the Debug AHB bus 
without caus ing traffic o n the s ystem buses. T he pr ocessors ca n also acces s t he 
performance counters via the Slave I/O bus. 

6 EXPECTED PERFORMANCE 
Several F PGA down s ized configurations of the N GMP i n the f orm of F ield 
Programmable G ate A rray ( FPGA) pr ototypes h ave been de veloped dur ing t he 
architectural de sign p hase. T o co mpare t he p erformance o f t he N GMP t o pr evious 
LEON2 and LEON3 systems, a small collection of benchmarks have been assembled. 
While n ot pr oviding a n e xhaustive pe rformance pr ofile, t hese benchmarks still 
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provide interesting compare po ints in t he de velopment o f t he LEON processor. The 
benchmarks have been run on the following systems: 

• AT697: LEON2FT, 32 + 16 KiB cache, 5-clock multiplier, Meiko FPU 
• UT699: LEON3FT V1, 8 + 8 KiB cache, 5-clock multiplier, GRFPU 
• GR712RC: Dual core LEON3FT V2, 16 +  16 KiB cache, 5-clock multiplier, 

GRFPU, branch prediction 
• NGMP: Q uad core L EON4FT, 16 + 16  KiB cac he, 2 -clock multiplier, 

GRFPU, 256 KiB L2 cache 
The benchmark collection consisted of the following benchmarks: 164.gzip, 176.gcc, 
256.bzip2, AOCS benchmark, B asicmath_large, C oremark-1.0,  D hrystone-2.0, 
Linpack-DP,  Whetstone. T he t hree first be nchmarks ar e from t he S PEC C PU2000 
suite. A ll benchmarks were co mpiled with G CC-4.3.2 tuned f or S PARC V 8. All 
systems were c locked at 50 M Hz dur ing the tests, us ing 32-bit SDRAM (LEON2/3) 
or 64-bit DDR2 (NGMP). Table 1 shows the performance figures relative to AT697. 

Benchmark AT697 UT699 GR712RC NGMP 
164.gzip 1 

 

0.94 

 

1.1 

 

1.31 

 
176.gcc 1 0.79 0.97 1.3 
256.bzip2 1 0.93 1.06 1.33 
AOCS 1 1.2 1.52 1.79 
Basicmath 1 1.3 1.46 1.62 
Coremark, 1 thread 1 0.89 1.09 1.21 
Coremark, 4 threads 

 

1 0.89 2.05 4.59 
Dhrystone 1 0.94 1.05 1.39 
Dhrystone, 4 instances 

 

1 0.94 1.05 1.39 
Linpack 1 1.2 1.26 1.71 
Whetstone 1 1.94 2 2.22 
Whetstone, 4 instances 1 1.94 3.7 8.68 

Table 1: Relative benchmark scores 
Table 1  s hows t hat t he L EON4/NGMP has ap proximately 30%  better C PI than 
AT697 o n integer benchmarks, a nd up t o 10 0% b etter CPI o n floating-point 
benchmarks. The Coremark benchmark can a lso be run multi-threaded, which shows 
on the high 4-thread results for GR712RC and NGMP. The benchmark will fit in the 
L1 cache, and therefore scales almost linearly with the number of cores. It should also 
be noted that these figures are for systems running on the same system frequency and 
that the t arget f requency for N GMP is significantly higher t han t he maximum 
frequency of the other devices. 

All benchmarks were run using the BCC runtime. Using the Linux SMP OS, multiple 
instances o f D hrystone a nd Whetstone w as r un. These t ests s how t hat pe rformance 
scales better on NGMP than GR712RC, mostly due to wider buses and the L2 cache. 
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7 TARGET TECHNOLOGY 
The baseline t arget technology is t he E uropean S T Microelectronics 65 nm s pace 
technology. Possible backup options for target technology include UMC 90 nm with 
the DARE library and Tower (130 nm) with a library from Ramon Chips. 

Power c onsumption o f t he N GMP ASIC c ore (w ithout IO s) un der w orst c ase 
operating conditions a nd maximum software load is r equired to n ot ex ceed 6W. 
Maximum power consumption in idle mode (no software activity, but conservation of 
status and SEE protection) is required to not exceed 100 mW. 

8 SOFTWARE SUPPORT 
The GRMON debug monitor from Aeroflex Gaisler has been extended to support all 
new functionality included in t he N GMP. T he h ardware p latform pr ovides full 
instruction s et c ompatibility w ith e xisting LEON3FT s oftware a nd a ll s tandard 
compilers that can produce correct SPARC V8 code can be used. Aeroflex Gaisler's 
bootloader c reation t ool M KPROM2 has been extended with support f or bo oting 
ASMP configurations. 

Board s upport pa ckages for t he N GMP w ill be delivered for R TEMS 4. 10, e Cos, 
VxWorks 6.7, Linux 2.6. Other operating systems that are already ported to LEON3/4 
include: LynxOs, ThreadX and Nucleus. 

9 PROTOTYPE 
A functional pr ototype ( FP) t o b e manufactured on e ASIC N extreme2 s tructured 
ASIC technology is currently being developed at Aeroflex Gaisler. Validation boards 
with FP devices are scheduled to be available in Q2 2012. 

Aeroflex G aisler c an c urrently pr ovide do wnsized F PGA pr ototypes o f t he N GMP 
system. The prototypes are described in the NGMP preliminary data sheet available at 
the NGMP website (http://microelectronics.esa.int/ngmp/ngmp.htm). 

10 CONCLUSION 
The N GMP is a S PARC V 8(E) b ased multi-processor ar chitecture that p rovides a  
significant pe rformance increase co mpared to ear lier ge nerations o f European space 
processors, with hi gh spe ed-interfaces s uch as  S paceWire a nd gigabit E thernet on-
chip. The versatile on-chip SpaceWire router broadens the possible app lications o f a  
space pr ocessor c hip. T he p latform w ill have improved s upport f or pr ofiling a nd 
debugging and w ill have a  r ich set o f s oftware immediately a vailable. T he N GMP 
also includes extended support for ASMP configurations and time-space partitioning. 

The NGMP is part of the ESA roadmap for standard microprocessor components and 
it w ill be c ommercialised under fair a nd equal conditions t o al l u sers in the E SA 
member states. The NGMP is fully developed with manpower located in Europe, and 
it only relies on European IP sources. It will therefore not be a ffected by US export 
regulations. 

The N GMP pr eliminary da ta s heet an d other r elated documents ar e po sted at the 
NGMP website following link: http://microelectronics.esa.int/ngmp/ngmp.htm 
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ABSTRACT 
The 18 x SpaceWire router is a new 18 port s tand-alone r outer c omponent c urrently 
being specified by Aeroflex Gaisler. Today t here is no component available o n t he 
world market e xhibiting more t han e ight SpaceWire po rts. T he go al w ith t his new 
development is to provide this missing key component to the ever increasing number 
of customers requiring manifold ports.  

The 18x  r outer i s based on t he G RSPWROUTER co nfigurable S paceWire I P co re 
developed by  A eroflex G aisler. T wo configurations ar e foreseen a s t echnically a nd 
commercially viable. One with 16 SpaceWire LVDS ports and either two SpaceWire 
LVTTL ports o r t wo FIFO po rts a nd t he ot her w ith 16 SpaceWire po rts an d two 
internal AMBA po rts bridging t o e xternal p ins via a P CI interface. Which o f t hese 
solutions will be selected is still open.  

It is also an open item whether the device will include support for SpaceWire revision 
D (ECSS-E-ST-50-12D) and the new SpaceWire-D protocol. 

1 INTRODUCTION 
Currently there is no S paceWire r outer component o n the market w ith more t han 8  
SpaceWire po rts. B oth E SA a nd several c ompanies in t he s pace industry have 
indicated 16 ports as the most viable for routers in the near future. Aeroflex Gaisler 
intends t o provide t his key component w ith a  new 18 po rt SpaceWire router ASIC. 
The design will be based on the GRSPWROUTER configurable SpaceWire router IP 
core [1]. This core supports three different port types: SpaceWire ports, AMBA ports 
and FIFO ports. These will be further explained later in the IP core section. 

Two configurations of the IP core have been identified as potential candidates for the 
final ASIC: One with 16 SpaceWire LVDS ports and two LVTTL SpaceWire ports or 
two FIFO ports (Configuration 1) and the other with 16 LVDS SpaceWire ports and 
two AMBA ports (internal) connected to a PCI interface (Configuration 2). Both will 
be evaluated to determine which one will eventually be used for manufacturing.  

Other considerations m ade f or the A SIC i s w hether to include s upport f or t he 
upcoming revision D o f t he SpaceWire standard (ECSS-E-ST-50-12D) a nd the new 
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SpaceWire-D protocol. The problem is the lack of a schedule for finalization of these 
two standards which might then not be mature enough to fit the schedule of the ASIC.  

This paper begins with briefly presenting key properties of the GRSPWROUTER IP 
core which is the major core in the designs. Then the two configurations are presented 
and compared. T he ne w pr otocols w ill t hen be br iefly introduced followed by a  
motivation for the desired inclusion in the router ASIC. The next section shows some 
platforms a lready a vailable for t he r outer I P w hich c an be us ed for pr ototyping a nd 
evaluating the A SIC c onfigurations. L astly the pr eliminary information about the 
ASIC technology is given. 

2 ROUTER IP CORE PROPERTIES 
The GRSPWROUTER IP core [1] is the central component in both of the suggested 
configurations. I t s upports from 2 t o 31 por ts of  t hree d ifferent t ypes: S paceWire, 
AMBA and FIFO. The SpaceWire ports are normal SpaceWire links and will support 
at least 200 Mbit/s. FIFO ports provide 9-bit parallel interfaces with control signals in 
each direction (read/write) which can be used to interface external units or to cascade 
two or more 18 x r outers w ithout a ny glue logic. T he AMBA po rts i nterface t o an 
AMBA AHB bus us ing DMA o n the bus. All three po rt types connect t o the cor e 
router s witch matrix us ing identical FIFO based interfaces. T here is no  w ay t o 
distinguish the three ports on the SpaceWire packet level and upwards.  

The c onfigurability pr ovided by t he I P c ore makes it us able in many d ifferent 
applications. I t h as a lready been us ed in s everal s tandard rad-hard components o n 
Actel R TAX2000SL and R T P roASIC3 FPGAs [ 2] a nd is also us ed in the N ext 
Generation MicroProcessor (NGMP) [3]  system-on-chip a ctivity f unded by  the 
European Space Agency. 

All mandatory features cur rently in the ECSS SpaceWire s tandard are supported by 
the c ore a s w ell as  s ome a dditional ke y functions not b eing available in other 
implementations e.g. packet distribution. 

3 FEATURES COMMMON TO BOTH CONFIGURATIONS 
This section lists the key features co mmon to both configurations o f the router. The 
list co nsists o f f eatures av ailable in t he r outer IP cor e as  w ell a s ex ternal au xiliary 
interfaces.  

The base of both routers consists of the 16 SpaceWire LVDS ports. Each router port, 
regardless of type, is equipped with a t imer which can be enabled/disabled. It is used 
to prevent deadlocks resulting from stalling source or  destination nodes which could 
lock a port indefinitely. This feature might be introduced in the upcoming revision-D 
of the SpaceWire standard but is already available in this design. 

All a ddressing m odes m entioned i n the s tandard are f ully s upported. Physical and 
logical addresses can be individually enabled to use group adaptive routing or packet 
distribution to any number of physical ports available in the router. The addressing is 
setup using a routing and port setup table.  
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The addressing tables and port FIFOs in the router consist of a considerable amount of 
RAM blocks which can experience SEUs and the contents can thus be corrupted. All 
RAMs ar e pr otected by pa rity D MR w hich means s ingle er rors ar e de tected and 
corrected automatically. FIFO memories do not need any additional mitigation as they 
only c ontain da ta for a  ve ry s hort pe riod until it i s r ead. T he r outing and port s etup 
tables however ar e much larger t han the FIFOs a nd can co ntain static da ta for very 
long periods and are therefore much more susceptible to error buildup. To prevent the 
data from being corrupted with multiple bit-errors the core uses an automatic scrubber 
device w hich pe riodically r efreshes t he r outing-table co ntents. S crubbing does n ot 
have a ny impact o n r outing performance s ince t he r efresh r eads ar e issued o n idle 
cycles. I n the improbable event o f a multiple er ror occurring when pe rforming a 
lookup in t he routing t able the packet being routed will be d iscarded and status bits 
and an e xternal signal w ill be a sserted. I t is t hen up to t he s ystem de signer t o ha ve 
some kind of system monitor handling this situation. 

