NEXTAR: Small Satellite Bus Based on SpaceWire Deterministic Implementation

10 November 2011

Hiroki Hihara
NEC TOSHIBA Space Systems, Ltd.

Toshiaki Ogawa, Kenji Kitade
NEC Corporation
What SpaceWire provides for small satellites are:

- Traditional On-board Computers
- Small size, light weight
- Modularity

SAR probe
Optical probe
NEXTAR – the Earth Observation model

ASNARO (Advanced Satellite with New system Architecture for Observation)

- The first model with NEXTAR bus

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission</td>
<td>Pan / Multi (6-bands)</td>
</tr>
<tr>
<td>- Optical sensor</td>
<td>GSD : < 0.5m/2m (Pan/Multi)</td>
</tr>
<tr>
<td>- Data transmission</td>
<td>Swath: 10km X-band, 16QAM, ~ 800Mbps</td>
</tr>
<tr>
<td>Pointing</td>
<td>Coverage: +/- 45deg x +/-45deg (cross x along track)</td>
</tr>
<tr>
<td></td>
<td>Agility: 1deg / sec (average)</td>
</tr>
<tr>
<td>Launch</td>
<td>compatible with major launchers</td>
</tr>
<tr>
<td>Orbit</td>
<td>SSO ~ 500km altitude</td>
</tr>
<tr>
<td>Mass</td>
<td>Bus 295 kg (incl. 45kg fuel)</td>
</tr>
<tr>
<td></td>
<td>Mission 200 kg</td>
</tr>
<tr>
<td></td>
<td><TOTAL> 495 kg</td>
</tr>
<tr>
<td>Power</td>
<td>Generation : > 1300 W (EOL)</td>
</tr>
<tr>
<td></td>
<td>Payload : 400 W</td>
</tr>
<tr>
<td>Dimension</td>
<td>2.5 x 3.5 x 3.2m (in orbit)</td>
</tr>
</tbody>
</table>
Determinism Implementation exploiting SpW/RMAP

Determinism required for NEXTAR bus
- Every data must be delivered and collected on time.
- Re-transmission and ACK/NACK transaction are required.
- Shortening system test schedule without reducing reliability
- Integration with legacy interface
 - CAN, UART, MIL-STD-1553B, etc.

Inherent capability in SpW/RMAP
- RMAP
 - CRC, Status field, transaction sequence
- SpaceWire
 - EOP and EEP

Deterministic character is formalized in draft specification of SpaceWire-D.
Protocol Layer for Scheduling and Assured Transmission

Documents established by JAXA and NEC

- Telemetry/Command Design Criteria / SMCP
- Annex for each project

- SpaceWire Network Design Criteria

Reference Protocol Stack

User Application

PTP

PnP

Segmentation/Blocking

Retry/Redundancy

Protocol ID / RMAP (ECSS-E-ST-50-51C/52C)

Scheduling

SpaceWire (ECSS-E-ST-50-12C)

Results of Analysis for the SpW-D Draft Specification
Takahiro Yamada (JAXA/ISAS)
18 October 2010
Fifteenth SpaceWire WG Meeting
Deterministic Implementation for NEXTAR (1/3)

Scheduling

- One second comprises 64 time slots.
 - Each time slot corresponds to SpaceWire Time-Code.

- RMAP is used for all transactions.
- Latency is defined as the maximum delay time of an RMAP reply.

Multiple transaction in one time slot is realized within the limitation of latency definition
 - No modification is required on SpaceWire/RMAP.
Communication Services

- **Implicit services**
 - Re-transmission
 - Re-transmission through alternative paths

- **Explicit services**
 - Distribution Services
 - Collection Services
 - Polling for additional telemetry collection and command delivery request

- Guaranteed transactions with ACK/NACK are implemented on RMAP.
Services are distinguished through addresses

- Exploiting RMAP inherent characteristics for Plug & Play capability

Undefined Area is available for Configuration Information (ex) QoS lookup table, etc.

[Internal Register usage example]
- GPO/GPI register for functional check
- LED control for GSE
- SpaceWire Logical Address
- IP revision
- Buffer memory map information
- etc.
Road map of NEXTAR

Standards & Development

SDS-1

- **Space Cube 2**
- Joint collaboration study with JAXA/ISAS
- 64bit MPU
- Burst SRAM
- SpaceWire
- On-orbit demonstration (~100kg)

2008~2009

NEC standard bus (NEXTAR)

- JAXA/ISAS small satellite series
- METI advanced small satellite

(300kg~500kg)

2011

NEC standard bus (NEXTAR)

- Micro Satellites

(30kg~50kg)

2013~