



# SpaceAGE Bus: New Avionics Building Block Concept

# Alex Kisin, Glenn Rakow, Eric Gorman

NASA Goddard Space Flight Center Flight Data System and Radiation Effects Branch





- Custom and/or Euro Card form factor (typically 6U or 3U)
  - Single sided or double sided boards
- Parallel Printed Wiring Board backplane (derived from commercial world)
- Some custom signals added to standard signal set making interchangeability difficult
- All Cards communicate with CPU/Hub through half duplex interface only one at a time
- Line fault isolation is difficult to achieve because of shared power and bus signals
- No EMI isolation between cards



#### **Classical C&DH Architecture**





- Hundreds of pins
  - High mate / de-mate forces
  - Stackable connectors are not solderable (lower reliability in vibration)
- Not impedance matched
  - Very difficult to communicate on high speeds
- Difficult alignment and mount







- Custom Enclosure design with card faceplate integrated with card
  - Only 1 available side for user interface connectors
- Wedge locks for card locking and heat dissipation path:
  - Difficult inspection of installed cards: may not be possible at all
  - Possibility of "shaving" wedges during insertion: small metal particles in space
- Fixed distance between cards
  - Problems with tall components or dual side assembly

Wedge lock assembly









- Incompatibility of cards from various vendors
  - Very strong engineering system control is required
  - Some vendors use this to "tie" customers exclusively to their products
  - Sometimes sophisticated rework and redesign is required to match all cards
- Modules are integrated into enclosure are only functionally tested
  - Cards come environmentally untested from vendors: additional testing (EMI/EMC, thermal, vibration) on box level is required







- Create architecture suitable for 90% of space missions
- Reduce costs avionics system development
  - Through significant reduction of Non-Recurring Engineering (NRE)
  - Through standardization of avionic's electrical and mechanical interfaces
- Simplify electrical interfaces by adopting:
  - Serial communications interface
    - Eliminate mechanical tolerances between backplane connectors and boards
    - Increase system reliability by reducing number of signals
  - Single voltage power distribution
    - Higher voltages to reduce current and eliminate voltage margin concerns
  - Minimal set of commonly used signals
  - Interconnection through a star architecture
    - Common or Central module HUB
    - Peripheral or User module NODE
- Simplify mechanical interfaces by adopting:
  - Modular and variable length slot mechanical enclosure concept using card frames (slices) where:
    - Each Printed Wiring Board (PWB) includes its own portion of the mechanical chassis
    - Improvement of thermal design eliminates wedge locks as thermal path
    - Qualifies modules (slices) for EMI/EMC and thermal requirements
    - Significantly reduces tolerance of mechanical design







- High speed communication links
  - Compatibility with high speed (gigabit) serial protocol
- Power distribution
- Reliability
  - module-to-module isolation
  - Support Redundancy schemes
- Ease of implementation
  - Minimal compatibility requirements
  - Simple predefined interfaces
- Ease of expansion
  - Up to 7 NODE modules in same chassis (8 or 9 modules total including HUB module(s))
  - At least 1 surface reserved for user connectors









All Nodes communicate with Hub concurrently through full duplex I/F

All connections are done through dedicated, fault isolated, differential I/F **No shared connections !** 



#### **Proposed SpaceAGE Bus System Functions**



- Data
  - Serial communications from HUB to each NODE
    - Data rates per link: from 1Kbps to up to 3.125Gbps (user configurable and programmable)
    - Differential pairs for Full duplex operations
    - Multiple streams: HUB can talk simultaneously to more than one NODE
    - HUB-to-HUB talk in redundant system architecture
    - Flexible data transfer protocols such as SpaceWire, SpaceFibre, PCI Express, etc: all can co-exist in 1 system
    - AC coupling for better CMV protection
- Power
  - 28V bus switched power distribution from HUB
    - Up to 20-30W RMS power per NODE
    - Electrical isolation between Hub(s) and Nodes
    - True "hot" plugging/unplugging for all NODEs and HUBs without disturbing other system components
    - Capability to work directly with 120V power bus voltages
- Clock
  - Individually distributed from HUB to each NODE
    - User programmable clock distribution for S/C events synchronization
    - Single frequency power supplies synchronization
- Analog telemetry
  - HUB will process all Node telemetry (with 0.1% accuracy); Node requires to have:
    - Either differential multiplexer and signal scale conditioner for NODE analog signals (0.1% accurate), or
    - Single thermistor, if any NODE analog circuitry is undesirable
- Auxiliary
  - Facilitate NODE control from HUB
    - Independent reset for each module
    - Single frequency power synchronization
    - Allow true hot plugging/unplugging of each module