All configuration and status access are handled through configuration port 0 which is 
accessed using the RMAP protocol [4] from any of the other ports. The allowed ports 
for co nfiguration acc esses c an be r estricted if n eeded us ing several c onfiguration 
options. 

For d iagnostic a nd test pur poses S PI, I 2C, U ART an d J TAG interfaces w ill be 
provided. These low pin count interfaces are suitable in the small package that will be 
used (see below) but at  the s ame t ime have s ufficient ba ndwidth for t he a mount of 
status and configuration in the router internals. As this method is available most of the 
router configuration options have been set to known good values after the reset which 
can then be changed using these interfaces. Very few are available from configuration 
pins at reset. 

4 CONFIGURATION 1 
The first configuration considered for the ASIC consist of the base mentioned in the 
previous section w ith 16  S paceWire LVDS ports a nd in a ddition e ither t wo 
SpaceWire LVTTL or two FIFO ports. The only difference between the two different 
SpaceWire po rt types is t he I /O t ype o f t he pa ds. T he major de sign c hoice for t his 
configuration is whether to include two FIFO ports or two SpaceWire LVTTL ports. 
The t arget package for the router is a  s imple to handle low-pin Q FP w hich is qu ite 
limited and do es r equire reducing the amount of configuration pins even more than 
previously mentioned to fit two FIFO ports. Choosing two LVTTL SpaceWire ports 
instead would save 36 pins but could reduce flexibility of the chip.  

One o f the applications o f the FIFO ports is to cascade one o r more routers without 
any g lue logic. F or this pur pose t he S paceWire por ts w ill w ork e qually w ell a nd 
would in fact simplify matters. In most cases cascading would be done on a PCB and 
it is well understood how to route SpaceWire signals on a PCB. The FIFO interfaces 
are most useful when connecting directly to external processors and memories. To use 
a S paceWire link instead would require t he insertion o f g lue-logic providing a  
complete S paceWire co dec w hich w ould typically be do ne us ing a FPGA which 
increases d esign co mplexity co nsiderably. I t is however a nticipated that the need to 
interface t o ex ternal pr ocessors us ing parallel interfaces w ill be less r equired in t he 
future since most processors will be equipped with SpaceWire interfaces which means 
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it is most likely that the two SpaceWire LVTTL ports will be chosen. This reason is 
also the motivation for considering configuration 2. 

 

Figure: 18x SpaceWire router configuration 1 block diagram 

5 CONFIGURATION 2 
Similar t o the first co nfiguration t he second one has 16 SpaceWire LVDS links but 
instead of FIFO ports or SpaceWire LVTTL ports a PCI interface is used instead. The 
router i s c onfigured w ith t wo i nternal AMBA p orts w hich pr ovide bridging us ing 
DMA to an on-chip AMBA-AHB bus where a PCI initiator/targets core resides.  

Through the PCI interface any PCI master can get access to the whole AMBA AHB 
bus and send/receive SpaceWire packets through the two AMBA ports to any o f t he 
16 SpaceWire links. There is also an AHB slave interface allowing direct access to the 
router c onfiguration po rt. T his s peeds up c onfiguration and s tatus a ccesses 
considerably since t he a lternative w ould be t o transfer R MAP pa ckets o ver t he 
AMBA ports addressed to the configuration port.  

As mentioned in the section for configuration 1 it is believed that the need for external 
parallel interfaces will be less useful in the future and a bus interface like PCI will be 
more appr opriate. A n a lmost identical r outer w ith a P CI i nterface us ing the 
GRSPWROUTER IP core is already in use in an evaluation system at ESA as part of 
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the RASTA [5] framework. It is implemented on a Xilinx Virtex4 FPGA on a CPCI 
board. T his is t hought to b e a more s uitable t ype o f external i nterfacing for fut ure 
systems but the o n-going e valuation pr ocess w ill de termine w hich c onfiguration is 
eventually selected. 

 

Figure: 18x SpaceWire router configuration 2 block diagram 

6 SPACEWIRE REVISION D SUPPORT 
An upc oming r evision D o f t he SpaceWire s tandard is planned f or the n ear f uture 
which contains some changes affecting the router ASIC development. Some additions 
result in old devices po tentially not being forward compatible. I t has to be carefully 
considered if a nd how t hese new features ar e implemented. T he final de tails o f t he 
updates have not been decided yet and there is no date set for when this will be ready 
so there is a considerable risk in implementing these new features before the standard 
is finalized.  

Three changes h ave b een identified as ha ving technical impact. T he f irst o ne i s t he 
addition o f t imers in routers. T his w ill pr obably be o ptional in the s tandard and not 
restricting the implementation details to any larger extent. The GRSPWROUTER IP 
core a lready co ntains a  t imer feature a s pr eviously mentioned w hich makes it 
probable that no changes will be needed to the core.  

The s econd change is a modification o f t he link interface FSM. T wo r equirements 
have been identified [6] t hat pot entially can cause t he codec t o make u nwanted 
transitions. These are unlikely corner cases and very few if any problems have been 
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seen in practice. This will probably not affect backward compatibility with old codecs 
and so the r isk is estimated to be very low to include these fixes in the router. Tests 
will be made dur ing validation o n FPGA t hat no  d isturbances o ccur w ith o lder 
devices.  

The final and most complicated change is the addition of an interrupt code [6]. It uses 
one o f t he r eserved control bit combinations o f t ime-codes and it must therefore be 
made s ure t hat it cannot i nterfere w ith t he normal t ime-code facilities.  Existing 
devices might not be forward compatible with revision D compliant devices due to the 
interrupt code. Some issues with these new codes are still under d iscussion and it is 
not kn own e xactly how it w ill be implemented in the s tandard. T his is t herefore 
indentified as t he pa rt of r evision D c ausing the highest implementation r isk if 
included in t he r outer A SIC. T he de sired w ay t o g o i s t hat t he r outer i s flexible 
enough to allow ports' handling of the new code to be configured individually. In this 
way the router can be used as a device enabling old and new equipment to be used in 
the same SpaceWire network. 

7 SPACEWIRE-D SUPPORT 
There i s a n ew protocol e merging c alled SpaceWire-D [7]  w here D  stands for 
deterministic. T his is a nticipated t o b e w idely us ed in t he future to p rovide 
deterministic and low-latency transfer of control and command information while still 
preserving t he high bandwidth o f SpaceWire. I t basically consists o f a  t ime-slotting 
table replicated in each unit (node or router) in the SpaceWire network. Therefore a  
router needs to have support for SpaceWire-D if it is used in a network utilizing that 
protocol.  

The ma in complication h ere a lso lie s in the fact t he protocol has not been finalized 
and it la cks a  time-table w hen t his w ill be t he case. I t i s not p ossible t o m ake a 
sensible implementation with the information available a t t he moment. S ince t his 
requires RTL changes in the device a specification has to be available very soon for a 
possible inclusion in the router. 

8 PROTOTYPING 
Prototypes for ev aluation o f t he r outer c onfigurations ar e a lready a vailable a nd are 
based o n X ilinx V irtex 4/ 5 FPGAs w ith an a ccompanying e valuation board 
compatible with RASTA. The board provides the possibility to interface both through 
FIFO ports and the PCI interface depending on the configuration. All features planned 
for the ASIC are included and run at full-speed. 

PCI drivers are also under development and will be available before the end of 2011. 
This is a plug and play driver which automatically detects the router design on the PCI 
bus. An A PI is pr ovided for c onfiguring, r eading s tatus, s ending a nd r eceiving 
packets. 
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Figure: 18x SpaceWire router evaluation board with sixteen SpaceWire links 

9 ASIC TECHNOLOGY 
The AS IC will be targeted for a 0.18 µm or smaller t echnology. I t is required to be 
SEE free a nd t olerate a T ID o f at  least 100 kRad. Another important factor is low-
power consumption. The actual process and library is yet to be determined.  

The package is targeted for a simple to handle QFP type. 
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ABSTRACT 
SpaceWire continues to find new usage in satellite systems worldwide.  BAE Systems 
has created a demonstration and software development laboratory focused on rapid 
prototyping of network management, fault diagnosis and recovery algorithms for 
SpaceWire networks in a variety of topologies.  This paper will describe BAE 
Systems’ demonstration laboratory and results to date in topology and application 
modelling.  It will also describe experience adding, implementing and prototyping the 
recently released SpaceWire Endpoint ASIC and describe its potential usage along 
with its support software in spacecraft systems utilizing SpaceWire especially those 
utilizing RMAP and plug and play.   

1 INTRODUCTION 
In 2004, BAE Systems released its SpaceWire ASIC, a combination router and system 
on chip (SOC).  This joint BAE Systems and NASA Goddard based design [1] has 
been used standalone, controlled by its internal embedded microcontroller, and as a 
PCI-connected device to attach to other processor, memory or peripheral functions.  
Based on the success of missions such as the Lunar Reconnaissance Orbiter (LRO) 
[2][3] and future networking requirements of our customers, BAE Systems has 
expanded its planned offering of SpaceWire products to address a wider variety of 
applications including more advanced bridges, remote endpoints and large routers.     

Understanding the ramifications and needs of these expanded networks led BAE 
Systems to setup a networking laboratory targeted for both LVDS and SERDES types 
of fabrics.  The initial network implementations focused on SpaceWire.  Several video 
sources and sinks are tied into the network to provide data for transport.  A RAD750 
processor provides control and network management.  Various network topologies 
have been realized, network management approaches explored and middleware 
software has been developed.  FPGA-based network nodes enabled prototyping two 
new SpaceWire ASICs:  an enhanced system on a chip with a 4 port router and an 
endpoint with a single link.  A large 16 port router and data funnel is also under 
development. 
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2 DEMONSTRATION SETUP AND TOPOLOGIES 
The laboratory is set up with multiple FPGA prototyping boards[4][5] outfitted with 9 
pin micro-d connectors.  FPGAs utilized are Virtex 4 and Virtex 5 of varying sizes.  
These are connected by standard SpaceWire cables to each other to form the various 
network configurations.  Figure 1 shows the configuration used in most of the work 
and Figure 2 shows a photo of the setup.  One Virtex 5 FPGA supports a 12 port 
router/switch, four other smaller Virtex support 4 port endpoints, each tied to a laptop 
to generate video and a LCD display to display video.  A third Virtex 5 FPGA type of 
board, containing the largest Virtex 5, an LX330T, provides a four port connection 
and maximum logic for prototyping.  There is also a Virtex 4 board with sufficient 
LVDS I/O to support a 16 port router/switch. 

A general purpose processor is provided in a small CompactPCI chassis.  A 3U 
RAD750TM board[6], 3U Ethernet and a 6U SpaceWire ASIC evaluation board 
provide an embedded spaceborne type processor with four SpaceWire port 
connections to the network.  One of these is used to interface to a 4Links SpaceWire 
1U Test Board used for diagnostics, package insertion and performance monitoring. 

Most of our connectors, though 9 pin micro-d in size, were not wired to the 
SpaceWire standard.  Thus, the network can only reliably achieve around 100-110 
Mbps by running up to 133 MHz.  This was sufficient to test all behaviors and 
topologies and could provide a ready source of higher frequency errors for the 
network management software to handle. 
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Figure 1 - Demonstration Network Diagram 
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Figure 2 - Photo of Demonstration Laboratory 

SpaceWire[7] supports a variety of topologies as shown in Figure 3.  Rings are used 
to attach strings of processors in an efficient manner, in that only two links are 
required at any point[8].   If a second ring is included this provides a single fault 
tolerant solution making use of 4 port devices like the SpaceWire ASIC.  However, 
the latency between any two points on the ring may grow beyond  an application’s 
performance requirements.  Trees are used to fan out connections to larger numbers of 
nodes when a central switching approach is not possible.  This is used in IEEE 1394 
networks.   Large routers/switches are used when latency is important and thus a 
minimum number of hops from a central resource is possible.  Meshes are used 
between all equal nodes where all have requirements to communicate with other 
nodes.  Hybrids of these four topologies are of course possible and often represent the 
actual implementation in a system.  

