
Standardisation of

SpaceWire Software APIs

Stuart Mills, Alex Mason – STAR-Dundee

Steve Parkes – University of Dundee

Takayuki Yuasa – JAXA/ISAS

Fourth International SpaceWire Conference

10th November 2011

Introduction – APIs and STAR-Dundee

What’s An API?

 Application Programming Interface

 According to Wikipedia:
– “.. a particular set of rules ('code') and specifications that

software programs can follow to communicate with each
other.”

 If an API changes, then the software accessing the
API must also change

 If one software module provides the same API as
another, the two modules can be used
interchangeably

STAR-Dundee’s API Experience

 Developed APIs to provide interfaces to our devices
– Our first SpaceWire API was released over 10 years ago, a

few years before SpaceWire was standardised

– Allow users to write software to perform unique tasks using
our standard devices

 Provide similar APIs for different device types
– SpaceWire PCI API

– SpaceWire USB API

 APIs consistent across platforms

 Worked with NEC Toshiba Space Systems in porting
USB API to Space Cube

Latest STAR-Dundee API

 Recently released a new software stack and API
(STAR-System)
– Will support all new and future STAR-Dundee devices

 Consistent interface for all device types

 Consistent interface and behaviour on all platforms
– Windows, Linux, QNX, VxWorks, …

 Newer versions of the API will be consistent with older
versions

 Designed to expose features required during
development and testing of SpaceWire devices and
networks

STAR-Dundee API Performance

 All STAR-Dundee APIs and drivers are written to provide high
performance

 Allow traffic to be transmitted and received at very high speeds,
without much load on the processor

 For example, if the transmit function only allows one packet to be
transmitted:
– The packet will be DMAd to the transmitting device

– The device will be instructed to transmit the packet

– The device will generate an interrupt when the packet is transmitted

– The interrupt will be dealt with by the processor

– Finally the user application will be informed the packet has been
transmitted

 If the transmit function allows multiple packets to be transmitted:
– The above steps only need to occur once for all packets

SpaceWire APIs

SpaceWire APIs

 No standards or even recommendations for

SpaceWire APIs

 Each hardware manufacturer can provide a

completely different API for accessing each device

 Greatly reduces opportunities for software reuse

 Test and development equipment will provide

different features to flight equipment

 But likely to be a number of features which are

consistent

Using Existing APIs

 POSIX Sockets API is most likely candidate

 STAR-Dundee’s Router-USB and Brick supports

the Sockets API on Linux

– But strongly discourage users from using this

– Other than when investigating TCP/IP over SpaceWire

Using The Sockets API

 Sockets API doesn’t expose features specific to

SpaceWire

 Additional APIs would also be needed to configure

devices

 Some cases where Sockets API could be useful

– send() and recv() functions would probably need

modified to transmit/receive one SpaceWire packet

 Would allow developers to use familiar API

 But unlikely to provide high performance

Typical SpaceWire APIs

 Not just limited to transmitting and receiving

packets

 Support for protocols carried over SpaceWire

 Functions for configuring devices

Packet Transfer APIs

 Easy to assume this is quite simple

 But important to provide a high performance

interface

 Also need to provide functions for opening and

closing connections to a device

 May also need to provide test and development

functions

RMAP APIs

 Can be split up depending on functionality required

 RMAP Packet API

 RMAP Initiator API

 RMAP Target API

Other Protocol APIs

 E.g. CCSDS Packet Transfer Protocol, GOES-R

RDDP, SpaceWire-PnP

 As with RMAP, can be split in to a packet building

and interpreting API and an implementation API

 API required will depend on software being written

 Some protocols will already have a standardised

API which can be used

Device Configuration APIs

 Functions to configure the features of devices

 Difficult to standardise due to differences between

devices

 Some features common to a number of devices

 Additional functions specific to device types

 Some functions specific to an individual device

 SpaceWire-PnP will make things easier

STAR-System Device Configuration

Router

Configuration API

PCI Mk2

Configuration API

PCIe

Configuration API

USB Brick

Configuration API

Router-USB Mk2

Configuration API

Summary, Conclusions and Future

Summary

 Many different APIs exist to access SpaceWire

devices

 Typical SpaceWire APIs:

– Packet Transfer API

– Protocol APIs

– Device Configuration APIs

 Using existing APIs with SpaceWire is not ideal

Conclusions

 The time required for a developer to learn a new API
can be considerable

 Mistakes made when developing with an unfamiliar
API can be costly

 Standardisation would bring other benefits:
– “Shim” layers would no longer be required to deal with

differences between device types

– Software could be developed and tested on existing test
equipment before being moved to new flight equipment

 SpaceWire is intended to encourage reuse

 Software cannot easily be reused between projects
unless software APIs are standardised

What Next?

 Japanese agencies, academia and industry have

identified the importance of standard SpaceWire APIs

 STAR-Dundee has a “standard” API to be used by all

future STAR-Dundee devices

 It is important that the rest of the SpaceWire community

isn’t left behind, or is forced to accept standard APIs

which do not meet their needs

 The entire SpaceWire community must therefore take

responsibility for any software standardisation efforts