Only 16 wires per NODE are needed to transfer all essential bus functions If redundancy is required – NODE will get the same wire set from peer HUB





Only 16 wires per HUB are needed to exchange with all essential functions



#### **SpaceAGE Bus Power Distribution**







#### Ease of implementation

- Simple electrical interface
  - Only 16 physical copper wires per link which are capable to satisfy requirements for 90% or more missions
- Simple mechanical interface
  - Only connectors position is defined
  - No restrictions for module width
- Much easier compatibility between various vendors
  - No custom user functions for standardized back connectors
- Increased data throughput on subsystem level
  - Serial links will provide higher data rates
  - Double processing/communication rate when 2 HUB modules are plugged in
- User expandability
  - Front and Top surfaces are reserved for User connectors
  - Multiple cards per module
- Lower mass and volume over parallel bus design
- Superior heat transfer
  - Elimination of wedge locks: direct contact between cards and module's frame
  - Larger contact surfaces between module body and chassis
- EMI/EMC issues
  - 100% EMI shielded
  - Lower emitted noise due to a possible total synchronization of all units
- System reliability
  - Single string, or
  - Dual independent redundancy, or
  - System cross-redundancy
- Wide range of applications
  - Can be used for human or robotic missions



NASA

- Minimum number of conductors
  - 16, with capability of expansion
- Wires
  - Up to AWG#24 wires for power transfer
- Impedance matching
  - 100 ohms differential
- High speed performance
  - Up to 4 Gbps
- Shielding
  - Fully EMI shielded
- Connectivity
  - Blind mateable
  - Scoop proofed
- Material
  - No vacuum outgassing and weightlessness wiskering
- Shape
  - Rectangular for small real estate use