Figure 4 captures the effects of each topology and compares between node sizes.  It 
shows a mapping of different numbers of nodes to each of the topologies identified 
and which devices were optimal for each network type.  This confirmed that 
endpoints and routers could be more useful and if available, more likely selected for 
some uses than 4-port bridge implementations.   
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Figure 4 - Topology Affects on Network Attributes 
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3 VIDEO APPLICATION 
To demonstrate a SpaceWire or other medium to high speed network, a variable high 
speed data source and sink is required.  The FPGA boards we used for some of the 
smaller nodes included both a VGA in and a VGA out connection.  Thus, with the 
addition of a laptop for data generation (connected to VGA in), an LCD display 
(connected to VGA out) and some FPGA personalization, we created variable high 
speed network sources and sinks.  Due to the age of the VGA interface, it was not 
easy to find any good descriptions of what an interface device needed to produce or 
accept.  Descriptions were hard to find and then turned out not to match what was 
actually being created or used. Experimentation and probing filled in the gaps that led 
to a successful implementation.  A block diagram of the FPGA design for the video 
application is shown in Figure 5. Each block is an embedded core.  RIFs are bi-
directional FIFO based DMA interfaces between the SpaceWire router and the rest of 
the ASIC.    JTAG and I2C blocks interface to industry standard interfaces. Most of 
the other blocks are self explanatory.   All the demonstration designs included RMAP 
functionality so that all internal registers and connected memory and devices could be 
remotely loaded without device intelligence.   

SpaceWire is a full duplex interface and thus can support video simultaneously in 
both directions.   Full lowest resolution standard color VGA required just over 400 
Mbps.  By changing a color signal to one color, this was reduced to around 150 Mbps.  
This was still more than our simple lab setup could reliably transmit.  Thus, two links 
were used for each video signal with separation at the source and recombining the 
data at the sink.  This technique could easily be expanded to handle larger data 
sources and syncs with additional  SpaceWire ports.   Whether using one link or four, 
this FPGA demonstrates the endpoint function of sourcing data onto or sinking data 
from the network. 

 

Figure 5 - Video FPGA Block Diagram 
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4 BRIDGE / ROUTER FPGA 
The other major demonstration FPGA utilized the larger FPGA boards.  Thus the 
design held all of the typical interface elements in a bridge or router with the 
exception of the PCI Bus, which was not available on these boards.  Figure 6 shows a 
block diagram of this design.  The number of SpaceWire links depended on the 

number of LVDS signals brought 
out to the board connectors.  Three 
implementations were wired, one 
with four ports, one with twelve 
ports and one with sixteen ports. The 
EMC is an embedded 
microcontroller that is used in all 
BAE Systems bridge and interface 
ASICs and along with 4x the 
embedded memory represent the 
biggest addition to the chip.  Using 
the EMC, the ASIC can be used in a 
standalone mode or in a remote 
assist mode.  The UART provides a 
low speed standard debug interface 
for the EMC-based code. 

 

Figure 6 - Bridge / Router FPGA Block Diagram 

5 SPACEWIRE ENDPOINT ASIC 
As a result of the SpaceWire demonstration efforts, three new ASICs are in varying 
stages of development.  The Golden Gate Bridge ASIC[8][9] provides an updated 
RAD750 processor bridge function for the RAD750 and parts are working in the lab.  
A 16 port router is in initial design and will provide a high performance crossbar 
between a 64-bit PCI Bus, 16 SpaceWire ports, internal and external memory and an 
EMC.   Last year, the third design, a SpaceWire Endpoint completed design and this 
year was fabricated on BAE Systems’ radiation hardened RH15 150nm CMOS line.  
A block diagram of this ASIC is shown in Figure 7. 
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Figure 7 - SpaceWire Endpoint ASIC Block Diagram 

The SpaceWire Endpoint ASIC was designed to function where SpaceWire was the 
only system interface, likely at the extremities or remote locations on a spacecraft.   It 
has a single SpaceWire port with a redundant physical layer for fault tolerance.  The 
SpaceWire port is rated to 320 MHz or about 250 Mbps of true data movement.  It 
contains an EMC[9][10] with 32 KB of ECC-protected SRAM so that it can be used 
either standalone or directed through its RMAP registers remotely.  It is a good match 
as a controller for a nanosat or CubeSat class satellite and at maximum speed can 
process at a 16 Dhrystone MIPS rate. It contains a set of matched interfaces to 
connect to a variety of remote devices such as memory, flash, logic, FPGAs, 
subsystems or instruments.  Among these are two I2C, a 32 bit memory with ECC, 

SPI, UART, an 8-bit bi-directional FIFO, 
JTAG Master and SelectMAP.  It also has 32 
discrete signals, various timers and counters 
and a watch-dog timer.  All resources are 
available to the EMC or to the remote 
SpaceWire master.  The JTAG Master and 
SelectMAP allow it to configure and 
mitigate errors from RAM-based FPGAs.    
The SpaceWire Endpoint ASIC layout is 
shown in Figure 8. 

 

Figure 8 - SpaceWire Endpoint ASIC Layout 

6 DEMONSTRATION SOFTWARE 
The software created for the demonstration is what brought everything together and 
controlled it.  Originally written to run on a PC, this software has been ported to the 
RAD750 running VxWorks and works as a middleware layer between an application 
and the typical board support package for the hardware.   A diagram of the software is 
shown in Figure 9.  The demonstration software includes a discovery algorithm that 
looks for different known variations of SpaceWire hardware, “discovers” the network 
hardware and then sets up the network based on the discoveries.  If necessary, this 
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software cooperates with processes in the application.  The software is able to manage 
the network by polling diagnostic registers in the various devices to keep track of 
status. 

The discovery and management software communicates back to a demonstration 
program running on a PC that graphically shows the network, the connections, and 
applications running over those connections.  A screen shot of a demonstration 
network is shown in Figure 10.  Outside nodes represent endpoints while inside nodes 
represent bridges and other routers. Red arrows indicate assignments made for 
application data transfers. 
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Figure 9 - SpaceWire Network Management Block Diagram 

Each of the new ASIC designs as well as all of the demonstration FPGAs contain 
additional diagnostic registers that let the network management software monitor the 
traffic and health of all of the links.  This has also been captured by the demonstration 
software on the PC.  A picture of some software measurements of different links with 

and without traffic during a demonstration run 
is shown in Figure 11.  An additional 
capability was developed and proven to run IP 
packets over a SpaceWire link.  With this 
capability, a spare SpaceWire port may be 
used as a test interface for communication 
with test equipment.  We successfully used 
this to load software and run VxWorks and its 
debuggers on the RAD750 using only a 
SpaceWire link.   A diagram of the test 
hardware and software is shown in Figure 12. 

 

Figure 10 - SpaceWire Network Software Discovery Map 

307



Approved for Public Release - Log # ES-MVA-092211-0153 

 

Figure 11 - Demonstration Software Measurements of Different Links 

 

Figure 12 - SpaceWire Support Software 

7 SUMMARY 
In this paper we have discussed the SpaceWire demonstration laboratory, its hardware 
and software elements and how it has enabled a new set of SpaceWire ASICs and 
software based on elements prototyped and demonstrated in the lab.  These new 
products address potential SpaceWire applications in big and small systems.  The 
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laboratory provides a place to benchmark applications as well as a stepping stone to 
SERDES based future products. 
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1 ABSTRACT 
SpaceFibre is a very high speed serial communications link which is being designed 

for use on spacecraft. A SpaceFibre link connects high data rate payloads into the on-

board data handling system and also interoperates seamlessly with a SpaceWire 

network. The link is able to operate over a copper or fibre optic communications 

medium and can support real data rates of more than 2 Gbit/s improving the data rate 

of SpaceWire by at least a factor of 10. 

University of Dundee is currently developing a SpaceFibre VHDL IP core for ESA 

which is able to operate with an external SerDes device. It is also able to operate with 

the Texas Instruments TLK2711-SP Wizard Link device which includes an 8B/10B 

encoder and other logic as well as the SerDes.  

The SpaceFibre IP core is being used in several ESA studies and will also be 

implemented on a demonstration board. The demonstrator system will use currently 

available radiation tolerant devices including the TLK2711-SP and the Actel RTAX 

FPGA device.  

2 INTRODUCTION 
SpaceWire [1] provides point-to-point and networked payload communication 

services for use on board spacecraft. It connects instruments to mass memory units 

and processing systems and provides the connection from the mass memory to the 

downlink telemetry system. SpaceWire uses bi-directional data links that operate up 

to 200 Mbits/s. Higher speed operation is possible when matched impedance 

connectors are used. SpaceWire is being used on many space missions across the 

world. This success is due to many factors including standardisation, simplicity of 

implementation, performance and flexibility. 

The SpaceFibre standard is designed to work with existing high speed 

serialiser/deserialiser devices. This paper examines the issues raised when using the 

SpaceFibre protocol with the radiation tolerant Texas Instruments TLK2711 device 
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and addresses modifications required in the SpaceFibre specification to enable the use 

of this device in a SpaceFibre implementation. 

3 BACKGROUND 
The University of Dundee has been working on a Gbit/s data link technology for 

several years [3]. Trade-offs of ground data link technologies that could possibly be 

used as the basis for a new spacecraft Gbit/s data link have been carried out. An initial 

outline specification for SpaceFibre was written and various prototypes were 

implemented and tested. 

Several instruments, including synthetic aperture radar and multi-spectral imagers, 

require higher data rates to the mass memory unit. Downlink telemetry systems are 

being designed that can support Gbit/s data transfer leading to the need for similar 

data rates to transfer the data from the mass memory unit. There is a growing 

requirement for a data communication link with an order of magnitude higher 

performance than SpaceWire. Standardisation, simplicity of implementation and 

flexibility are also import characteristics that need to be provided for a new data link 

technology to be successful. Furthermore, it must be possible to implement the high-

speed serial interface in radiation tolerant, space-qualified technologies. 

4 SPACEFIBRE CODEC 
An overview of the SpaceFibre CODEC architecture is provided in Figure 1. 

There are nine conceptual layers to the SpaceFibre CODEC: 

Virtual Channel and Flow Control: responsible for quality of service and flow 

control over the SpaceFibre link. 

Broadcast: responsible for broadcasting short messages across a SpaceFibre network 

and for receiving and checking those messages. 

Framing: responsible for framing SpaceWire packets data, broadcast messages and 

FCTs to be sent over the SpaceFibre link. It is also responsible for scrambling 

SpaceWire packet data for EMC mitigation purposes. 

Retry: responsible for recovering from transient and persistent errors on the 

SpaceFibre link, and for reporting errors and link failure. Detects missing and out of 

sequence frames. 

Lane Control: responsible for operating several SpaceFibre links in parallel to 

provide a higher data throughput and to provide redundancy with graceful 

degradation. 

Link Control: responsible for initialising the link, detecting link errors and re-

initialising the link after an error has been detected. 

Encoding/Decoding: responsible for encoding data into symbols for transmission and 

decoding symbols into data for reception. 
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Serialisation: responsible for serialising and de-serialising SpaceFibre symbols so 

that they may be transferred over the physical medium. 

Physical: responsible for transferring the electrical signals across a fibre optic or 

copper medium. 

SerDes Interface

Link Control Interface

Retry Interface

Serial Interface

Encoding/Decoding Interface

Virtual Channel Layer

Retry Layer

Link Control Layer

Encoding Layer

Serialisation Layer

VC Interface

Frame Interface

Framing Layer

Physical Layer

Lane Control Interface

Lane Control Layer

Broadcast Interface

Broadcast Layer

 

Figure 1 SpaceFibre CODEC architecture overview 

5 TLK2711 WIZARD LINK 
Wizard link [4] is family of high-speed serial communications devices. One of these 

is available in radiation tolerant form: the TLK2711-SP. This device contains both a 

transmitter and receiver and offers data rates from 1.28 to 2.0 Gbits/s (1.6 to 2.5 

Gbits/s data signalling rates). The transmitter takes in 16-bit wide serial data, encodes 

it using 8B/10B encoding and serialises it for transmission over a VML differential 

signal pair. The receiver takes the serial data, de-serialises it, and performs 8B/10B 

decoding to provide the 16-bit parallel data. The TLK2711-SP is currently the device 

of choice when the data rate requirements exceed 1Gbit/s and it is widely used in a 

number of missions. 

