Performance of SpaceWire Plug-and-Play Protocols

Robert A. Klar, Daniel P. Goes, Paul B. Wood and Sue A. Baldor

Southwest Research Institute
Contents

• Overview

• SpaceWire Plug and Play protocols
 – Overview and Terminology
 – Messaging and Protocol Stacks
 – Services

• Performance

• Advantages and Disadvantages
Overview

• Plug-and-Play (PnP) describes a mechanism by which devices can be discovered and configured automatically to be ready for use soon after they are inserted into a system.

• Two different standards have emerged which provide Plug-and-Play support for SpaceWire networks:
 – Space Plug-and-Play Architecture (submitted to AIAA)
 – SpaceWire-PnP (submitted to ECSS)
Terminology

• SPA/SPA-S
 – SPA – Space Plug-and-Play Architecture
 • formerly Space Plug-and-Play Avionics
 – SPA-S – SPA SpaceWire Subnet
 – SSM/SSI – SPA Services Manager/Infrastructure
 • replaces and expands upon the Satellite Data Model
 – CAS – Central Addressing Service
 – SPA-L – SPA Local Interconnect
 – SM-s – Subnet Manager for SpaceWire
 – xTEDS – Extensible Markup Language Transducer Electronic Data Sheets
 – UUID – Universally Unique ID

• SpaceWire PnP
 – RMAP – Remote Memory Access Protocol
 – Active Node – a node which can initiate protocol commands
 – Passive Node – a node which can receive and respond to protocol commands
 – Level 1 Networks – have only one active node
 – Level 2 Networks – can have more than one active node
Messaging

- SPA-S uses SPA messaging
 - Component Information described by xTEDS

- SpaceWire PnP uses subset of RMAP messaging
 - Targets include standard parameters for Device Identification

1 - Figure from ECSS-E-ST-52C, February 2010
Services

• SPA/SPA-S
 – Topology Discovery
 – SPA Packet Routing
 • Subnet manager keeps a routing table which converts from SPA logical addresses to SpW path addresses
 • SPA logical addresses are not SpaceWire logical addresses

• SpaceWire PnP
 – Device Identification
 – Network Configuration
 – Link Configuration
 – Router Configuration
 – Time-Code Source

• Two levels of service
 – Level 1 – Managed Networks (1 active node)
 – Level 2 – Open Networks (more than 1 active node)
SPA/SPA-S Example

- SpaceWire Subnet Managers (SM-s) independently discover the paths to network endpoints
 - SPASpaceWireRouterProbe used to interrogate routers
 - SPASpaceWireEndpointPing used to find ports where endpoints are attached
 - SM-s requests a block of SPA logical addresses from the Central Addressing Service and uses this information to route packets to components
 - Under SPA, components register with a Lookup Service in order to make services available

2 - Figure from DRAFT AIAA SPA-S Standard
SpaceWire PnP Example

- A Network Manager queries devices by using a breadth-first traversal.
 - Messages are sent to the configuration port (port 0) of each device in order to identify capabilities.
 - Device Identification provides some information
 - the number of active ports available for a device (can be used to determine if this a router)
 - the port used to send the reply
Performance

• Network discovery for both SPA-S and SpaceWire-PnP depend on a breadth-first search algorithm. Each network manager or active node must search the entire subnetwork. Thus, expected performance is $O(N + L)$, where N is the number of nodes on the network and L is the number of links.

• For both protocols, specific timing requirements have not been levied on devices. This makes comparison of timing between the protocols difficult without evaluating particular implementations.
 – Experimental research is needed to realistically evaluate performance.
Performance

• Performance will be influenced by several implementation factors:
 – Device Protocol Support
 • Since the message format for SpaceWire-PnP is based on RMAP, many devices today that support RMAP could be adapted to also support SpaceWire-PnP. Hardware support would improve speed.
 • To comply with SPA-S, an end node must only keep a routing path to a Subnet Manager (SM-s). Nevertheless, since routing messages through the SM-s can overload it, it is desirable for end nodes to cache routes to other nodes that they communicate with often.
 – Network Topology
 • A larger network will take longer to map than a smaller one. Timing delays for an Open Network will be less controlled than for a Managed Network.
Advantages

• SPA/SPA-S
 – (SPA-S) Integrates well with SPA
 – Provides an integrated set of services that is independent of transport
 – Processing elements required to parse and make use of xTEDs messaging

• SpaceWire PnP
 – Integrates well with SpaceWire Protocol Stack
 – Leverages existing development for RMAP protocol
 – Provides support for Link and Router Configuration
Disadvantages

- **SPA/SPA-S**
 - Network Discovery takes a bit more time because the protocol does not take advantage of device identification
 - Does not include facilities for link and router management
 - Routing through the SM-s limits throughput

- **SpaceWire PnP**
 - Does not provide native provisions for registering device services
 - Could potentially also use xTEDS
 - Imposes some requirements on devices
 - Some legacy devices may not be compatible
 - RMAP timing requirements limit size of network
Questions?