## Rugged D-Sub miniature from Sabritec Inc. with Quadraxial pin assembly inserts



#### 4 (shown) and 16 position shells are suggested



#### **Proposed Signal Assignments**

| NAS          | A |
|--------------|---|
| $\mathbf{X}$ |   |

| Group                  | Sub<br>Group           | Function                                                 | Pin | Node Bus<br>Connector | Flow<br>Direction | Hub "A" Bus<br>Connector | Flow<br>Direction | Redundant Hub<br>"B"      | Notes                                                                                                                    |
|------------------------|------------------------|----------------------------------------------------------|-----|-----------------------|-------------------|--------------------------|-------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------|
| out of 32 for 7 Nodes) |                        | Serial                                                   | 1   | RX+                   | ÷                 | TX+                      |                   |                           |                                                                                                                          |
|                        |                        |                                                          | 2   | TX+                   | $\rightarrow$     | RX+                      |                   | Full Duplex link.         |                                                                                                                          |
|                        |                        | Communication                                            | 3   | RX-                   | ÷                 | TX-                      |                   |                           | Diagonal pins 1-3 and 2-4 provide $100\Omega$ impedance                                                                  |
|                        | Digital                |                                                          | 4   | TX-                   | $\rightarrow$     | RX-                      |                   |                           |                                                                                                                          |
|                        |                        | Clock and Reset                                          | 1   | Clock_in+             | ÷                 | Clock_out+               |                   |                           | Clock function is defined                                                                                                |
|                        |                        |                                                          | 2   | Reset_in+             | ÷                 | Reset_out+               |                   |                           | by Node end user                                                                                                         |
|                        |                        | Distribution                                             | 3   | Clock_in-             | ÷                 | Clock_out-               |                   |                           | Node can be reset                                                                                                        |
| serts                  |                        |                                                          | 4   | Reset_in-             | ÷                 | Reset_out-               |                   |                           | individually by Hub                                                                                                      |
| ub to Node Bus(28 ins  |                        |                                                          | 1   | Node <b>Power</b>     | ←                 | Node Power               | Up to 1.          | Up to 1.5A@28V of derated |                                                                                                                          |
|                        |                        | Powerand                                                 | 2   | Power Return          | ÷                 | Power Return             |                   | Node current;             |                                                                                                                          |
|                        |                        | Supply Sync                                              | 3   | DC/DC_Sync_in         | ~                 | DC/DC_Sync_out           |                   |                           | free running 5V clock;                                                                                                   |
|                        | Power                  |                                                          | 4   | Power Fail            | ÷                 | Power Fail               |                   |                           | Hub generated Power Fail                                                                                                 |
|                        | Analog                 | Analog<br>Telemetry and<br>Node Sense                    | 1   | Analog_out+           | $\rightarrow$     | Analog_in+               |                   |                           | Each Node may have 4-16                                                                                                  |
| T                      |                        |                                                          | 2   | Analog_out-           | $\rightarrow$     | Analog_in-               |                   |                           | analog telemetry slots <u>or</u><br>just 1 passive thermsitor;<br>"Sense" tells Hub if Node is<br>plugged in and secured |
|                        |                        |                                                          | 3   | Sense_out+            | $\rightarrow$     | Sense_in+                |                   |                           |                                                                                                                          |
|                        |                        |                                                          | 4   | Sense_out-            | $\rightarrow$     | Sense_in-                |                   |                           |                                                                                                                          |
| (q                     |                        | Cross<br>Communication                                   | 1   |                       |                   | X_TX+                    | $\backslash$      | X_TX+                     | Full Duplex cross link.<br>Diagonal pins 1-3 and 2-4<br>provide 100Ω impedance                                           |
| a Hu                   |                        |                                                          | 2   |                       |                   | X_Clock_out+             |                   | X_Clock_out+              |                                                                                                                          |
| extr                   |                        |                                                          | 3   |                       |                   | X_TX-                    | $\times$          | X_TX-                     |                                                                                                                          |
| or an                  | Digital                |                                                          | 4   |                       |                   | X_Clock_out-             | XXXX              | X_Clock_out-              |                                                                                                                          |
| rts fo                 | Ū                      | Cross Clock                                              | 1   |                       |                   | X_RX+                    |                   | X_RX+                     | Allows both Hubs to share<br>common clock                                                                                |
| insei                  |                        |                                                          | 2   |                       |                   | X_Clock_in+              |                   | X_Clock_in+               |                                                                                                                          |
| us (4                  |                        |                                                          | 3   |                       |                   | X_RX-                    |                   | X_RX-                     |                                                                                                                          |
|                        |                        |                                                          | 4   |                       |                   | X_Clock_in-              |                   | X_Clock_in-               |                                                                                                                          |
| verl                   | Reset<br>and<br>Config | Cross Reset                                              | 1   |                       |                   | X_Reset_out+             | $\backslash$ /    | X_Reset_out+              | X_Reset allows each Hub to<br>reset its peer Hub either by<br>command, or by lack of<br>communications for the           |
| Hub to Hub Crosso      |                        |                                                          | 2   |                       |                   | Peer_Hub out             |                   | Peer_Hub out              |                                                                                                                          |
|                        |                        |                                                          | 3   |                       |                   | X_Reset_out-             |                   | X_Reset_out-              |                                                                                                                          |
|                        |                        |                                                          | 4   |                       |                   | Config_out               |                   | Config_out                | IBD time period                                                                                                          |
|                        |                        | Master-Slave<br>Configuration<br>and Peer Hub<br>Plug-in | 1   |                       |                   | X_Reset_in+              |                   | X_Reset_in+               | Peer_Hub tells each Hub<br>that its Peer Hub is in                                                                       |
|                        |                        |                                                          | 2   |                       |                   | Case GND                 |                   | Case GND                  |                                                                                                                          |
|                        |                        |                                                          | 3   |                       |                   | X_Reset_in-              |                   | X_Reset_in-               | Master Hub (A) - no jumper,<br>Slave (B) - external jumper                                                               |
|                        |                        |                                                          | 4   |                       |                   | Case GND                 | ► X               | Case GND                  | Slave (b) - external jumper                                                                                              |