The TLK2711-SP device is attractive for use within a SpaceFibre CODEC as it 

provides the essential high-speed serialisation and de-serialisation technology, which 

is difficult to implement in a FPGA or ASIC unless radiation tolerant phase-locked 

loops are available in those devices. A complete SpaceFibre interface could be 

implemented using a radiation tolerant FPGA for the higher layers of the SpaceFibre 

protocol and a TLK2711-SP device for the Serialisation layer and part of the 

Encoding layer. The problem is that there are some characteristics of the TLK211-SP 

which prevent it being used to implement the initial SpaceFibre specification. The 

SpaceFibre specification needs to be modified to be able to use the TLK2711-SP and 

serialiser/de-serialiser devices with similar characteristics. 
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The following sub-sections describe the TLK2711-SP operation in some detail. The 

transmitter operation is described first, followed by that of the receiver.  

5.1 TLK2711-SP TRANSMITTER 

A block diagram of the TLK2711-SP transmitter is shown in Figure 2. Note that both 

the transmitter and receiver are provided in a single device. 

The parallel data input to the TLK2711-SP transmitter comprises two bytes of data 

(TXD0-7 and TXD8-15) along with two control/data flags (TKLSB and TKMSB 

respectively). The control/data flags are high when the corresponding data byte 

contains a control code (K-code) and low when it contains data. The two data bytes 

and the control/data flags are latched into an 18-bit register on the rising edge of the 

TXCLK signal. Each data byte and its corresponding control/data flag is passed to an 

8B/10B encoder, which converts them into a 10-bit code. The two 10-bit codes are 

passed to a 2:1 selector which selects the least significant 10-bit code first (generated 

from TXD0-7) followed by the most significant 10-bit code (generated from TXD8-

15). Each 10-bit code is serialised in turn by a parallel to serial converter with the 

least significant bit being sent first. The serial data stream is passed to a differential, 

voltage mode logic (VML) driver for sending over a 50 ohm medium. 

The TXCLK signal must be a continuous clock with a frequency in the range 80 to 

125 MHz. This is used to register the data bytes and control/data flag into the 18-bit 

register, to drive the 10-bit code selector, and as the input to the clock synthesiser 

which multiplies up TXCLK by 20 to provide the clock to drive the parallel to serial 

converter. This means that the data signalling rate on the serial outputs is 20 x 

TXCLK, whereas the data rate is 16 x TXCLK (due to the 8B/10B encoding). The 

clock synthesiser also provides a reference clock for the clock recovery circuitry in 
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Figure 2 TLK2711-SP Transmitter 
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the receiver. 

Copper transmission media have higher losses at higher frequency. This is seen as a 

slow rising and falling edges in the eye diagram at the receiver. To mitigate this 

problem it is possible to apply pre-emphasis to the transmitted signal: increasing the 

amplitude during the first part of the signal which compensates for the loss of this part 

of the signal through the transmission medium. Two levels of pre-emphasis may be 

selected using the PRE input. When low the pre-emphasis is 5%, when high it is 20%.  

5.2 TLK2711-SP RECEIVER 

A block diagram of the TLK2711-SP receiver is shown in Figure 3. Note that both the 

transmitter and receiver are provided in a single device. 

The received serial data is received on the RXP and RXN pins and converted to a 

single ended signal inside the device. The TLK2711-SP device includes line 

termination at the input to the receiver. The received signal is fed via a pair of 

multiplexers to a serial to parallel convertor and to an interpolator and clock recovery 

block. The interpolator and clock recovery block recovers the received clock, to 

provide bit and word synchronisation. 

Bit synchronisation is achieved using a phase locked-loop (PLL) that takes the 

transmit bit clock from the transmitter (SYNCLK) as a reference and provides an 

output frequency locked to the transitions on the received serial bit stream. To be able 

to do this the frequency of the transmit bit clock and the receiver bit stream must be 

almost the same i.e. within +/- 100 ppm. There must also be a sufficient number of bit 

transitions in the received serial bit stream for the receiver PLL to lock on to. This is 

guaranteed by the use of the 8B/10B encoding, one of the characteristics of which is 

plenty of bit transitions in each 10-bit code. 
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Using the bit and word synchronisation signals from the interpolator and clock 

recovery block, the serial data is converted to a correctly aligned pair of 10-bit codes. 

The two 10-bit codes are decoded by a pair of 8B/10B decoders, each providing an 8-

bit data byte and a control/data flag RKMSB and RKLSB). These signals are 

registered in an 18-bit register.  

6 TLK2711 COMPATIBILITY WITH SPACEFIBRE 
The TLK2711 Wizard Link has some anomalies and features which made it 

functionally incompatible with the initial SpaceFibre specification. The inclusion of 

support for the TLK2711 device requires some adjustment to the layering and 

functionality of the SpaceFibre standard. 

The functions of the device which can be used with the current SpaceFibre standard 

include: 8B/10B encoding and decoding, serialiser and deserialiser, line driver and 

receiver, clock recovery, and symbol synchronisation. 

6.1 PROBLEMS WITH THE TLK2711-SP 

The functions of the TLK2711 device which are not compatible with the initial 

SpaceFibre specification are now discussed.  

Bit-Stream Inversion: The TLK2711 device does not support bit-stream inversion 

which is very useful to aid high-speed board layout. Bit-stream inversion should be 

mandatory for new devices, but optional for legacy devices. While legacy devices, 

like the TLK2711-SP, are being used bit inversion on the printed circuit board is not 

permitted. 

Bit-Synchronisation: Bit synchronisation and symbol synchronisation are performed 

internally in the device but status information is not provided to indicate that bit 
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Figure 3 TLK2711-SP Receiver 
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synchronisation has taken place. This impacts the receive synchronisation state 

machine, which used the bit-synchronisation signal. 

Parallel Loopback: The device does not have the capability to support parallel 

loopback operation. This is not a serious limitation as the TLK2711-SP does provide 

the more important serial loopback capability. Parallel loopback needs to be made 

optional in the SpaceFibre specification. 

Symbol Synchronisation: The TLK2711-SP does not support symbol 

synchronisation on negative disparity commas. This leads to the possibility of the link 

never being synchronised depending on the data being sent over the link. In 

SpaceFibre data and control words each contain four symbols with a data word 

decoding to a 32-bit data value. A synchronising control word starts with a comma in 

the least significant symbol position which is sent first. When this is detected in the 

receiver both symbol and word synchronisation can be performed. To support symbol 

and word synchronisation in the TLK2711-SP it is necessary to send two 

synchronisation control words, one after the other, and to ensure that the symbols 

following the comma in the word have even disparity.  If the initial running disparity 

is negative, the first synchronisation control word will contain a positive disparity 

comma, and synchronisation will be performed successfully. If the initial running 

disparity is positive, the first synchronisation control word will contain a negative 

disparity comma, and synchronisation will not occur on that comma, but the running 

disparity will now be negative. The following three symbols all contain even disparity 

so the running disparity will be negative when the subsequent comma has to be sent. 

This comma with therefore have positive disparity and synchronisation will occur on 

this comma. The solution is to ensure that the control words being used for link 

initialisation start with a comma and are followed by three symbols with even 

disparity, then symbol and word synchronisation will be ensured during link 

initialisation. This solves the problem with synchronisation, but there is another 

problem when bit inversion is implemented. It is possible that the symbols forming 

the link initialisation are inverted when they are received. It is therefore necessary for 

the symbols forming the initialisation control word to have bit-wise inverse symbols 

that are both valid and also have even disparity. The initialisation control words for 

SpaceFibre have now been carefully selected to exhibit these properties. 

Interface: The TLK2711-SP has a 16-bit interface (16 data bits + 2 D/K bits). The 

32-bit data and control words from SpaceFibre have to be multiplexed over this 

interface and recovered with correct alignment in the receiver. The SpaceFibre 

specification needs to define the interface to the 8B/10B encoders in such a way as to 

permit different interfaces: 8+1, 16+2, or 32+4. 

Word Synchronisation: The TLK2711-SP synchronises commas in the least 

significant byte position of a 16-bit word. The SpaceFibre specification needs to 

specify that commas are in the least significant symbol position of the control words. 

A means of aligning two 16-bit words into a 32-bit data or control word is required in 

the receiver. 

Error Indication: The TLK2711-SP uses an invalid symbol to indicate the 

occurrence of errors in the receiver: K0.0 indicates the reception of an invalid symbol 

or the detection of a disparity error. This error indication must be decoded for use in 

the SpaceFibre receive synchronisation state machine. 
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Line Drivers and Receivers: The TLK2711-SP uses Voltage Mode Logic (VML) 

rather than Current Mode Logic (CML). The fibre optic components for SpaceFibre 

have been designed with CML in mind. CML provides better conducted emissions 

than VML. It is possible to translate from CML to VML using resistors so this is not a 

significant issue. 

6.2 REVISED SPACEFIBRE ARCHITECTURE 

It is important that SpaceFibre defines an interface to the lower layers which is 

compatible with different serialiser/de-serialiser devices. It may then be necessary to 

adapt a particular device to this common interface. The resulting architecture is 

illustrated in Figure 4. 

There are two interfaces identified in this revised architecture which are relevant to 

serialiser/de-serialiser devices: the Encoding/Decoding interface and the SerDes 

Interface.  

The Encoding/Decoding interface provides an interface which transfers control and 

data words. The Encoding layer is then responsible for the 8B/10B encoding of these 

words into groups of four symbols, which are then passed to the SerDes interface for 

serialisation and transmission. The Encoding layer receives unsynchronised parallel 

data over the SerDes interface and performs symbol synchronisation, 8B/10B 

decoding, and word synchronisation. The resulting stream of data and control words 

are passed out of the Encoding/Decoding interface. The Encoding layer also includes 

the Receive Synchronisation State Machine and an Error Decoder which translates 

error indications from the 8B/10B decoder into a form suitable for the Receive 

Synchronisation State Machine to use. 
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Figure 4 SpaceFibre CODEC transceiver supporting TLK2711 

The SerDes layer contains the serialiser, line driver, line receiver, de-serialiser, bit 

clock recovery, and an optional bit-stream inverter. 

The functions contained in the TLK2711-SP are shown in pink in Figure 4 and those 

that are required to adapt this device to the common Encoding/Decoding interface are 

shown in green. 

7 CONCLUSION 
SpaceFibre is designed to meet the high data-rate, onboard communication needs of 

future spacecraft. The requirement for radiation tolerant and space-qualified approach, 

obliges a pragmatic approach to the standard specification which permits the use of 

existing space-qualified components, without constraining the functionality and 

performance of SpaceFibre. A key component for SpaceFibre in the short term is the 

TLK2711-SP device which provides 8B/10B encoding/decoding and serialisation/de-

serialisation functions in a radiation tolerant, space-qualified device. The SpaceFibre 

specification has been revised to permit the use of this and other SerDes devices with 

similar limitations. The SpaceFibre specification has been layered to permit ready 

adoption of this and future SerDes devices. 
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ABSTRACT 

SpaceWire is becoming a preferred protocol for board to board communication over a 
backplane in addition to its existing use over cabled interfaces, replacing other 
protocols due to its simplicity and readily available flight quality physical layer 
devices, IP cores and test equipment. However, without specific guidelines for 
implementing SpaceWire over a backplane, designers are left to make trade decisions 
regarding connector selection, layout design rules and test accessibility issues. This 
paper will discuss NASA’s Goddard Space Flight Center’s implementation of high 
speed SpaceWire over backplane on James Webb Space Telescope and other 
missions. 

1 INTRODUCTION 

SpaceWire has been used for several years for communication between spacecraft 
sub-systems over a shielded twisted pair cable interface. The SpaceWire interface is 
well suited for long length cables, while maintaining the signal quality required for 
high speed propagation. The SpaceWire standard has well defined specifications for 
the necessary design considerations for communicating over cabled interfaces. 

However, SpaceWire can also be used within a sub-system for communicating 
between cards connected by a printed circuit board (PCB) interface (such as a 
backplane). SpaceWire has several advantages over other backplane based 
communication protocols like CompactPCI; with its relatively simple software 
interface, fault tolerance support, high data throughput and ease of expansion using 
nodes and routers. However, unlike CompactPCI, which has a well defined backplane 
standard; there are no rules or recommendations established in the SpaceWire 
standard that addresses the unique challenges of designing this interface for a 
backplane. While several cable based design considerations still apply, there are other 
design considerations that are unique to this application but not addressed in the 
SpaceWire standard. This can leave designers unsure of how to implement the 
protocol to achieve desired performance as well as meet adequate design margins.  

Test and verification access is another area where currently available test equipment 
and test methodologies may not be adequate when the interface operates across a 
backplane. While most available test equipment has built in interfaces to the 
SpaceWire defined connector; it is up to the design engineer to consider accessibility 
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issues in the backplane environment and plan accordingly. If this is not considered 
early enough in the design phase, it may not be possible to accommodate later in the 
project’s development.  

2 OVERVIEW 

This paper takes a step by step look at the various design trades that need to be made 
when designing SpaceWire interface over a backplane. The topics covered by this 
paper include the following:  

• Connector selection: issues to consider include choosing a connector that 
is suited for high reliability applications and has the appropriate 
characteristics for high speed signal propagation 

• Impedance control: specifying a stackup and routing constraints to meet 
differential impedance requirements 

• Signal integrity and crosstalk: impacts to the design, methods of mitigating 
problems, analysis tool options 

• Power integrity: methods of mitigating power distribution problems, 
analyzing return current flow, analysis tool options  

• Test and accessibility: ways of providing probing access, verifying 
margins, interfacing to available validation and test equipment 

3 DESIGN CONSIDERATIONS 

In a backplane environment, multiple cards plug into the common backplane, high 
speed signaling passes between cards through PCB connectors across the peripheral 
cards and backplane PCBs. To ensure functionality and margins, several things need 
to be considered as part of both the peripheral cards and backplane PCB designs. 

3.1 CONNECTOR SELECTION 

Connector selection is an integral part of doing design for any high speed interface, 
and SpaceWire is no exception. The SpaceWire standard specifies 9-pin Micro-D 
(MDM) connectors, cabling and shielding, however, none of these apply well to a 
backplane interface. Peripheral cards and backplanes typically use PCB mounted 
connectors, which, if not selected correctly, can result in problems ranging from 
unreliable operation to complete failure at the required speeds.  

Rugged connectors traditionally used for backplane interface design in space flight 
often have high inductance/capacitance contacts which do not adequately pass high 
frequency signals. Additionally, the connector contacts may not be properly matched 
to the trace impedance, causing an impedance discontinuity which may also degrade 
performance. Not all vendors provide high speed propagation data for their 
connectors. However more and more vendors are providing this service, most often 
vendors whose products are commonly used for high speed applications and not for 
lower speed space flight applications. For the JWST and ICESAT-2 missions the 
backplane connectors chosen for their high speed SpaceWire applications have 
excellent high speed performance characteristics up to 1GHz [1]. This data was 
obtained from the vendor (Hypertronics Corporation) who designed these connectors 
for CompactPCI – another high speed application. Hypertronics makes TDR and eye 
pattern data readily available along with connector models for customers to use to 
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validate their designs by simulation. Based on their modelling, they are also able to 
recommend an optimal pinout for arranging the differential pairs that minimizes 
interfering noise. Figure 1 shows the recommended pinout and routing pattern for 
alternating the “+” and “-“ of each differential pair within a column, separated by 
ground and staggered from the location of the “+” and “-“ pair in the adjacent column 
of the connector. 
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Figure 1: Connector Arrangement of a typical high density BP connector 

This figure also demonstrates the difficulty with routing differential signals through 
the connector’s pin grid. With densely spaced pins within a single connector and often 
multiple connectors lining up along the backplane, only a single routing channel may 
be routed between the pins for a single differential pair.  

Connector vendors may also provide guidance on the size of the pad and antipad of 
the connector to reduce noise, EMI, jitter, improve manufacturability and reduce 
reflections that can in turn reduce data rates [2].  

Designers can use various modeling tools to verify vendor data and ensure 
performance meets their custom requirements before locking down a design. This 
type of Multi-Board simulation can provide both single ended and differential 
simulation waveforms, along with eye pattern data [3].  

 

Figure 2: Differences in Signal Quality Depending on Connector Type 

While all connectors make electrical connections, not all electrical connections are 
well suited for high speed propagation. A connector that might be qualified for flight 
and perfectly suitable for low edge rate signaling, may not function at the required 
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speeds for SpaceWire. Figure 2 shows simulated waveforms of a signal propagating 
between peripheral cards through a backplane using connectors with different R, L, C 
parasitic values. The contact R, L, C affects the path impedance and delay of the 
signal and can greatly change signal behaviour.  

3.2 IMPEDANCE CONTROL 

The electrical signaling requirements for SpaceWire over a backplane are the same as 
over a cabled interface, thus the 100-ohm differential impedance rule still applies. 
Engineers must take care to specify a set of routing rules and a PCB stackup that will 
meet these criteria over the entire length of the trace pair.  

Figure 3 shows a typical impedance controlled stackup [3]. However, it is not enough 
to specify rules that meet the theoretical impedance numbers. The stackup and routing 
rules must also comply with a PCB vendor’s manufacturing constraints. Vendors have 
material and process variations that mean that a set of rules that work for one vendor 
may not work for another and meet the same tolerances. Even with the same vendor 
not all materials achieve the same results. Surface finishes and the coatings used on 
the surface layers can change the impedance of traces routed on the outer layers. All 
of this must be considered upfront when choosing a vendor.  

 

Figure 3: Example Impedance Controlled Stackup 

Another trade is the differential trace routing topology. Two structures are commonly 
used for differential routing - edge coupled and broadside. With edge coupled, the 
differential pair is routed on the same layer side by side. With broadside the pair is 
routed on adjacent layers over-under. Figure 4 shows the difference between these 
two topologies. Edge coupled often presents a better solution for tighter impedance 
control. On the other hand, for broadside differential process and materials variations 
might have a larger impact on impedance variations. Vendors may not guarantee the 
tolerance for each broadside routing layer-pair [4].  

 
Edge - Coupled Broadside 
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Figure 4: Edge-Coupled vs. Broadside Differential Routing 

While edge-coupled may be superior for impedance control, it can be difficult to have 
enough space between high density connector land patterns to route a differential pair 
with the desired width and spacing for edge coupled impedance control as shown 
previously in Figure 1. This creates the need for tightly coupled differential routing, 
which comes with its own difficulties. Broadside routing can provide additional 
routing density, however depending on the di-electric thickness, may or may not 
create tightly coupled differential traces as well. Trades need to be made to select the 
appropriate structure that does not impose impossible constraints on either the design 
or the manufacturing process. If these things are not determined upfront, a design may 
not be manufacturable or may not be able to meet the 100 ohm differential impedance 
requirements.  

3.3 SIGNAL INTEGRITY AND CROSSTALK CONCERNS 

Signal Integrity and crosstalk concerns are not unique to SpaceWire. Any high speed 
PCB design has to pay special attention to ensuring proper signal integrity and 
minimizing crosstalk. When SpaceWire signals are not isolated by cable shielding and 
are routed on a backplane, they are far more susceptible to noise. This problem is 
exacerbated by the fact that LVDS SpaceWire signals may run on the same layer or 
adjacent to densely routed noisier single ended traces, such as LVTTL.  

Differential traces need to be routed in a way to minimize the chance of coupling from 
an adjacent differential pair or an adjacent single ended trace, while at the same time 
maintaining the required coupling to meet differential impedance. Coupling can occur 
on the backplane or on the peripheral cards which source the signals or the 
destinations where they end. Traces run on adjacent layers, because of thin dielectric 
materials the separation between two signal layers might be less than a typical trace 
separation, causing more crosstalk than from signals routed on the same layer. 
Additionally, unlike in a twisted pair cable, aggressor nets can, and usually, couple 
asymmetrically, as opposed to common mode coupling, to each trace in the pair 
causing timing and jitter problems. It is important to ensure possible aggressor nets 
are sufficiently distant from the pair that coupling effects are insignificant.  

Signal integrity can also be affected by the connector selection as mentioned earlier, 
the difference in trace length, and the driver or receiver devices used for the link. A 
practical approach to trace matching should be taken by considering the skew budget 
instead of trying to obtain an exact match in trace length. Adding serpentine delay 
lines in order to match a pair can cause more degradation of the circuit than having a 
practical length difference that still meets the skew budget of the fastest rise and fall 
times at the receiver [4]. 

Signal integrity analysis tools provide the best ways to trade these issues and quantify 
the noise risk. Eye pattern analysis can give a designer early indication of problems 
that might occur due to impedance mismatches or the particular type of connector and 
driver-receiver devices. Crosstalk can also be verified using simulation tools in a 
multi-board simulation environment that provides worst case numbers for coupling 
accumulated over the entire route. This eliminates the risk of bit failures that may only 
happen intermittently under certain switching situations. Corner case simulations can 
be used to verify margins. Figure 5 and Figure 6 show examples of simulation tool 
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results that designers can use to verify their designs before fabrication, avoiding costly 
respins and compromising mission success [3].  
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Figure 5: Example Signal Integrity/EMC Simulation Results 

Type E-Net Receiver Meas. Source Contrib
crosstalk bp/1/net/AD21 bic/1/U1-100 354.1 AD20/bic/1/U1-104 186.9
crosstalk bp/1/net/AD21 hk/1/U50-100 257.4 AD20/hk/1/U50-104 165.9
crosstalk bp/1/net/AD23 bic/1/U1-94 240.3 AD21/bic/1/U1-100 161.3
crosstalk bp/1/net/AD23 sbc/1/U1-G5 221.9 AD21/bic/1/U1-100 44.3
crosstalk bp/1/net/AD21 sbc/1/U1-J7 217.6 AD20/bic/1/U1-104 167.5
crosstalk bp/1/net/AD20 bic/1/U1-104 192.3 AD21/bic/1/U1-100 192.3
crosstalk bp/1/net/AD23 fpap1/1/U1-94 182.8 AD21/hk/1/U50-100 35.7
crosstalk bp/1/net/C_BE3_N sbc/1/U1-J8 180.3 AD23/sbc/1/U1-G5 180.3
crosstalk bp/1/net/AD20 hk/1/U50-104 169.5 AD21/hk/1/U50-100 169.5
crosstalk bp/1/net/AD20 sbc/1/U1-F1 160.4 AD21/sbc/1/U1-J7 160.4
crosstalk bp/1/net/C_BE3_N fpap1/1/U1-86 150.3 AD23/fpap1/1/U1-94 150.3
crosstalk bp/1/net/AD21 fpap1/1/U1-100 150.2 AD20/fpap1/1/U1-104 112.3
crosstalk bp/1/net/AD21 fpap3/1/U1-100 148.5 AD20/bic/1/U1-104 99.2
crosstalk bp/1/net/AD23 hk/1/U50-94 145.9 AD21/hk/1/U50-100 72.5  

Figure 6: Example Crosstalk Simulation Results 

3.4 POWER AND GROUND NOISE 

When routing SpaceWire on a PCB, care must be taken to ensure proper routing of 
the ground plane as well as minimizing noise on the power delivery network (PDN). 
In a backplane environment there is no shielded cable that runs the differential pairs 
across large distances, so the shielding must be handled via ground routing on the 
PCB itself. Care needs to be taken to design the power distribution network where 
noise transients are adequately minimized. This includes having adequate decoupling 
capacitors but more so inter-plane capacitance that is effective at higher frequencies 
where decoupling capacitors are not effective. Simulations can again be used to verify 
PDN noise and margins.  

Another important element is the location of power and return planes and the impact 
of return currents on inducing noise on other signals or planes. Differential traces are 
best routed adjacent to a ground reference plane and not crossing planes through vias, 
which can have unintended results with return currents and induced reverse crosstalk. 
This is true for the single ended signals that may share the same PCB. If care is not 
taken on providing for a clear return path, then unaccounted for reverse crosstalk may 
induce noise onto the differential signals reducing noise margins. 

4 TEST AND ACCESSIBILITY 

When designing backplane distribution  for SpaceWire, test and accessibility 
considerations must be made during the design phase as access cannot be built into 
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the system once the PCB’s are fabricated. Again, off the shelf SpaceWire test 
equipment is designed to interface to the standard 9 pin MDM connectors, thus 
without necessary access points, – test and verification when peripheral cards are 
installed into the backplane may prove to be impossible.  