#### **One of Proposed Routings**



Redundant Cross Connections (only Comm Link is shown)





#### Suggested HUB Architecture (Digital Section)















|                            | Back (SpaceAGE Bus Ports)         | Front (S/C Ports)            | Top (mostly for debug)   |
|----------------------------|-----------------------------------|------------------------------|--------------------------|
| Number of ports            | 8: 7 NODE(Universal) + 1 Peer HUB | 6: 4 Universal + 2 SpaceWire | 2: Limited Universal     |
| Physical Interface         | Buffered LVDS <u>or</u> AC coເ    | Buffered LVDS                |                          |
| Duplex Full                |                                   | Full                         | Full                     |
| Speed range                | 1Kbps to 3.125Gbps (up to         | 10Kbps to 100Mbps            |                          |
| Additional Sync clock      | Yes                               | No                           | No                       |
| Protocols                  | Any type sync or async            | Any async + SpW              | Async + 10M Ethernet     |
| In-flight re-configuration | Yes (except Peer HUB)             | Yes (except SpW)             | Yes (if used for flight) |
| State when not used        | Hi-Z                              | Hi-Z                         | Hi-Z                     |
| Multidrop network use      | No                                | Possible (to 400Mbps)        | No                       |





#### Suggested HUB Architecture (Analog TLM & Power Section)







#### **Suggested NODE Architecture**



NASA



### **Assembled System View**















#### **L-Bracket Front**





#### **L-Bracket Back**









#### Suggested Dual Cards Assembly for HUB Module







#### **Suggested Cross Section View for HUB Enclosure**













#### **Overall Buses Comparison Chart**



| Function                       | Traditional Buses          | Suggested SpaceAGE Bus             |
|--------------------------------|----------------------------|------------------------------------|
| Data Interface                 | Parallel                   | Serial                             |
| Data Exchange                  | Half-duplex                | Full-duplex                        |
| Data Exchange Method           | Synchronous                | Asynchronous                       |
| Impedance Matching             | Mismatched                 | Matched                            |
| Bus Utilization                | Single flow                | Multiple independent flows         |
| Redundancy                     | Single                     | Single, Double, Cross              |
| Power Distribution             | Multiple bus voltages      | Single voltage                     |
| Bus Current                    | Medium to very high        | Low to very low                    |
| Common Voltage Tolerance       | Low (100's of mV)          | High (several volts)               |
| Card-to-Card Isolation         | Very complex/Impossible    | Possible and very simple           |
| Hot Plugging/Unplugging        | Complex/Impossible         | Possible and very simple           |
| System Telemetry               | Not Specified              | Standard: Analog & Digital         |
| EM Interference                | Leaking                    | Fully shielded                     |
| <b>Clock Distribution</b>      | Single high frequency      | Multiple user defined frequencies  |
| <b>Clock Skew Requirements</b> | Very tight                 | Low: not very important            |
| Connector Pins per Card        | Several hundreds           | 16 per Node plus Chassis           |
| Bus Interconnect               | РСВ                        | Harness                            |
| User Connectors Areas          | Front surface only         | Front and top surfaces             |
| PCB Assembly                   | Single side w/limited back | Dual sided, w/unlimited tier cards |
| Card Insertion Force           | Medium to high             | Low                                |
| Blind Mating                   | Yes, stress on conn. pins  | Yes, stress on conn. metal body    |
| Scoop Proofing                 | Yes                        | Yes                                |
| Cards or Modules Distance      | 20-25mm                    | Limited by communication rates     |



### The End







# **Questions?**