4.1 ON-BOARD PROBE ACCESS 

Eye pattern measurements are a common way of verifying performance and margins. 
These measurements are made by attaching a differential probe near the receiver and 
apply to both cable and backplane based systems. If access is not designed into the 
PCB, optimal measurements cannot be made and the results will be inaccurate. 
Designers should consider placing test terminals close to the receiver in a 3 pin 
arrangement that complies with the dimensions of the particular model of differential 
probe with ground pin that will be used during testing. This makes it possible to 
properly connect a measurement probe without degrading the measurement. However, 
care must be taken that the type and placement of the test terminal will not degrade 
the signal itself. Modeling can again be done to ensure that the location of the 
terminal or the via used does not adversely affect the signal.  

Another potential problem is being able to access the test terminal itself. If the card is 
installed into a backplane next to other cards, that that test terminal may not be 
accessible. During testing it may not be feasible to demate the card and test it on a 
bench top environment where probe access is possible or recreation of the problem 
may require the existence of the other cards in the system. Extender cards are an 
excellent way to provide access to a single card when installed in a system. However, 
extender card designs have to take signal and power integrity issues into consideration 
and may need to be custom designed for this purpose. Because adding an extender 
changes the trace length, any differences in propagation delay and skew must be 
accounted for post measurement. Multi-board simulations can again be used to 
validate the extender card design, and identify differences between the extender and 
non-extender signaling by correlating the simulated vs. actual measurement results.  

4.2 INTERFACING TO TEST EQUIPMENT AND ANALYZERS  

Test requirements often dictate the need to use link analyzers or other test equipment 
for functional and margin testing of the SpaceWire interface. Such equipment is likely 
to be available only with the standard 9 pin MDM interface. Duplicating test features 
with custom ground support equipment can cause an impact to schedule or be cost 
prohibitive. Thus ensuring that existing ground support equipment (GSE) can be used 
without modification is a goal designers must achieve.  

One way to accomplish this is to include the footprint of a PCB mounted MDM on the 
peripheral card itself. However this requires additional space and may degrade the 
SpaceWire signals due to the location of additional stubs and vias. In this case an 
extender card and/or a test backplane with breakout connectors are likely to provide 
the best solution. In either of these conditions the unit under test is installed into the 
extender or test backplane. The extender or test backplane includes a breakout 
connector to a PCB mounted MDM connector to which test equipment can be readily 
connected. This offers a way to test the board in a similar arrangement to the standard 
cable interface without incurring any additional development cost. Figure 7 shows an 
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arrangement where the peripheral card backplane connector is installed on one side of 
a test backplane with breakout connectors on the back.  

 

 

Figure 7: Peripheral Card Test Access 

Designers need to accommodate the proper mechanical mounting of the PCB mounted 
MDM. A ground connection to the metal shell of the connector should be maintained 
such that the SpaceWire cable used for interfacing to the test equipment has the same 
grounding path as a panel mounted MDM. Without taking this into consideration it is 
possible to damage of degrade the flight and/or test hardware. Many PCB mounted 
MDM connectors do not include a metal body, so care must be taken when selecting a 
connector to provide proper grounding.   

4.3 CONCLUSION 

This paper has taken a brief look at some of the various complexities regarding a 
backplane distribution system for SpaceWire. While SpaceWire provides an excellent 
solution for board to board interfaces within a backplane distribution system, failure 
to consider the issues unique to this environment risk degradation of system 
performance, and even mission failure. 
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ABSTRACT 
The NEXTAR (NEC Next-generation Star) standard platform provides a payload 
application development framework based on deterministic communication protocol 
through SpaceWire and Remote Memory Access Protocol (RMAP), and system 
integration can be completed in a short time without reducing reliability.  The 
protocol layer for time slot control is separated from re-transmission and redundancy 
control protocol layer in order to implement determinism in the communication 
protocol for the NEXTAR standard platform, because RMAP packet format, which 
has inherent transaction capability, can be fully exploited for diagnosis and assured 
transmission leaving the time slot control capability within SpaceWire protocol layer.  
This scheme is formalised in SpaceWire-D draft specification. 

1 DETERMINISM REQUIRED FOR SATELLITE BUS SYSTEM 
Small satellites are expected to be used widely for remote sensing purposes.  Since the 
earth observing satellite are required to be put on orbit promptly for commercial use 
as well as scientific purposes, assembly and integration duration are desired to be as 
short as possible.  NEXTAR standard platform responds to this need by providing 
determinism without any modification on SpaceWire and RMAP protocol. 

SpaceWire is often used for payload subsystem because of its high-speed transmission 
capability.  We also use SpaceWire for the bus system in order to unify testing 
environment for satellite bus and payload, and additional characteristics are required 
on SpaceWire.  The major requirement is determinism, and it is going to be 
incorporated in the additional specification of SpaceWire discussed as SpaceWire-D 
in the SpaceWire working group.  ‘D’ stands for determinism. 

One reason of the usefulness of deterministic implementation of SpaceWire is 
effectiveness for reducing test cases during the validation of communication among 
onboard equipments.  Deterministic communication protocol is also useful for 
employing as-built equipment, because those equipments often accommodate 
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deterministic communication characteristics for the transmission of command and 
telemetry based on legacy protocol like MIL-STD-1553B, UART, or CAN. 

2 DETERMINISM IMPLEMENTATION EXPLOITING RMAP PROTOCOL 
Existing SpaceWire and RMAP protocol specification is to be used without any 
modification, in order to keep compatibility.  The specifications we use are the 
original SpaceWire protocol, and two upper layer protocols, which are Protocol 
Identification and RMAP.  The implementation scheme has been established through 
scientific satellite projects as ASTRO-H [1]. 

2.1 UTILIZATION OF RMAP PACKET FORMAT 

One interesting thing about RMAP is that it has transaction control capability within 
itself.  RMAP read and write reply packets have several characteristics for 
determinism.  They have Cyclic Redundancy Check (CRC) code and Status Field in 
RMAP layer.  Then also have End of Packet (EOP) and Error End of Packet (EEP) 
code in SpaceWire layer.  Fault detection function can be implemented without 
modifying SpaceWire and RMAP protocol. 

2.2 UTILIZATION OF RMAP TRANSACTION SEQUENCE 

Write action and Read action are specified in RMAP, as well as transaction identifiers 
in RMAP read reply and write reply packets.  Therefore assured transmission can be 
achieved without any modification on RMAP specification. 

3 PROTOCOL LAYER FOR SCHEDULING AND ASSURED TRANSMISSION 
The conventional protocol used in Japanese scientific satellites data handling system 
has the same capability as RMAP.  Physical layer and lower portion of data-link layer 
are dedicated, whereas we could replace the layers with SpaceWire and RMAP.  It is 
possible to maintain the scalability as wide variation on configuration and size using 
SpaceWire and RMAP, which is required for those satellites, and NEXTAR standard 
platform inherits the capability. 

 

Figure 1 Protocol Stack Layer for Determinism 
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In order to add deterministic characteristics, scheduling protocol layer is added 
between SpaceWire and RMAP layer [2], [3].  SpaceWire Time-Code is utilised for 
the definition of time slots in this protocol layer.  Latency condition is specified in the 
layer in order to carry on successive transactions in one time slot.  Assured 
transmission is realized by adding retry and redundancy capability on RMAP protocol 
layer.  The inherent RMAP characteristics described in section two is exploited in 
order to implement the assured transmission capability without any modification on 
RMAP.  The additional protocol stacks are shown in figure 1.  The specification for 
the protocol is provided as NEXTAR’s SpaceWire Network Design Criteria. 

Segmentation and blocking capability for large amount of data transmission are 
provided between User Application layer and Retry / Redundancy protocol layer.  The 
specification for the protocol is established in JAXA as Space Monitor & Control 
Protocol (SMCP) [4]. 

4 COMMUNICATION SERVICES 
Telemetry and command handling functions are realised through communication 
services, which utilize transaction capability inherent in RMAP packet formats. 

Distribution service comprises three communication services.  Command distribution 
service performs retransmission of an RMAP write command packet in case of 
detecting error status in an RMAP write reply packet.  Data distribution service 
doesn’t perform retransmission even if an error status was found in an RMAP write 
reply packet.  Time distribution service doesn’t use an RMAP write reply packet, and 
no retransmission occurs.  The time value sent through the time distribution service is 
different from SpaceWire Time-Code, and the usage of the value is dependent on the 
system requirement. 

Collection service comprises five communication services.  A user request code can 
be transmitted through user request service.  An RMAP initiator reads a user request 
code through the user request service using an RMAP read command.  The initiator 
sends request acknowledge for the user request with an RMAP write command packet, 
and can perform retransmission in case of detecting an error in an RMAP write reply 
packet.  An initiator collects a variable length Space Packet or a fixed length raw data 
packet through master triggered collection service using an RMAP read command.  
No retransmission occurs through the master triggered collection service.  An initiator 
collects essential house keeping (HK) telemetries through essential HK collection 
service.  A fixed length telemetry packet is collected through the service, and the 
telemetry packet is to be collected even in the system safe hold mode.  On-demand 
data collection is carried on through guaranteed user triggered collection service or 
non-guaranteed user triggered collection service.  An initiator performs re-
transmission through the guaranteed user triggered collection services, and sends 
acknowledge when it receives telemetry data successfully.  The target must keep the 
same telemetry data on its buffer memory until it receives acknowledge from the 
initiator.  No retransmission nor acknowledge transmission occurs through non-
guaranteed user triggered collection. 

Each communication service is associated with pre-determined interface buffer 
memory address, so as to distinguish each communication service with the associated 
memory address.  The memory address map is called as standard RMAP memory 
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address, and the memory address map is maintained for the plug and play capability.  
The memory map is shown in figure 2. 

 

Figure 2  The standard RMAP memory address on NEXTAR bus. 

5 CONCLUSION 
Scheduling and assured transmission capability for determinism are realised without 
any modification on SpaceWire and RMAP specification.  The NEXTAR satellite bus 
employs the implementation scheme and to be planned next year [5]. 
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ABSTRACT 
ASTRO-H is the space X-ray astrophysical observatory which is scheduled to be 
launched in 2014, and has been constructed by an international collaboration lead by 
JAXA. SpaceWire and RMAP compose the fundamental infrastructure of the highly 
redundant data-handling network of the satellite. For constructing a dependable and 
deterministic network, a set of constraints are designed and applied to 
communications over the network. In the paper, the concept of the constraints is 
described followed by a short report on a SpaceWire integration test joined by 
components developed under the constraints by different companies. 

1 INTRODUCTION 
The ASTRO-H satellite [1] is one of the very first missions in Japan that fully utilizes 
SpaceWire as an onboard data-handling infrastructure. As of 2011, engineering 
models of its subsystems have been fabricated and tested, and flight model 
productions will start aiming integration in 2012-2013 followed by a launch in 2014. 

Almost all of onboard subsystems of ASTRO-H such as the command/data handling 
system, the attitude control system, and four types of X-ray/gamma-ray telescope 
instruments are connected to the SpaceWire network using a highly redundant 
topology [2]. Figure 1 shows a topology of the onboard network with representative 
components being only illustrated. The number of physical SpaceWire links between 
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components exceeds 140 connecting ~40 separated components (i.e. separated boxes), 
and there are more links in intra-component (intra-board) networks.  

 

Figure 1 A schematic diagram of the onboard SpaceWire network of ASTRO-H. 

2 RULES APPLIED FOR DETERMINISM 
The onboard network of ASTRO-H is very large as explained above, and therefore, 
strict network management policy is necessary for the whole system to operate in a 
deterministic manner without suffering from congestions and unexpected delays of 
packet deliveries. For achieving this, several rules described below are applied when 
designing the network and its operation scheme. 

2.1 SINGLE MASTER: THE SATELLITE MANAGEMENT UNIT 

The all transactions in the network are controlled by the central master called Satellite 
Management Unit (SMU). The SMU is responsible for distributing commands sent 
from the ground stations to onboard components, and collect house-keeping data from 
them using RMAP Write and Read, respectively. In addition, the SMU can be 
configured to detect an abnormal state of a certain component from house-keeping 
data and autonomously send a series of commands to control the component. Data 
output from the scientific mission instruments which are relatively large compared to 
the house-keeping data are collected by RMAP Read transactions initiated by the Data 
Recorder (DR) following data collection schedule planned by the SMU. Since the 
transactions from the DR are fully managed by the SMU, the DR acts like a delegate 
of the SMU thus leaving the SMU as the single master. This single master 
configuration well simplifies allocation of time slices described below, and helps to 
qualitatively estimate achievable bandpass. 

2.2 TIME SLICING BASED ON TIME CODES 

The real time is divided into 64 time slots using 64-Hz time codes emitted by SMU. 
All types of transactions from the SMU and the DR, such as the command distribution, 
the house keeping data collection, the scientific mission data collection, and the 
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auxiliary polling of request flags, are performed in any of specifically allocated time 
slots. Figure 2 summarizes transaction types allocated for individual time slots. The 
spacecraft bus system (e.g. the SMU and the DR) and the mission instruments shares 
this allocation table, and the latter updates for example house-keeping data stored in 
registers or memory after particular time slots where the SMU RMAP-reads the data. 

In order to gain the bandpass under the moderate time code frequency, to perform 
multiple transactions in one time slot is allowed. The present design allows a packet to 
be transferred over the network crossing the boundary of two time slots, i.e. there is 
no explicit time-of-silence which is a technique sometimes used for clearing the 
network.  

 

Figure 2 Time slot allocation used in ASTRO-H. 

2.3 LIMIT ON THE PACKET LENGTH AND THE RESPONSE LATENCY 

The maximum packet length is limited to 1024 bytes including the RMAP header and 
an additional header part defined in the mission. This well limits the maximum 
blocking time in the wormhole routing path in SpaceWire routers. 

An RMAP target nodes should reply to received RMAP commands as soon as 
possible to maximize an achievable bandpass. Although hardware-implemented 
RMAP target nodes can relatively quickly respond to commands, there are several 
software RMAP targets especially in mission instrument electronics. Considering 
these conditions, response latencies are defined depending on the transaction types 
(HK collection, mission data collection, etc) starting from ~500us to a few ms. If the 
SMU does not receive an RMAP reply from a certain component within defined 
timeout duration, it cancels the transaction. 

SpaceWire routers used in ASTRO-H are equipped with watch-dog timers to prevent 
a dead lock of the routers. When a packet occupies a certain wormhole for specified 
time duration, the packet is killed, and the router tries to recover from the anomaly. 

2.4 BANDPASS 

In ASTRO-H, the highest throughput is required for transferring mission instrument 
data to the DR. Since the DR can perform 70 transactions in three consecutive time 
slots (e.g. time slots 5,6, and 7, or 41, 42, and 43) and there are 14 sets of these slots 
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in the present time-slot allocation, 980 packets can be transferred from 9 mission 
instrument electronics (CPU boards) used in the 4 instruments. Referring to the packet 
length limitation, this translates into ~980 kB/s. Note that link rates of individual 
nodes are rather heterogeneous, ranging from 10 to 50 MHz. 

3 TESTS OF THE CONCEPT 
To integrate components developed by several manufacturers smoothly, the ASTRO-
H project arranged three-step preliminary tests that should be done in manufacturer 
sites; SpaceWire-layer test done by STAR-Dundee’s SpaceWire Conformance Tester 
(step 1), RMAP-layer test examined by STAR-Dundee’s RMAP Conformance Tester 
(step 2), Telemetry/Command-layer test done with an SMU simulator provided by the 
spacecraft bus team (step 3). 

The mission instrument electronics developed by Mitsubishi Heavy Industries and the 
spacecraft bus components from NEC/NEC-Toshiba Space Systems have experienced 
the preliminary tests, and then joined the first integration test held in JAXA in June-
July 2011. Thanks to the pre-tests, the components are successfully communicated 
using RMAP without having a big problem, and it is revealed that basic 
telemetry/command functionalities work as designed. After completing 
implementation of full functionalities of the SMU software and the DR hardware 
logic, the second integration test will be held in October 2011 to examine the mission 
instrument data collection where cooperation of the two is essentially important. 

 

Figure 3 An overview of the first SpaceWire integration test. 

4 REFERENCES 
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ABSTRACT 
This article covers the theme of hydroacoustic complexes construction using the 
SpaceWire technology. The task of large volume data arrays collection and 
commutation between receiver and handler is solved by means of this technology. 
High bandwidth, low power consumption, channel reliability and communication 
features permit to develop integrated system of getting high-quality image. The 
structure of the system intercommunication network is based on CompactPCI PICMG 
2.16(1) backplane. Such backplane has differential links that agrees with SpaceWire 
transmission standard. The connection is realized in double-star topology that allows 
organize the route reservation, thereby the hardware reliability increases. This project 
presents the signal preprocessing equipment that performs collecting and compacting 
data received from hydroacoustic antennas. 

1  INTRODUCTION 
“Submicron” Company takes the leading position in Russian aerospace equipment 
development, but that is not an only area of Company’s work. One of the actively 
upcoming courses is presented with hydroacoustics. The new concept of  the 
hydroacoustic complexes construction based on the SpaceWire technology was 
developed to perfect already engineered systems and to solve the main tasks of the 
hydroacoustics. Utilization of this technology permits to decrease power consumption, 
to solve synchronization problem and to create full-connected network at the protocol 
level. 

The principle of the high-precision hydroacoustic complexes development is based on 
the multipoint signal collection by means of the multielement antenna array. The 
quality of the result primarily is affected by the preprocessing equipment of 
hydroacoustic signals. The purpose of the work is to create the system capable to link 
a number of input analog channels with information processing system. 

2 PROJECT DESCRIPTION 
The project of the hydroacoustic complex is realized as a set of Input and Compacting 
crates (Figure 1). The Input crate executes digitization and compaction (the first level) 
of data received from antennas and further transmission of compacted arrays to the 
handler. The Compacting crate is set behind the Input crates. It executes the second 
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level compaction and organizes intercommunication between elements of the 
complex. The hierarchical system construction permits to increase quantity of the 
input analog channels adding more Input crates. 

Each Input crate is meant for 224 input analog channels. It consists of 14 Modules of 
Input Hydroacoustic Signals (MIHS) and two Modules of Compacting Hydroacoustic 
Signals (MCHS). The modules are founded on the integrated chips developed by 
“Elvees”(2)(3). All MIHS and only one MCHS can work in each point of time and at 
the same time the second MCHS is reserved. The modules redundancy permits to 
increase reliability of hydroacoustic complex in case of one of the networked modules 
failing. The intercommunication between modules in the single crate realizes with 
SpaceWire interface using standard backplane CompactPCI PICMG 2.16(1). 

The MIHS module (Figure 2) is assigned for input analog signals digitization and data 
transmission to SpaceWire channel. Eight ADC microcircuits are set on the MIHS. 
Each ADC simultaneously operates with two analog channels. Therefore the MIHS 
board has 16 input analog channels in whole. The ADC microcircuits are sequentially 
joined through SpaceWire interface that is used for control information exchange and 
digitized data issue. 

The number of the issuing digitized data modules is 14, and the rate of the packet 
transmission does not exceed 25 Mbps from each MIHS in whole. Hence there is the 
necessity of the MCHS modules (Figure 3) utilization, where it performs data array 
collection and compaction. The MCHS is designed on the Concentrator microcircuit 
that commutes and accumulates the data from 14 MIHSs and issues the tightened flow 
through SpaceWire or RapidIO interface. At these conditions the average speed of the 
data issue after the first level compaction does not exceed 250 Mbps. During 
operation the data filtering and compression does not occur, while the compactness 
and speed of the exchange through SpaceWire channels increase. I.e. all received 
digitized data transmits to the primary processing system that finally increases the 
accuracy of the data processing result. 

The modules are made in the universal design of the 6U standard. The 
intercommunication between models within one input crate executes through 
CompactPCI PICMG 2.16 backplane. The MIHS modules are Node Boards, and the 
MCHS are Fabric Boards. The modules are linked using differential pairs topology of 
the backplane. This network operates in the full-duplex mode with 100 Ohm wave 
impedance. The bandwidth of these lines can be up to 4 Gbps. The connection is 
realized in a double-star topology as the main route of information packages transfer 
from MIHS to MCHS and transfer of control information from MCHS to MIHS. 
Thus, the boards are linked using SpaceWire technology implemented with the 
communication lines of the backboard. 

3 CONCLUSION 
The main idea of the SpaceWire technology application in this project consists in the 
integration of all system components in the single communication area of the data 
packets and control information transmission using standard backplane. Thus, the task 
of high data volume collection in one processing machine is solved as one of the main 
tasks of the hydroacoustics. The selection of SpaceWire interface as the primary 
method of the information exchange is also caused by the high bandwidth and 
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Figure 1 Structure of Hydroacoustic Complex 
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Figure 2 Module of Input Hydroacoustic Signals 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Module of Compacting Hydroacoustic Signals 

reliability of the channel work, as well as by its compatibility with ready to use 
developments. 
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ABSTRACT 
The DLR Hand Arm System is an anthropomorphic system with 52 actuators and 430 
sensors of different types. In order to maintain good performance the application must 
have the most direct access to all actuators and sensors. Therefore, a SpaceWire 
network connects FPGAs and CPUs and acts as real-time communication backbone. 
This publication focuses on the SpaceWire protocol implementation and the dedicated 
extensions that are defined for that system. 

1 INTRODUCTION 
The DLR Hand Arm System (see Fig. 1) is an 
anthropomorphic system that is aimed to reach its 
human archetype regarding size, weight and 
performance. It features intrinsic compliance 
implemented as variable stiffness actuation [1]. 

The hand arm system has in total 26 DOF, thereof 
19 DOF in the hand, 2 DOF in the wrist, and 5 
DOF in the arm. To implement all those DOF, the 
hand arm system comprises 52 actuators and 430 
sensors of different types. To operate that many 
actuators and sensors precisely for a certain control 
application the complexity of the system needs to be hidden from application 
designers. On the other hand, in order to maintain good performance the application 
must have the most direct access to all actuators and sensors. 

In other words, a valuable means of abstraction with only minimal execution overhead 
is required. This is the task of the Computing and Communication Architecture. It 
incorporates the operating software and the computing and communication 
infrastructure of the DLR Hand Arm System. The aim is to provide a convenient high-
level hardware abstraction that still allows high-performance feedback control with 
cycles beyond 1 kHz. 

 
Fig. 1. The DLR Hand Arm System 
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 To balance the opposing 
requirements of flexibility and 
high integration, the DLR Hand 
Arm System’s computing and 
communication platform is laid 
out hierarchical: At the top are 
general purpose, commercial-of-
the-shelf (COTS) components. 
The footprint decreases towards 
the bottom end which is defined 
by the dedicated physical 
interfaces of sensors and motors. 
The available computing power 
and communication bandwidth 
decreases along with the 
decreasing footprint. A modular 
layout on each level together with the aggregation of components on successive levels 
by the means of suitable communication creates the desired platform flexibility (see 
Fig. 2). This hierarchy is not driven by a functional separation but only by the 
requirement of small footprint sizes at the physical interfaces. The functionality of an 
application can be flexibly mapped onto this hierarchy as required.  

A SpaceWire network provides the necessary flexibility within the architecture and 
acts as a real-time communication backbone that connects FPGAs and CPUs. This 
publication has the focus on the SpaceWire protocol implementation and the 
dedicated extensions that are defined for the DLR hand arm system. A more detailed 
description of the entire Communication and Computation architecture is given in [2]. 

2 THE PROTOCOL STACK 

2.1 PHYSICAL LAYER, CHARACTER LAYER, AND LINK LAYER 

 Inspired by the IEEE 1355 specification for 
fibre optical links as well as the Gigabit 
Ethernet and the FiberChannel specifications, 
the character-layer is realized with 8b10b [4] 
encoding. Therefore, a commercial GigE 
physical-layer interface circuit from Texas Instruments (TLK1221) is used, which has 
a dedicated ten-bit interface suitable for 8b10b encoding. The 8b10b encoding is 
implemented on FPGAs. This design allows SpaceWire links with data-rates of 
1Gbit/sec and heterogeneous networks with fiber and copper. 

The link-layer implementation meets the SpaceWire specification. 
It is adapted to 8b10b encoding by mapping the SpacewWire 
escape-characters to the 8b10b-K.Chars (see Table 1]). This 
implementation is flexible, since the link-layer implementation can 
be used for different character-layers. But the broken-link 
propagation with timeout is not efficient. A dedicated SpaceWire 
link-layer specification for 8b10b would be useful.  

 
Fig. 2: The DLR Hand Arm System’s hierarchical com-
puting and communication platform 

ESC KChar 
IDLE K28.5 
TC K28.1 
FCT K28.2 
EEP K28.3 
EOP K28.4 
NULL K28.6 

 

Table 1: ESC to  
KChar mapping  

 
Fig. 3: SpaceWire Link with 8b10b encoding 
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2.2 NETWORK LAYER  

Table 2 shows the links and switches that are developed for the backbone of the DLRs 
Hand Arm System:  

2.3  TRANSPORT LAYER 

The Datagram Protocol defines a simple non-reliable 
connection between Sink and Source. A Datagram is a single 
Spacewire Packet. The payload of the datagram is validated by 
crc (see Fig. 4). 

The RequestResponse Protocol is a transmission control 
protocol optimized for the implementation on FPGAs. The 
payload is validated by a crc. The process flow is validated by 
a configurable timeout (see Fig 5).  

The timeout control is located at the 
Initiator. Hence, the footprint on the target 
side is reduced. A detected timeout triggers 
an error-cycle, which is repeated until the 
Target acknowledges the error (see Fig. 6).  

Datagram Sink and Source as well as 
Initiator and Target are SpaceWire Nodes. 
Source, Initiator, and Target store the 
address of their peer Node in a lookup table. 
A Node Configuration Protocol allows the 
configuration of this peer-address-LUT 
during runtime (see 2.4).  

Fig. 7 shows the SpaceWire-packets of 
Datagram Protocol and RequestResponse 
Protocol. 

Name Platform Comment 
SW-Switch QNX SpaceWire Crossbar Switch for QNX with optional LUT 

for logical address resolution 
HW-Switch FPGA SpaceWire Crossbar Switch for QNX with optional LUT 

for logical address resolution 
HW/SW-Switch FPGA and QNX Runs on in-house PCIe interface card. Routes packets in 

dedicated DMA-buffers or HW-links. Allows high 
performance packet routing with minimum latency. 

Copper Link FPGA to FPGA See 2.1 
HW-Link FPGA Connects HW-Switches and/or HW-Nodes within an 

FPGA. Optional FIFO allows to buffer characters or 
packets. If packet-buffering is switched on, EEP-packets 
can be deleted. 

IPC-Link QNX connects SW-Switches and/or SW-Nodes 
HW/SW-Link FPGA and QNX connects HW-Switches or HW-Nodes to SW-Switches 

or SW-Nodes 
Copper2Fiber  Transceiver for seamless connection of fiber and copper 

networks 

 

Table 2: Building blocks for SpaceWire backbone 

 
Fig 4: Datagram  

Protocol 

 
Fig 5:  RequestResponse  

Protocol 

 
Fig 6: RequestResponse Protocol 
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2.4 APPLICATION LAYER 

Switches with dynamic logical address 
mapping are configured by the Switch 
Configuration Protocol. The Configu-
rator is an independent Node that 
configures the SpaceWire network. If 
the configuration has failed, the 
response packet is determined by EEP. 
Thus, configuration errors yield a 
Configurator timeout. Analogous, the 
Configurator configures the lookup 
tables of Nodes (see 2.3) by the Node 
Configuration Protocol (see Fig. 7).  

Furthermore, a configurable Test Suite 
is available. A dedicated Test Node, 
which can act as Sink, Source, 
Initiator, or Target, generates 
periodical or random network traffic.  

3 CONCLUSIONS 
The concepts of FIFO channels and wormhole packet routing of the SpaceWire 
specification [3] combined with GigE physical-layer circuits results in a valuable 
communication platform for complex applications that require hard real-time. In [2] is 
shown that the Hand Arm System operates with control sample rates of 3 kHz and 
latencies below 333 us.  

Especially the extended communication bandwidth of 1 Gbit/sec and the determinism 
(for known network topologies) make SpaceWire to be a good choice for high 
performance signal processing, since there is still no common alternative for 
deterministic communication beyond 1 GBit.  

Beyond that, dynamic network configuration and the configuration of connections 
(i.e. peer-address) by an independent Configurator is a scalable solution with small 
footprint and a high degree of flexibility. 
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Fig 7: SpaceWire Packets for Datagram,  
RequestResponse, Switch Configuration,  

and Node Configuration Protocol 
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Exhibitors 

 

  
4LINKS  

 4Links test equipment is the de-facto SpaceWire reference, with unparalleled maturity 

in our design and an unparalleled record of finding errors, and providing the 

information to correct them; 
 The family includes bridges, diagnostic interfaces, routing switches, and monitors, a 

time interface (IRIG-B) plus an RMAP responder to give hardware response times - 

all controlled from a single (possibly remote) PC; 

 Products interface to Ethernet and Internet, able to be interfaced with virtually any 

computer, any OS, any where; 

 All products are available with connectors for synchronization and triggers, so that 

multiple test units can be synchronized and recordings time tagged consistently 

between different computers and discs; 

 4Links test equipment helps to reduce cost and delay by enabling users to detect bugs 

that other methods miss, and by providing information to fix those bugs where other 

methods fail. See 4Links news about a Tutorial on SpaceWire Test on the Monday 

preceding the Conference. 

 

 

AEROFLEX  
Aeroflex Colorado Springs is a supplier of integrated circuits 

and custom circuit card assemblies. We supply a broad range of 

standard products for HiRel applications including a LEON 

3FT microprocessor, logic, FPGAs, memories, serial 

communication interfaces for MIL-STD-1553, 1773, Clocks, an 

LVDS family of products and our SpaceWire products -

Transceivers, Protocol IP, Routers. Our RadHard-by-Design 

Digital and Mixed-Signal ASICs handle design complexities up 

to 3,000,000 usable gates. 

Aeroflex Gaisler is a provider of SoC solutions and IP-cores for exceptionally competitive 

markets such as Aerospace, Military and Commercial applications. The Aeroflex Gaisler's 

IPcores 

consist of user-customizable 32-bit SPARC V8 processor and floating-point-unit cores, 

SpaceWire cores, peripheral IP-cores and associated software and development tools. 

Aeroflex Gaisler solutions help companies develop application-specific SoCs that are highly 

competitive for customer specific applications. Gaisler Research's personnel have extended 

design experience, and have been involved in establishing standards for ASIC and FPGA 

development. 
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     AXON’ CABLE 
Axon’ Cable manufactures wires, cables, cable assemblies and connectors for high tech 

applications including space, aeronautics, medical, automotive and electronics. The 

consolidated turnover in 2011 amounts 100 million €, 60% of which is achieved through 

export. The headquarters of the company is situated in France (100 km east of Paris) and 

employs 1500 staff world-wide in 11 subsidiaries across Europe, America and Asia. 

Axon’ Cable has been involved in many space projects such as the ISS, leo and geo satellites, 

rocket launchers including Ariane 5. 

The group offers various types of products for space applications: 

- ESCC wires and cables, aluminum round cables for power distribution in satellites. 

- Bus bar for power distribution in satellites.  

- MIL-STD-1553 databus cables, couplers and connectors for digital transmission 

systems. 

- High data rate links for Voice-Data-Image transmission used in on-board electronics 

(SpaceWire, IEEE1394, Ethernet, Fibre Channel, etc). 

- Custom designed products. 

 

 

      BAE SYSTEMS 
BAE Systems is a global defense, security, and aerospace company, delivering a full range of 

products and services for air, land, and naval forces, as well as advanced electronics, information 

technology solutions, and customer support services. BAE Systems’ Space Products and Systems 

(SPS) division specializes in radiation-hardened electronics and space applications, developing and 

producing a wide variety of space products from radiation hardened components (processors, ASICs, 

memories, FPGAs, Spacewire routers and interfaces) and single-board computers solutions, to 

complete system payloads. Our facilities are accredited as DoD Category 1A Trusted, covering 

design, wafer foundry, packaging/assembly, and test services, and our space product portfolio is QML 

qualified to MIL-STD specifications and test methods.  With more than 600 computers in space, 

including the 16-bit GVSC1750, 32-bit RAD6000®, and the RAD750® family of products, BAE 

Systems space computers and electronics have logged over 5,000 years in orbit. For more 

information, please visit www.RAD750.com.  
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GLENAIR – MINIATURIZED CONNECTORS AND CABLES 
  

Glenair  manufactures ultra-miniature interconnect solutions for high-performance 

applications such missile systems, satellites, and fighter-jets. Our innovative contacts, 

connectors and cables are used in air and space platforms that require reliable performance as 

well as miniaturized packaging. Glenair is the world’s largest manufacturer and supplier of 

both mil-qualified and commercial Micro-D and Nanominiature connectors in wired and 

unwired space-grade formats. We also offer turnkey flex circuitry assemblies as well as 

space-grade wire harnesses terminated to our high-availability connector products.    

 Glenair Inc  

1211 Airway  

Glendale 

California 

USA 91201-2497 

www.glenair.com 

 

Contact details re: Micro D space wire connectors and cables. 

Fred Van Wyk, Product Manager : 

Phone:  +1 818 247 6000 

fvanwyk@glenair.com 

 

Ross Thomson, Business Development Manager (Europe):  

Phone: + 44 1623 638114  

Cell: +44 7711 029 715 

rthomson@glenair.com 

  

 

JAPAN SPACEWIRE USER GROUP 
Web: https://galaxy.astro.isas.jaxa.jp/SpaceWire/ 

Japan SpaceWire User Group is a consortium formed by Japanese space agencies, JAXA and 

USEF, and multiple companies that develop and use SpaceWire technology. The consortium 

aims to promote SpaceWire and satellite design based on SpaceWire to wider users, and has 

been developing and releasing SpaceWire development environment such as the SpaceCube 

computer and the SpaceWire-to-GigabitEther converter (Shimafuji/JAXA) for ground testing, 

and the SpaceCube2 (NEC) and SpaceCard (MHI) onboard computers with SpaceWire 

capabilities. An open-source SpaceWire codec IP core is also available from the consortium 

for free. 
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      NEC CORPORATION 

www.nec.com 

NEC Corporation is one of the world's leading providers of Internet, broadband network and 

enterprise business solutions dedicated to meeting the specialized needs of a diversified 

global base of customers. NEC delivers tailored solutions in the key fields of computer, 

networking and electron devices, by integrating its technical strengths in IT and Networks, 

and by providing advanced semiconductor solutions through NEC Electronics Corporation. 

The NEC Group employs more than 140,000 people worldwide. For additional information, 

please visit the NEC Web site at: www.nec.com. 

 

 

     SOUTHWEST RESEARCH INSTITUTE 

Southwest Research Institute® (SwRI®) was founded in 1947 as a public service scientific 

corporation to provide contract R&D to both industrial and government clients.  The Institute 

provides extraordinarily technical capabilities through 10 technical operating divisions, with 

approximately 3300 staff members and gross annual revenue of $540 million. 

 SwRI’s Department of Space systems has a long and distinguished track record of producing 

high quality, high reliability spacecraft avionics for NASA, DoD, ESA, and commercial 

space missions.  Since the first SC-1 spaceflight computer was developed in 1979, SwRI has 

developed hardware for over 53 space flight missions without a single on-orbit failure.  The 

track record of the last 32 years is a product of a strong commitment to support the current 

and future needs of the space community.  SwRI is recognized as one of the leaders in space 

instrument design and development, command and data handling (C&DH) systems and 

mission management. 
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      STAR-DUNDEE 

 

STAR-Dundee Ltd is dedicated to the development and advancement of SpaceWire, 

providing expert support to users and developers of SpaceWire technology.  

Our products cover everything needed to design, develop, integrate and test SpaceWire sub-

systems: 

 Chips and industry leading IP cores: enabling our customers to develop their own 

flight subsystems and providing custom IP cores to fulfil specific customer needs 

 Interface devices, Debug and Analysis Tools: enabling the development, simulation 

and testing of SpaceWire networks and devices 

 Bespoke Design Services: Equipment and design of electronic circuit boards for 

custom requirements. 

 SpaceWire Training: Onsite expert tuition direct from our experienced engineers, 

tailored to suit the customer 

STAR-Dundee has the largest product line of SpaceWire test and development equipment of 

any manufacturer.  We pride ourselves on the quality of our products and are continually 

enhancing their capabilities to meet the needs of our customers. 

The STAR-Dundee team has leading expertise in all areas of SpaceWire technology. Our 

commitment is to help our customers to quickly and efficiently get up to speed with 

SpaceWire technology and to provide continued support through the full development life 

cycle. 
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